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Abstract

Tuenter considered centered binomial sums of the form

Sr(n) =
2n
∑

k=0

(

2n

k

)

|n− k|r,

where r and n are non-negative integers. We consider sums of the form

Ur(n) =
n
∑

k=0

(

n

k

)

|n/2− k|r,

which are a generalization of Tuenter’s sums and may be interpreted as moments of
a symmetric Bernoulli random walk with n steps. The form of Ur(n) depends on the
parities of both r and n. In fact, Ur(n) is the product of a polynomial (depending on
the parities of r and n) times a power of two or a binomial coefficient. In all cases
the polynomials can be expressed in terms of Dumont-Foata polynomials. We give
recurrence relations, generating functions and explicit formulas for the functions Ur(n)
and/or the associated polynomials.

1 Introduction

We consider centered binomial sums of the form

Ur(n) =
n

∑

k=0

(

n

k

)

∣

∣

∣

n

2
− k

∣

∣

∣

r

, (1)
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where r, n ≥ 0. These generalize the binomial sums

Sr(n) =
2n
∑

k=0

(

2n

k

)

|n− k|r, (2)

previously considered by Tuenter [7] and other authors, since Sr(n) = Ur(2n), but Ur(n) is
well-defined for both even and odd values of n. The generalization arises naturally in the
study of certain two-fold centered binomial sums of the form

∑

j

∑

k

(

2n
n+j

)(

2n
n+k

)

P (j, k), see

Brent et al. [2, Lemma 6.4].
In definitions such as (1) and (2) we always interpret 00 as 1. Thus U0(n) = 2n for all

n ≥ 0. We define Ur(m) = 0 if m < 0.
For r > 0 we can avoid the absolute value function in (1) by writing

Ur(n) = 2

⌊n/2⌋
∑

k=0

(

n

k

)

(n

2
− k

)r

.

Tuenter [7] showed in a direct manner that, for r ≥ 0 and n > 0, Sr(n) satisfies the
recurrence

Sr+2(n) = n2Sr(n)− 2n(2n− 1)Sr(n− 1). (3)

Observe that this recurrence splits into two separate recurrences, one involving odd values
of r and the other involving even values of r. Also, S0(n) = 22n and S1(n) = n

(

2n
n

)

. It follows
that, for r, n ≥ 0,

S2r(n) = Qr(n)2
2n−r and S2r+1(n) = Pr(n)n

(

2n

n

)

, (4)

where Pr(n) and Qr(n) are polynomials of degree r with integer coefficients, satisfying the
recurrences

Pr+1(n) = n2Pr(n)− n(n− 1)Pr(n− 1), (5)

Qr+1(n) = 2n2Qr(n)− n(2n− 1)Qr(n− 1) (6)

for r ≥ 0, with initial conditions P0(n) = Q0(n) = 1.
The Dumont-Foata polynomials Fr(x, y, z) are 3-variable polynomials satisfying the re-

currence relation

Fr+1(x, y, z) = (x+ z)(y + z)Fr(x, y, z + 1)− z2Fr(x, y, z) (7)

for r ≥ 1, with F1(x, y, z) = 1. Dumont and Foata [4] gave a combinatorial interpretation for
the coefficients of Fr(x, y, z) and showed that Fr(x, y, z) is symmetric in the three variables
x, y, z.
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Tuenter [7] showed that Pr(n) and Qr(n) may be expressed in terms of Dumont-Foata
polynomials. In fact, for r ≥ 1,

Pr(n) = (−1)r−1nFr(1, 1,−n) and Qr(n) = (−2)r−1nFr(
1
2
, 1,−n). (8)

Thus, we can obtain explicit formulas and generating functions for the polynomials Pr(n)
and Qr(n) as special cases of the results of Carlitz [3] on Dumont-Foata polynomials.

We show that all the above results for Sr(n) can be generalized to cover Ur(n). In
particular, Theorem 1 shows that Ur(n) satisfies a recurrence (9) similar to the recurrence (3)
satisfied by Sr(n). Also, Ur(n) is the product of a polynomial (depending on the parity of r)
times a power of two or a binomial coefficient, and Theorem 2 shows that these polynomials
satisfy three-term recurrence relations analogous to (5)–(6). Using the recurrences, the
polynomials can be expressed in terms of Dumont-Foata polynomials, so the results of Carlitz
allow us to obtain explicit formulas (in §3) and exponential generating functions (in §4).

2 Recurrence relations

Theorems 1–2 give recurrence relations for Ur(n) and associated polynomials. The recur-
rence (9) in Theorem 1 implies the recurrence (3) satisfied by Sr(n).

Theorem 1. For all r, n ≥ 0, Ur(n) satisfies the recurrence

4Ur+2(n) = n2Ur(n)− 4n(n− 1)Ur(n− 2), (9)

and may be computed from the recurrence using the initial conditions

U0(n) = 2n, U1(2n) = n

(

2n

n

)

, U1(2n+ 1) = (2n+ 1)

(

2n

n

)

for all n ≥ 0.

Proof. We have

4Ur+2(n) =
n

∑

k=0

4

(

n

k

)

∣

∣

∣

n

2
− k

∣

∣

∣

r+2

=
n

∑

k=0

(

n

k

)

∣

∣

∣

n

2
− k

∣

∣

∣

r

(n− 2k)2, (10)

n2Ur(n) =
n

∑

k=0

(

n

k

)

∣

∣

∣

n

2
− k

∣

∣

∣

r

n2, (11)

and

4n(n− 1)Ur(n− 2) =
n−2
∑

k=0

4n(n− 1)

(

n− 2

k

) ∣

∣

∣

∣

n− 2

2
− k

∣

∣

∣

∣

r

=
n−1
∑

k=1

4n(n− 1)

(

n− 2

k − 1

)

∣

∣

∣

n

2
− k

∣

∣

∣

r

=
n−1
∑

k=1

4k(n− k)

(

n

k

)

∣

∣

∣

n

2
− k

∣

∣

∣

r

. (12)
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Since (n− 2k)2 − n2 − 4k(n− k) = 0, the recurrence (9) follows from (10)–(12).
For the initial conditions, it is easily verified that U0(n) = 2n. The solution by Hillman [5]

to the Putnam problem 35-A4 gives U1(n) = n
(

n−1
⌊n/2⌋

)

, and taking account of the parity of n
gives the remaining conditions.

It is now clear that the structure of Ur(n) depends upon the parities of both r and n,
and one can elucidate the recursion (9) by the following substitutions:

U2r+1(2n− 1) = 2−(2r+1)nP r(n)

(

2n

n

)

, (13)

U2r(2n+ 1) = 22n+1−2rQr(n). (14)

It is easily verified that P r(n) and Qr(n) are polynomials in n of degree r. By substitution
into (9), we obtain the following theorem.

Theorem 2. For r ≥ 0, the polynomials P r(n) and Qr(n) defined by equations (13)–(14)
satisfy the following recurrence relations:

P r+1(n) = (2n− 1)2 P r(n)− 4(n− 1)2 P r(n− 1), (15)

Qr+1(n) = (2n+ 1)2 Qr(n)− 2n(2n+ 1)Qr(n− 1), (16)

with initial conditions P 0(n) = Q0(n) = 1.

3 Explicit formulas

Using the recurrence (7) and matching the initial conditions, we can verify that the polyno-
mials P r(n) and Qr(n) can be expressed in terms of Dumont-Foata polynomials, as follows:

P r(n) = (−4)rFr+1

(

1
2
, 1
2
, 1
2
− n

)

, (17)

Qr(n) = (−1)r−122r−1
(

n+ 1
2

)

Fr

(

1
2
, 1,−n− 1

2

)

. (18)

Also, replacing n by n+ 1
2
in the second half of (8) shows that

Qr(n) = 2rQr

(

n+ 1
2

)

. (19)

Carlitz [3, eqns. (1.13) and (1.16)] gives an explicit formula for the Dumont-Foata polyno-
mials. We follow Carlitz and let (z)k denote the Pochhammer symbol or “rising factorial”.
Note that, although Fr+1(x, y, z) is symmetric in x, y and z, the representation given in
Proposition 3 is not symmetric. Thus, it is sometimes necessary to permute variables before
applying Proposition 3.
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Proposition 3 (Carlitz). For r ≥ 0 and z > 0,

Fr+1(x, y, z) =
r

∑

k=0

(−1)r−k(x+ z)k(y + z)k Ar,k(z),

where Ar,k(z) =
2

k!

k
∑

j=0

(−1)k−j

(

k

j

)

(z + j)2r+1

(2z + j)k+1

.

Application of Proposition 3 gives, after some simplification, the following formulas for
Ur(n), valid for r ≥ 1 and n ≥ 0:

U2r(n) = 2n+1
∑

1≤j≤k≤r

(−1)j
(

−n
2

)

k

(

1
2

)

k

(k − j)!(k + j)!
j2r, (20)

U2r+1(2n) = 2n

(

2n

n

)

∑

1≤j≤k≤r

(−1)j
(−n)k

(k − j)! (k + 1)j
j2r, (21)

U2r−1(2n− 1) =

(

2n

n

)

∑

1≤j≤k≤r

(−1)j
(−n)k

(k − j)! (k)j

(

j − 1
2

)2r−1
. (22)

4 Generating functions

The exponential generating function (egf)

∑

r≥0

U2r(n)
z2r

(2r)!
= 2n coshn(z/2). (23)

generalizes the egf
∑

r≥0

S2r(n)
z2r

(2r)!
= 22n cosh2n(z/2) (24)

given by Tuenter [7, §5], since replacing n by 2n in (23) gives (24). The proof of (23) is
straightforward, and does not require the results of Carlitz.

We can obtain other egfs from the results of Carlitz. First, we note that Carlitz [3, eqn.
(4.2)] gives the egf

∑

r≥1

(−1)rFr(x, y, 1)
z2r

(2r)!
=

1

xy

∑

k≥1

(−1)k
(x)k(y)k
(2k)!

(

2 sinh
z

2

)2k

. (25)

In view of (4) and (8), this allows us to obtain an egf for U2r+1(2n):

∑

r≥0

U2r+1(2n)
z2r

(2r)!
= n

(

2n

n

) n
∑

k=0

22k
(

n

k

)(

2k

k

)−1

sinh2k
(z

2

)

. (26)
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In order to calculate U2r+1(2n) from (26), it is only necessary to sum the terms on the
right-hand side for k ≤ min(r, n).

The remaining case U2r+1(2n− 1) is more difficult because (25) does not apply. We can
use the egf

∑

r≥0

(−1)rFr+1(x, y, z)
u2r+1

(2r + 1)!

= 2
∞
∑

k=0

k
∑

j=0

(−1)j(x+ z)k(y + z)k(2z)j
j!(k − j)!(2z)k+1(2z + k + 1)j

sinh((z + j)u), (27)

which follows from the discussion in Carlitz [3, pp. 221–222]. Using (13), (17) and (27), after
some simplification followed by a change of variables (u 7→ z), we obtain the egf:

∑

r≥0

U2r+1(2n− 1)
z2r+1

(2r + 1)!

= n

(

2n

n

)

∑

0≤j≤k<n

(−1)k−j
(

n−1
k

)(

2k
k−j

)

(

2k
k

)

sinh
((

j + 1
2

)

z
)

j + k + 1
, (28)

which is valid for n ≥ 1.
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Appendix 1: The polynomials P r, Qr for r ≤ 5

P 0(n) = 1,

P 1(n) = 4n− 3,

P 2(n) = 32n2 − 56n+ 25,

P 3(n) = 384n3 − 1184n2 + 1228n− 427,

P 4(n) = 6144n4 − 29184n3 + 52416n2 − 41840n+ 12465,

P 5(n) = 122880n5 − 829440n4+

2258688n3 − 3076288n2 + 2079892n− 555731,

Q0(n) = 1,

Q1(n) = 2n+ 1,

Q2(n) = 12n2 + 8n+ 1,

Q3(n) = 120n3 + 60n2 + 2n+ 1,

Q4(n) = 1680n4 − 168n2 + 128n+ 1,

Q5(n) = 30240n5 − 25200n4 + 5040n3 + 7320n2 − 2638n+ 1.

A similar table for Tuenter’s polynomials Pr(n), Qr(n) may be found in Brent [1]. The
triangles of coefficients of −Pr(−n)/n,−Qr(−n)/n, and Qr(−n) for r ≥ 1 are OEIS [6]
sequences A036970, A083061, and A160485 respectively. We have contributed the coefficients
of P r(n) as sequence A245244. The values (−1)rP r(0) are sequence A009843 (see Appendix 2
for details).

The bijection (19) between A083061 and A160485 (by a shift of ±1
2
and scaling by a

power of 2) was not mentioned in the relevant OEIS entries as at July 14, 2014; we have
now contributed comments to this effect.

Appendix 2: Special values of Pr, Qr, P r, Qr

In Table 1, we give values of the polynomials Pr, Qr, P r, and Qr at 0, 1,∞. Here P (∞)
denotes the leading coefficient of the polynomial P (z), δi,j is the Kronecker delta, and Sr is
the r-th Secant number. The values (−1)rP r(0) are OEIS sequence A009843, and are given
by the egf

∞
∑

r=0

P r(0)
x2r+1

(2r + 1)!
=

x

cosh x
. (29)

They may be expressed in terms of the Secant numbers Sr, which comprise OEIS sequence
A000364. In view of (17), we obtain a special value of the Dumont-Foata polynomials:

Fr+1

(

1
2
, 1
2
, 1
2

)

= 2−2r(2r + 1)Sr. (30)
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z Pr(z) Qr(z) P r(z) Qr(z)

0 δ0,r δ0,r (−1)r(2r + 1)Sr 1

1 1 max(1, 2r−1) 1 (32r + 3)/4

∞ r! (2r)!/(2rr!) 22rr! (2r)!/r!

Table 1: Special values of the polynomials

The values Qr(1) comprise OEIS sequence A054879. The values in the last row of Table 1
may also be found in OEIS: they are sequences A000142, A001147, A047053, and A001813.

Tuenter [7] observed that, for r ≥ 1, the constant terms of −Pr(n)/n are the Genocchi
numbers (A001469), and the constant terms of (−1)r−1Qr(n)/n are the reduced tangent
numbers (A002105).
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