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Abstract

Let t(n, s) and t(n, k, s), respectively, be the number of partitions of n with s

different sizes, and the number of partitions of n with exactly k parts and s different
sizes. In this article, an asymptotic estimate for t(n, k, s) is presented for the following
two cases: (i) s = k − 1 and (ii) when k is a prime number with s = 2. Further, the
enumeration of uniform partitions with exactly 2 sizes is considered and the estimate
for its partial sum is derived. Finally, a parity result for t(n, 2) is obtained.

1 Introduction and statement of results

Let n be a positive integer. By a partition of n we mean a finite non-increasing sequence of
positive integers λ = (λ1, λ2, . . . , λm) such that λ1 + λ2 + · · · + λm = n. The λi are called
the parts of the partition and each element in the set of parts is called a size of λ.

Let t(n, s) and t(n, k, s), respectively, be the number of partitions of n with s different
sizes, and the number of partitions of n with exactly k parts and s different sizes.

These two classes of functions are subjects of investigation in the recent past. MacMahon
[7] was the first who considered this kind of partitions. In 2005, Deutsch included the number
of partitions of n with exactly two odd sizes (see A117955) and the number of partitions of n
with exactly two sizes, one odd and one even (see A117956) in the On-Line Encyclopedia of

Integer Sequences (OEIS). Sloane [9] included the function t(n, 2) in the OEIS (see A002133).
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Deutsch presented the following generating function of t(n, 2) (see A002133):

∞
∑

n=1

t(n, 2)xn =
i−1
∑

j=1

∞
∑

i=1

xi+j

(1− xi)(1− xj)
.

Andrews [1] gave the following formula for t(n, 2) by means of q series manipulations:

t(n, 2) =

∑n−1
k=1 τ(k)τ(n− k) + τ(n)− σ(n)

2
,

where τ(n) denote the number of positive divisors of n and σ(n) denote the sum of the
positive divisors of n.

In 2011, Tani and Bouroubi [8] found an elegant exact formula for the function t(n, k, 2).
The purpose of this article is twofold. First, we give an asymptotic estimate for t(n, k, s)

for certain cases.

Theorem 1. We have

t(n, k + 1, k) ∼ Ck−1

(k + 1)!k−1
nk−1, (1)

where Ck−1 is given by the recurrence relation:

Ck−1 = (k − 2)!kCk−2(k + 1)k−2 + k
(k + 1)!k−2

(k − 1)!
(2)

with C1 = 3.

Theorem 2. For prime p ≥ 3, we have

t(n, p, 2) ∼
∑p−1

j=1
(p−1)!

j

p!
n.

The method adopted to arrive at the above estimates is similar to the one used in a
recent paper by David Christopher et al. [5]. In addition to the estimates above, we consider
the uniform partitions with 2 sizes and we derive the estimate for the partial sums of its
enumeration function.

Definition 3. A partition λ is said to be an uniform partition (see [3]) if, the number of
occurrences of a size in λ is identical with that of all the other sizes in λ. The enumeration
function U(n, 2) is defined to be the number of uniform partitions of n with exactly 2 sizes.

Theorem 4. We have
n
∑

m=1

U(m, 2) ∼ π2

24
n2.

The next result in this article is a parity expression for t(n, 2).
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Theorem 5. Let n be a positive integer.

1. If n ≡ 1 (mod 2), then we have

t(n, 2) ≡
{

τ(n)−1
2

(mod 2), if n is a square;
τ(n)
2

(mod 2), if n is not a square.

2. If n ≡ 0 (mod 2) and β is the highest power of 2 that divides n, then we have

t(n, 2) ≡
{

(β−1)τ( n

2β
)−1

2
(mod 2), if n is a square;

(β−1)τ( n

2β
)

2
(mod 2), if n is not a square.

In the final section, we provide two different proofs for this theorem.

2 Proof of the Estimates

2.1 Prerequisites

To begin with, we need the following recurrence relation satisfied by t(n, k, s), which has
k − s + 2 preceding terms. Note that, the following recurrence relation is identical to the
one given by Tani and Bouroubi [8], but it is presented here in a linear form. The method
of proof below is bijective whereas the former proof is based upon a simple variation in the
system of equations that admits partitions with fixed number of sizes as its solution.

Lemma 6 (Tani and Bouroubi [8]). We have

t(n, k, s) = t(n− k, k, s) +
k−s+1
∑

r=1

t(n− k, k − r, s− 1).

Proof. Let (λ1, λ2, . . . , λk) be a partition of n with exactly k parts and s different sizes.

Case (i): Assume that λk > 1. Consider the mapping

(λ1, λ2, . . . , λk) → (λ1 − 1, λ2 − 1, . . . , λk − 1);

this mapping establishes an one-to-one correspondence between the following sets:

• The set of all partitions of n with exactly k parts, s different sizes and least part ak > 1.

• The set of all partitions of n− k with exactly k parts and s different sizes.

3



We observe that the cardinality of the latter set is t(n− k, k, s).

Case (ii): Assume that λk = λk−1 = · · · = λk−(r−1) = 1 and λk−r > 1 for some positive
integer r ≥ 1.

We see that the mapping

(λ1, λ2, . . . , λk) → (λ1 − 1, λ2 − 1, . . . , λk−r − 1)

establishes an one-to-one correspondence between the following sets:

• The set of all partitions of n with exactly k parts, s different sizes and λk = λk−1 =
· · · = λk−(r−1) = 1 and λk−r > 1.

• The set of all partitions of n− k with exactly k − r parts and s− 1 different sizes.

Notice that the cardinality of the latter set is t(n− k, k − r, s− 1). Since r varies from 1 to
k − s+ 1, the result follows.

Definition 7. Let n and k be two positive integers with n ≥ k(k+1)
2

. The enumeration
function q(n, k) is defined to be the number of partitions of n with k distinct parts.

The following result is required in the proof of Theorem 1.

Lemma 8 (David Christopher and Davamani Christober [4]). Let k ≥ 2 be a positive integer.

For each r ∈ {0, 1, . . . , k!− 1}, the function q(k!l + r, k) is a polynomial in l of degree k − 1

with the leading coefficient k!k−2

(k−1)!
.

2.2 Proof of Theorem 1

Wielding Lemma 6 and Lemma 8 we will prove the following statements:

1. The function t((k + 1)!l + r, k + 1, k) is a polynomial in l of degree k − 1 for each
r ∈ {0, 1, . . . , (k + 1)!− 1}.

2. The leading coefficient of t((k+1)!l+r, k+1, k), denoted Ck−1, satisfies the recurrence
relation (2).

From these statements one can get the following limit:

lim
l→∞

t((k + 1)!l + r, k + 1, k)

((k + 1)!l + r)k−1
=

Ck−1

(k + 1)!k−1

for each r ∈ {0, 1, . . . , (k + 1)!− 1}; which is equivalent to the estimate (1).
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Now we prove the statements above simultaneously by induction over k. We observe
that: t(n, k, k) = q(n, k). Put k = 3 and s = 2 in Lemma 6 to get

t(n, 3, 2)− t(n− 3, 3, 2) = t(n− 3, 2, 1) + q(n− 3, 1)

=

{

2, if n ≡ 3 (mod 2);

1, otherwise.

Put n = 3!l + r with 0 ≤ r ≤ 3!− 1, where l is a non-negative integer. Then we have

t(3!l + r, 3, 2)− t(3!l + r − 3, 3, 2) =

{

2, if r ≡ 1 (mod 2);

1, if r ≡ 0 (mod 2),

and

t(3!l + r − 3, 3, 2)− t(3!l + r − 6, 3, 2) =

{

2, if r ≡ 0 (mod 2);

1, if r ≡ 1 (mod 2).

The sum of the above two expressions can be put as t(3!l+ r, 3, 2)− t(3!(l− 1) + r, 3, 2) = 3
for each r ∈ {0, 1, . . . , 3!− 1}. Then substituting 2, 3, . . . , l in place of l gives t(3!l+r, 3, 2) =
3(l−1)+ t(r, 3, 2) for each r ∈ {0, 1, . . . , 3!− 1}. Thus, the statements above hold for k = 2.

Assume that the assertion is true up to some k ≥ 2. Set k + 1 as the number of parts,
k as the number of sizes and n = (k + 1)!l + r, where l is a non-negative integer and
r ∈ {0, 1, . . . , (k + 1)!− 1}. Then applying Lemma 6 k! times, we get

t((k + 1)!l + r, k + 1, k)− t((k + 1)!(l − 1) + r, k + 1, k)

=
k!
∑

i=1

t((k + 1)!l + r − i(k + 1), k, k − 1)

+
k!
∑

i=1

q((k + 1)!l + r − i(k + 1), k − 1).

In view of the division algorithm one can obtain unique pair of integers say (ri, qi) for each
i ∈ {1, 2, . . . , k!} satisfying the equality k!qi + ri = r − i(k + 1) with 0 ≤ ri ≤ k! − 1.
Similarly one can get unique pair of integers say (r′i, q

′
i) for each i ∈ {1, 2, . . . , k!} satisfying

the equality (k− 1)!q′i + r′i = r− i(k+1) with 0 ≤ r′i ≤ (k− 1)!− 1. Consequently, the right
side of the above equality can be written as

k!
∑

i=1

t(k!((k + 1)l + qi) + ri, k, k − 1) +
k!
∑

i=‘1

q

(

(k − 1)!

(

(k + 1)!

(k − 1)!
l + q′i

)

+ r′i, k − 1

)

. (3)

Put li = (k+1)l+qi. By induction assumption, the function t(k!li+ri, k, k−1) is a polynomial
in li of degree k − 2 with the leading coefficient Ck−2 as given in the recurrence relation
(2) for each ri ∈ {0, 1, . . . , k!− 1} and i ∈ {1, 2, . . . , k!}. Just assuming this polynomial
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representation, we see that the first summation in (3) is a sum of k! polynomials in l, each
of which is of degree k − 2 with the leading coefficient Ck−2(k + 1)k−2. (At this juncture,
we note that (k + 1)l + qi may be negative for some initial values of l. In such instances,
we assume the extrapolation of the function t(k!li + ri, k, k − 1) as a polynomial in li and
not as an enumeration function.) Thus, the first summation in (3) is itself a polynomial in

l of degree k − 2 with the leading coefficient k!Ck−2(k + 1)k−2. Put l′i =
(k+1)!
(k−1)!

l + q′i. From

Lemma 8 it follows that q((k− 1)!l′i + r′i, k− 1) is a polynomial in l′i of degree k− 2 for each
r′i ∈ {0, 1, . . . , (k − 1)!− 1} and i ∈ {1, 2, . . . , k!}. Consequently, the second summation in

(3) is itself a polynomial in l of degree k − 2 with the leading coefficient k! (k−1)!k−3

(k−2)!
(k+1)!k−2

(k−1)!k−2 .

Thus, the summation term in (3) is a polynomial in l of degree k − 2 with the leading

coefficient k!Ck−2(k + 1)k−2 + k! (k−1)!k−3

(k−2)!
(k+1)!k−2

(k−1)!k−2 . Accordingly, t((k + 1)!l + r, k + 1, k) −
t((k + 1)!(l − 1) + r, k + 1, k) is a polynomial in l of degree k − 2. Put f(l) = t((k + 1)!l +
r, k + 1, k) − t((k + 1)!(l − 1) + r, k + 1, k). Substituting the values 1, 2, . . . , l in place of l
and adding we get t((k+1)!l+ r, k+1, k) =

∑l

i=1 f(i)− t(r, k+1, k). This equality implies
that t((k + 1)!l + r, k + 1, k) is a polynomial in l of degree k − 1.

If one denotes the leading coefficient of t((k + 1)!l + r, k + 1, k) by Ck−1, then from the
conclusions above we get

(k − 1)Ck−1 = k!Ck−2(k + 1)k−2 + k!
(k − 1)!k−3

(k − 2)!

(k + 1)!k−2

(k − 1)!k−2
.

This simplifies to the recurrence relation (2). The proof is now completed.

Corollary 9. From the recurrence relation of Cn given in the Theorem 1 we get

C1 = 3, C2 = 72, C3 = 24000, C4 = 233280000, . . .

From these values of Ci, we have the following estimates:

t(n, 3, 2) ∼ 1

2
n;

t(n, 4, 3) ∼ 1

8
n2;

t(n, 5, 4) ∼ 1

72
n3;

t(n, 6, 5) ∼ 1

1152
n4.

2.3 Proof of Theorem 2

Let p be a prime number. Then from Lemma 6 it follows that

t(n, p, 2)− t(n− p, p, 2) =

p−1
∑

j=1

t(n− p, j, 1).
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Put n = p!l+ r (where l is a positive integer and 0 ≤ r ≤ p!−1) and apply Lemma 6 (p−1)!
times in the above relation to get

t(p!l + r, p, 2)− t(p!(l − 1) + r, p, 2) =

p−1
∑

j=1

(p−1)!
∑

i=1

t(p!l + r − pi, j, 1). (4)

Notice that

t(p!l + r − pi, j, 1) =

{

1, if pi ≡ r (mod j);

0, otherwise,

and the congruence equation
px ≡ r (mod j)

has unique solution modulo j for each j ∈ {1, 2, . . . , p− 1}. Consequently, we get the right

side of (4) as
∑p−1

j=1
(p−1)!

j
. Then replacing l by 1, 2, . . . , l in (4) and adding gives

t(p!l + r, p, 2) = t(r, p, 2) +

(

p−1
∑

j=1

(p− 1)!

j

)

l

for each r ∈ {0, 1, . . . , p!− 1}. This implies that

lim
l→∞

t(p!l + r, p, 2)

p!l + r
=

∑p−1
j=1

(p−1)!
j

p!

for each r ∈ {0, 1, . . . , p!− 1}. Equivalently,

t(n, p, 2) ∼
∑p−1

j=1
(p−1)!

j

p!
n;

this is the contention of the Theorem 2.

Remark 10. At this juncture, we remark that, the method adopted so far to derive asymptotic
estimates may turn futile for some other cases. For instance, from the exact expression for
the function t(n, 4, 2) given in [8] one can get the following values:

1. t(12l + 4, 4, 2) = 7l for every non-negative integer l.

2. t(12l + 5, 4, 2) = 4l + 1 for every non-negative integer l.

This leads to the conclusion that
t(n, 4, 2) ≁ Kn

for every real number K.
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2.4 Proof of Theorem 4

Recall that the function U(n, 2) is the number of uniform partitions of n with exactly 2 sizes.
We have

U(n, 2) =
∑

d|n

q (d, 2)

=
∑

d|n

⌊

d− 1

2

⌋

≤
∑

d|n

d− 1

2

=
1

2
(σ(n)− τ(n)) .

On the other hand, we have

U(n, 2) =
∑

d|n

q (d, 2)

=
∑

d|n

⌊

d− 1

2

⌋

≥
∑

d|n

d− 2

2

=
1

2
(σ(n)− 2τ(n)) .

Consequently, we have

1

2

(

n
∑

m=1

σ(m)− 2
n
∑

m=1

τ(m)

)

≤
n
∑

m=1

U(m, 2) ≤ 1

2

(

n
∑

m=1

σ(m)−
n
∑

m=1

τ(m)

)

. (5)

Since

lim
n→∞

∑n

m=1 σ(m)
π2

12
n2

= 1 (6)

and

lim
n→∞

∑n

m=1 τ(m)

n log n
= 1, (7)

dividing the inequality (5) by π2

12
n2 and letting n→ ∞ gives

lim
n→∞

∑n

m=1 U(m, 2)
π2

12
n2

=
1

2
,

which is equivalent to the estimate given in Theorem 4. (The validity of the limits (6) and
(7) can be seen in [2, p. 57–60].)
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3 Two proofs of Theorem 5

In this section, we adopt the following notation: if λ = (λ1, λ2, . . . , λk) is a partition of n and

{a1, a2, . . .} is the set of all sizes of λ with a1 > a2 > · · · , then we denote λ =
(

a
f1
1 a

f2
2 · · ·

)

when the size ai occurs exactly fi number of times in λ. Let P n
2 denote the set of all partitions

of n with exactly two sizes.

3.1 A proof using Jacobi’s formula

Proof. Let λ =
(

a
f1
1 a

f2
2

)

∈ P n
2 . Then we have a1f1 + a2f2 = n with a1 > a2.

Case (i): f1 = f2. In this case we have n = f1a1 + f2a2 = f(a1 + a2), where f1 = f2 = f

(say). Clearly, f |n and the enumeration of the ordered pairs (a1, a2) satisfying the equality

is q
(

n
f
, 2
)

. Thus, the number of partitions belonging to this case is
∑

f |n q
(

n
f
, 2
)

.

Case (ii): f1 = a1 and f2 = a2. We see that the number of partitions belonging to this case
equals the number of ways that n can be written as the sum of two distinct nonzero squares;
we denote this enumeration by R2(n).

Case (iii): Assume that f1 6= f2 with either a1 6= f1 or a2 6= f2, and either f1 6= a2 or f2 6= a1.
In this case, consider the mapping

T ((af11 a
f2
2 )) =

{

(fa1
1 f

a2
2 ), if f2 < f1;

(fa2
2 f

a1
1 ), if f1 < f2.

Clearly, T is an involutory mapping with no fixed point. Moreover, we see that if λ belongs
to this case, then T (λ) also belongs to this case and vice versa. Thus, the set of partitions
belonging to this case can be got as the disjoint union of set of pairs of elements of the
form {λ, T (λ)}, where λ runs over the partitions belonging to this case. Consequently, the
number of partitions belonging to this case is even; thus, this enumeration contributes zero
to the modulo 2.

Case (iv): f1 6= f2 with a1 = f2 and a2 = f1. We note that this is a special case when n ≡ 0
(mod 2). In this case, we have n = 2a1a2. Consequently, the number of partitions belonging

to this case is
τ(n

2
)−δ(n

2
)

2
, where δ(·) is the characteristic function of squares defined as follows:

δ(n) =

{

1, if n is a square;

0, otherwise.

Since the above cases are exhaustive, we have the following parity identity for t(n, 2):

t(n, 2) ≡







(

∑

d|n q
(

n
d
, 2
)

+R2(n) +
τ(n

2
)−δ(n

2
)

2

)

(mod 2), if n ≡ 0 (mod 2);
(

∑

d|n q
(

n
d
, 2
)

+R2(n)
)

(mod 2), if n ≡ 1 (mod 2).
(8)
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The remaining part of the proof relies on a formula due to Jacobi. Jacobi [6] found a formula
for the number of representations of a given positive integer n as the sum of two squares.
This representation includes negative numbers and zero in the squaring process and also the
order of the summands is taken into account. Jacobi’s formula [6] is

r2(n) = 4 (d1(n)− d3(n)) ,

where r2(n) denotes the number of ways that a given positive integer n can be written as
the sum of two squares and d1(n)(resp.d3(n)) denotes the number of divisors of n that are
1(resp. 3) modulo 4. Using this formula, we can write

R2(n) =

{

r2(n)−4
8

, if δ(n) = 1 or δ(n
2
) = 1;

r2(n)
8
, otherwise.

=

{

d1(n)−d3(n)−1
2

, if δ(n) = 1 or δ(n
2
) = 1;

d1(n)−d3(n)
2

, otherwise.

We now simplify the parity formula of t(n, 2) mentioned in (8) by using the above expression
for R2(n).

To proceed further, we need a few calculations. If n ≡1 (mod 2), then for every divisor
d of n, we have

⌊d− 1

2
⌋ ≡

{

0 (mod 2), if d ≡ 1 (mod 4);

1 (mod 2), if d ≡ 3 (mod 4),

and hence it follows that

∑

d|n

q(d, 2) =
∑

d|n

⌊

d− 1

2

⌋

≡ d3(n) (mod 2).

If n ≡0 (mod 2), then we have

∑

d|n

q(d, 2) =
∑

d|n, d≡1 (mod 2)

q(d, 2) +
∑

d|n, d≡0 (mod 2)

q(d, 2).

By the previous calculation, we see that

∑

d|n, d≡1 (mod 2)

q(d, 2) ≡ d3(n) (mod 2).

Let β be the highest power of 2 that divides n. Since ⌊2n−1
2

⌋ = n − 1, we have ⌊2kn−1
2

⌋ =
2k−1n− 1 ≡ 1 (mod 2) for every k ≥ 2. And consequently we get

∑

d|n, d≡0 (mod 2)

q(d, 2) ≡ (β − 1)τ
( n

2β

)

(mod 2).
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Accordingly, when n ≡ 0 (mod 2) and β is the highest power of 2 that divides n, we have

∑

d|n

q(d, 2) ≡ d3(n) + (β − 1)τ
( n

2β

)

(mod 2).

When these calculations are incorporated in the parity identity (8) we get

t(n, 2) ≡







































































d3(n) +
d1(n)−d3(n)−1

2
(mod 2), if n ≡ 1 (mod 2)

and δ(n) = 1;

d3(n) +
d1(n)−d3(n)

2
(mod 2), if n ≡ 1 (mod 2)

and δ(n) = 0;

d3(n) +
d1(n)−d3(n)−1

2
+ (β − 1)τ

(

n
2β

)

+
τ(n

2
)−δ(n

2
)

2
(mod 2), if n ≡ 0 (mod 2)

and δ(n) = 1 or

δ(n
2
) = 1;

d3(n) +
d1(n)−d3(n)

2
+ (β − 1)τ

(

n
2β

)

+
τ(n

2
)−δ(n

2
)

2
(mod 2), if n ≡ 0 (mod 2)

and δ(n) = 0.

Let n ≡ 0 (mod 2). If δ( n
2β
) = 1 then either δ(n) = 1 or δ(n

2
) = 1. Conversely, if δ( n

2β
) = 0,

then δ(n) = δ(n
2
) = 0. This simple observation transforms the above congruence as follows:

t(n, 2) ≡































































τ(n)−1
2

(mod 2), if n ≡ 1 (mod 2) and

δ(n) = 1;
τ(n)
2

(mod 2), if n ≡ 1 (mod 2) and

δ(n) = 0;

(β − 1)τ( n
2β
) +

τ( n

2β
)−1

2
+

τ(n
2
)−δ(n

2
)

2
(mod 2) if n ≡ 0 (mod 2) and

δ( n
2β
) = 1;

(β − 1)τ( n
2β
) +

τ( n

2β
)

2
+

τ(n
2
)

2
(mod 2) if n ≡ 0 (mod 2) and

δ( n
2β
) = 0.

As we see, the proof for the case n ≡1 (mod 2) is finished. To finish the proof of the
counterpart, we verify that the last two cases in the above congruence is equivalent to the
congruence mentioned in the statement of the result. To that end, the following easily
verifiable fact is required: using the multiplicative property of τ function, one can get that
τ( n

2β
) + τ(n

2
) = τ( n

2β
) + τ( n

2β
)β = τ( n

2β
)(β + 1) when n ≡ 0 (mod 2).

1. Let n ≡ 0 (mod 2). If δ(n) = 0 and δ( n
2β
) = 1, then we have τ( n

2β
) ≡ 1 (mod 2) and

11



β − 1 ≡0 (mod 2). This gives

t(n, 2) ≡ τ( n
2β
)− 1

2
+
τ(n

2
)− 1

2

≡ τ( n
2β
)(β + 1)

2
− 1

≡ β + 1

2
− 1

≡ β − 1

2

≡ τ( n
2β
)(β − 1)

2
(mod 2).

2. Let n ≡ 0 (mod 2). If δ(n) = δ( n
2β
) = 0, then we have

t(n, 2) ≡ τ( n
2β
)

2
+
τ(n

2
)

2
≡ (β + 1)τ( n

2β
)

2
≡ (β − 1)τ( n

2β
)

2
(mod 2).

Equivalence of the last two congruences follows from the fact that the parity of β + 1
and β − 1 are identical.

3. Let n ≡ 0 (mod 2). If δ(n) = 1, then

t(n, 2) ≡ (β − 1)τ(
n

2β
) +

τ( n
2β
)− 1

2
+
τ(n

2
)

2
≡ 1 +

τ( n
2β
)(β + 1)− 1

2
(mod 2). (9)

Since τ( n
2β
) ≡ 1 (mod 2), we have

τ( n

2β
)(β+1)−1

2
+ 1 ≡ β+2

2
(mod 2); on the other hand,

we have
(β−1)τ( n

2β
)−1

2
≡ β−2

2
≡ β−2

2
+ 2 ≡ β+2

2
(mod 2). Thus, the congruence (9) is

equivalent to the congruence: t(n, 2) ≡ (β−1)τ( n

2β
)−1

2
(mod 2) as expected.

The proof is now completed.

3.2 A proof using conjugate mapping

Definition 11. Let λ = (af11 a
f2
2 ) ∈ P n

2 . The conjugate of λ, denoted C(λ), is the partition
((f1 + f2)

a2fa1−a2
1 ).

Proof. Define the conjugate mapping C : P n
2 → Pn

2 . Since C is an involutory self mapping,
arguments similar to that of in the previous proof gives the congruence t(n, 2) ≡ SC2(n)
(mod 2) , where SC2(n) denotes the number of self conjugate partitions in P n

2 .
Now we derive a formula for SC2(n) in terms of the τ function. Define

Dn =
{

d ∈ N : d|n, d < √
n and

n

d
− d ≡ 0 (mod 2)

}

.

12



We contend that SC2(n) = |Dn|. Let λ = (af11 a
f2
2 ) ∈ P n

2 be a self conjugate partition.
Then from the definition of self conjugate partition, we have a1 = f1 + f2 and a2 = f1.
Consequently, we can write n = f 2

1 + 2f1f2. This leads to the equality n
f1

− f1 = 2f2. Thus,

f1 is a divisor of n which is less than
√
n and n

f1
− f1 ≡ 0 (mod 2). On the other hand,

let d ∈ Dn. Since d <
√
n , we can write n

d
− d = 2k for some k ≥ 1. From this we can

construct the partition ((d + k)ddk) which is a self conjugate partition of n with two sizes.
Accordingly, corresponding to each self conjugate partition in P n

2 , we can find an element in
Dn; and to each element in Dn we can find a self conjugate partition in P n

2 . Thus, the claim
follows. Now we find an expression for |Dn|.

Case (i): Assume that n ≡ 1 (mod 2). Then apparently n
d
− d ≡ 0 (mod 2) for every d|n.

Thus, in this case, Dn is the set of divisors of n that are less than
√
n. Let D′

n be the set of
divisors of n that are greater than

√
n. Define the mapping φ : Dn → D′

n by φ(d) = n
d
for

every d ∈ Dn. Clearly, φ is a non-fixed bijection and Dn ∩D′
n = ∅. Thus,

|Dn| =
{

τ(n)
2
, if n is a non-square;

τ(n)−1
2

, if n is a square.

Case (ii): Assume that n ≡ 0 (mod 2). Let β be the highest power of 2 that divides n.
For every odd divisor d of n, we have n

d
− d ≡ 1 (mod 2) and for every even divisor d of n

such that 2β|d, we again have n
d
− d ≡ 1 (mod 2). So, the divisors of these types does not

contribute to the set Dn. Consider every even divisor d of n such that d <
√
n and 2β does

not divides d; then, for such d, we have n
d
− d ≡ 0 (mod 2). Thus, Dn is the set of all even

divisors of n that are less than
√
n and not a multiple of 2β. Let D′′

n be the set of all even
divisors of n that are greater than

√
n and not a multiple of 2β. Now we define ψ : Dn → D′′

n

by ψ(d) = n
d
for every d ∈ Dn. Clearly, ψ is a bijective mapping and Dn ∩D′′

n = ∅. Thus,

|Dn| =
{

(β−1)τ( n

2β
)−1

2
, if n is a square ;

(β−1)τ( n

2β
)

2
, if n is not a square.

The second proof is now completed.
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