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Abstract

Marked mesh patterns are a very general type of permutation pattern. We examine
a particular marked mesh pattern originally defined by Kitaev and Remmel, and show
that its generating function is described by the r-Stirling numbers. We examine some
ramifications of various properties of the r-Stirling numbers for this generating function,
and find (seemingly new) formulas for the r-Stirling numbers in terms of the classical
Stirling numbers and harmonic numbers. We also answer some questions posed by
Kitaev and Remmel and show a connection to another mesh pattern introduced by
Kitaev and Liese.

1 Introduction

The notion of a marked mesh pattern in a permutation is a generalization of classical permu-
tation patterns, and is in fact a common generalization of a number of different variations of
permutation patterns that have been of recent interest. Brändén and Claesson introduced
mesh patterns [2], and Úlfarsson developed marked mesh patterns [12]. We will give a some-
what loose definition of general marked mesh patterns here before turning to the specific
examples studied in this paper.

Let σ be a permutation written in one-line notation: σ = σ1σ2 · · · σn. The graph of σ
is the set of points of the form (i, σi) for i from 1 to n. A marked mesh pattern of length
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k is the graph of a permutation σ in Sk, drawn on a grid, with some regions of the grid
demarcated and labeled with a symbol ‘= a’, ‘≤ a’, or ‘≥ a’ for some non-negative integer
a. This diagram is intended to be a schematic drawing of the graph of a permutation σ in
Sn (with n > k), where the drawn points are actual points of the graph of σ, but the spaces
between may have been compressed. Unmarked regions of the pattern place no restriction
on σ, but the marked regions of the graph of σ must contain a number of points satisfying
the expression that marks the region. (Since the mark “= 0” is the most commonly used, a
shaded region with no other mark is assumed to be marked with “= 0”.)

The main pattern of interest for this paper is shown in Figure 1. We use MMPk to denote
this pattern. We precisely define this pattern by saying that σi matches the pattern MMPk

in σ if there are at least k − 1 indices j > i with σj > σi and j < m, where σm = n; and
no indices j < i with σj > σi. That is, when checking this pattern, we count the points
in the graph of σ that appear in the rectangle bounded in the lower left by (i, σi) and in
the upper right by (m,n). For σi to match MMPk, there must be at least k points in that
rectangle (including the point (m,n) itself, but not (i, σi),) and no points above and to the
left of (i, σi). (This matches the diagram of the pattern because the part of the shaded region
along the top of the diagram means that the upper-right point must be (m,n), while the
portion of the shaded region on the left gives the restriction on points occurring before σi.
The middle region specifies the minimum number of points between σi and n in σ.)
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Figure 1: The Pattern MMPk

The graph of σ leads to terminology that will be useful. Draw a horizontal and a vertical
line through the point (i, σi), which will divide the graph of σ into four quadrants. The usual
quadrant numbering then lets us more easily describe the position of points relative to (i, σi).
For example, points above and to the left of (i, σi) are said to be in the second quadrant
relative to σi, or, more succinctly, in σi’s second quadrant. Kitaev and Remmel [7] began
a systematic study of patterns for which the restrictions of the pattern can be described in
terms of the quadrants relative to σi, which they called quadrant marked mesh patterns. (In
that paper, the pattern MMPk is denoted by MMP(k ≤ max, ∅, 0, 0).)
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The main goal of this paper is to describe the generating function for MMPk in terms
of r-Stirling numbers (allowing us to explain some of the results of Kitaev and Remmel [7]
more fully) and to examine some related combinatorial questions. Specifically, we will find
some new recurrences and descriptions for the r-Stirling numbers, and note a connection to
another marked mesh pattern.

2 Preliminaries

For any permutation σ ∈ Sn, we define mmpk(σ) to be the number of entries σi that match
MMPk in σ.

mmpk(σ) =
∣

∣{i | 1 ≤ i ≤ n and i matches MMPk in σ}
∣

∣ .

We will write our permutations in one-line notation. Generally, for σ ∈ Sn, we use
σ1, σ2, . . . , σn throughout to denote the entries of σ. We will also often write σ as

σ = a1,1a1,2 · · · a1,m1
a2,1 · · · a2,m2

· · · ap,1 · · · ap,mp
, (1)

where a1,1 < a2,1 < · · · < ap,1, and aq,1 > aq,m for any q from 1 to p and m from 1 to mq. We
will refer to any of the substrings aq,1aq,2 · · · aq,mq

as a pseudocycle of σ. The entries aq,1 are
called left-to-right maxima of σ, since if σ is read left-to-right, each entry aq,1 is the largest
entry read so far. For example, in the permutation 56418732, the three pseudocycles are the
substrings 5, 641, and 8732, so we would set a1,1 = 5, a2,1 = 6, etc. We will also refer to this
factorization of σ in Equation (1) as the pseudocycle factorization of σ, and use the notation
of (1) when referring to such a factorization throughout.

We note that the permutations in Sn with exactly k pseudocycles are counted by the
(unsigned) Stirling numbers of the first kind, denoted c(n, k). These numbers are given by

x(x+ 1)(x+ 2) · · · (x+ n− 1) =
n
∑

i=1

c(n, k)xk.

We also define the reduction operator red(), which turns a string of k distinct integers
into a permutation in Sk by setting red(a1a2 · · · ak) to be the unique permutation σ ∈ Sk

resulting from arranging 1 through k in the same relative order as the numbers ai. For
example, red(3625) = 2413.

3 Generating functions

We now begin our study of the distribution of mmpk on Sn with a basic observation relating
the number of occurrences of the pattern MMPk in a permutation σ to the pseudocycle
structure of σ.
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Lemma 1. If σ ∈ Sn, then for any k > 1, mmpk(σ) ≤ max(0, n−k). Moreover if mmpk(σ) =
j, then in the pseudocycle factorization of σ, the elements that match MMPk in σ are exactly
a1,1, a2,1, . . . , aj,1.

Proof. Use the notation of the pseudocycle factorization in (1) for σ and assume σ has
p pseudocycles. Then we note that if σi matches MMPk in σ, then σi is a left-to-right
maximum, and thus is one of the p entries aq,1 for some 1 ≤ q ≤ p. It also implies that there
are at least k entries after σi, so that i ≤ n − k. For the second statement, we note that
if ai,1 matches MMPk in σ, for i > 1, then there are at least k − 1 elements in the i + 1st
through p − 1st pseudocycles that are greater than ai,1. These same k − 1 elements occur
between ai−1,1 and ap,1, so that ai−1,1 also matches MMPk in σ.

The standard generating function for the statistic mmpk is

Rk
n(x) =

∑

σ∈Sn

xmmpk(σ). (2)

There is a recursive formula that allows us to compute Rk
n(x). Kitaev and Remmel [7]

observed that, for any n ≥ 0,

Rk
n+1(x) =

n+1
∑

i=1

(n+ 1− i)!

(

n

i− 1

)

Rk−1
i−1 (x).

This formula also allows them to give a recursive description of the generating function

Rk(t, x) = 1 +
∑

n≥1

tn

n!

∑

σ∈Sn

xmmpk(σ).

Specifically, they show that

Rk(t, x) = 1 +

∫ t

0

1

1− z
Rk−1(z, x)dx.

However, a slight alteration to Rk
n(x) makes its description more straightforward. Let

σ = σ1σ2 · · · σn. We say that 0 matches MMPk in σ if n = σi for some i ≥ k. This is really
an extension of the definition of MMPk, since if we were to prepend a 0 to σ and consider it
as a permutation σ′ of 0, . . . , n, then 0 would in fact match MMPk in σ′ as long as n occurs
at the kth position or later in σ. In order to specify when we wish to include this expanded
notion of matching MMPk, we will define

mmpk(σ) =
∣

∣{i | 0 ≤ i ≤ n and i matches MMPk in σ}
∣

∣ .

Conventionally, we will write σ0 = 0 when we want to consider this leading 0 as part
of the permutation. Notice that mmpk(σ) = 0 if and only if n occurs at the k − 1st
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position or earlier in σ, and we describe this by saying that σ cannot match MMPk. If
mmpk(σ) = 1, then we say that σ almost matches MMPk. Note that n = σk is a sufficient
but not necessary condition for mmpk(σ) = 1. We also point out that if mmpk(σ) > 0, then
in fact mmpk(σ) = mmpk(σ) + 1.

As an example, if σ = 3214 ∈ S4, then mmp2(σ) = 0 and mmp2(σ) = 1, so that σ almost
matches MMP2. To illustrate that this notion is useful, it can easily be checked that

R2
4(x) = 17 + 6x+ x2.

However, there are 6 permutations in S4 that cannot match MMP2, and 11 that almost
match MMP2. Thus, it seems in some ways more natural to write

R2
4(x) = 6 + 11 + 6x+ x2 = c(n, 1) + c(n, 2) + c(n, 3)x+ c(n, 4)x2.

More generally, we have the following, which generalizes a result of Kitaev and Remmel [7,
Proposition 3].

Theorem 2. For s > 0, the coefficient of xs in R2
n(x) is c(n, s + 2). The number of

permutations that almost match MMP2 is c(n, 2), while the number of permutations that
cannot match MMP2 is c(n, 1) = (n− 1)!.

Proof. First, we claim that if σ has p > 2 pseudocycles, then mmp2(σ) = p − 2. To see
this, write σ in its pseudocycle factorization. As in Lemma 1, if σi matches MMP2 in σ,
then σi is one of the entries aq,1 for some 1 ≤ q ≤ p. Conversely, every entry of the form
aq,1 for 1 ≤ q ≤ p − 2 matches the pattern MMP2 in σ, since for such q, the entries aq+1,1

and ap,1 = n will lie in the first quadrant relative to aq,1. But since ap−1,1 is the next-to-last
left-to-right maximum, n is the only entry in its first quadrant. Hence, mmp2(σ) = p − 2,
as claimed.

For s > 0, this implies that the number of permutations σ that contribute a term of xs

to the sum in Equation (2) is precisely the number of permutations with s+2 pseudocycles,
which is counted by c(n, s + 2). The count of permutations that cannot match MMP2 is
immediate from the definition, and the remaining c(n, 2) permutations must almost match
MMP2.

To more easily keep track of mmpk, we define a new generating function P k
n (x) by setting

P k
n (x) =

∑

π∈Sn

xmmpk(σ).

For example,
P 2
4 (x) = 6 + 11x+ 6x2 + x3.

Of course, Rk
n(x) is easily recoverable from P k

n (x) and vice versa, so we will focus our attention
on P k

n (x). We also define Cn,k,j to be the coefficient of xj in P k
n .

For a fixed k, we can generate P k
n (x) using the following recursive description.
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Theorem 3. For a fixed value of k > 1 and any n ≥ k and j > 0,

Cn,k,j = (n− 1)Cn−1,k,j + Cn−1,k,j−1.

That is,
P k
n (x) = (x+ n− 1)P k

n−1(x).

Also,
Cn,k,0 = (n− 1)Cn−1,k,0 and P k

k−1(x) = (k − 1)!.

Proof. We first count the set of permutations σ ∈ Sn with mmpk(σ) = j such that removing
the entry 1 and applying red() does not change the value of mmpk. That is, we examine the
set

X = {σ ∈ Sn |mmpk(σ) = j,mmpk(σ1σ2 · · · 1̂ · · · σn) = j}.

Given a permutation σ ∈ Sn−1 with mmpk(σ) = j, we construct exactly n− 1 permuta-
tions in X. Let σ̃ be the string obtained by adding 1 to each entry of σ. Then we can make
n − 1 permutations in Sn by inserting 1 into σ̃ in position i = 1, 2, . . . , n. So, for example,
if σ = 1423, then σ̃ = 2534, and the resulting permutations are 21534, 25134, 25314, and
25341.

For any of the permutations σ′ ∈ Sn constructed in this way, 1 does not match MMPk

in σ′, and in fact removing it from σ′ would not affect any of the entries of σ′ that do match
MMPk in σ′, with the possible exception of 0. However, since mmpk(σ) = j ≥ 1, then 0 does
still match MMPk in σ, and thus removing 1 from σ′ and reducing does not actually change
the value of mmpk. That is, mmpk(σ′) = mmpk(σ), and so σ′ ∈ X. This correspondence
is exactly 1-to-(n− 1), since it has the inverse correspondence consisting of removing 1 and
applying red(). We also claim the correspondence is onto. To see this, let σ′ ∈ X, and let
σ be the permutation in Sn−1 obtained by removing 1 from σ′ and reducing. It is enough
to show that the first entry of σ′ cannot be 1, so that σ′ can be obtained from σ using the
construction above.

If j > 1, and the first entry of σ′ were 1, then 1 would match MMPk in σ′, and removing
it would mean that mmpk(σ) < j, contradicting the fact that σ′ ∈ X. If j = 1 and n appears
after the kth position in σ′ then the fact that mmpk(σ′) = 0 implies that 1 does not match
MMPk in σ, so 1 is not the first entry of σ′. If j = 1 and n is the kth entry of σ, then n− 1
must still be the kth entry of σ, so 1 must occur after n, and is not the first entry of σ′.
Thus in any case, 1 is not the first entry of any element of X, and all of the elements of X
can be constructed from some σ using the construction above. Then we can conclude that
|X| = (n− 1) · Cn−1,k,j.

Now, we count the permutations σ ∈ Sn with mmpk(σ) = j that are not in X, which
we do in two parts. First, if j > 1, then we only need to count those permutations with
σ1 = 1 and mmpk(σ) = j. If σ1 = 1, then dropping 1 from σ will completely eliminate
the first pseudocycle, but will not affect any of the others. Thus red(σ2σ3 · · · σn) will match
MMPk at exactly j − 1 places - the starting point of each of its first j − 2 pseudocycles and
0. There are exactly Cn−1,k,j−1 such permutations, and the described correspondence is a

6



bijection, since the inverse map consists of increasing each element of the permutation by 1
and inserting 1 at the start of the string.

If j = 0, the remaining permutations are the σ ∈ Sn where σk = n and 1 appears before
n. For each of these, we create a permutation in Sn−1 that cannot match MMPk as follows -
first we swap the positions of n and 1, and then delete 1 and apply red(). This is a bijection,
since the inverse map consists of increasing each element of σ′ by 1, inserting 1 in the kth
position, and swapping the positions of 1 and n. This completes the proof of the statement
Cn,k,j = (n− 1)Cn−1,k,j + Cn−1,k,j−1, and the recursion for P k

n (x) follows immediately.
The final statement (including the base case for the recursion and the special case j = 0)

is clear from the definition of “cannot match”.

A direct consequence of the second and third statements of this theorem is an easy
description of P k

n (x).

Corollary 4. For n ≥ k > 0,

P k
n (x) = ((k − 1)!) ·

n−1
∏

i=k−1

(x+ i).

4 The r-Stirling numbers

The recursive relationship in Theorem 3 is the standard recursion for the (unsigned) Stirling
numbers of the first kind. In light of Theorem 2, this is not entirely surprising. Of course,
for k > 2, the initial conditions for P k

n (x) are different from those for c(n, k). The resulting
coefficients of P k

n (x) are a generalization of the Stirling numbers of the first kind defined
originally by Mitrinovic [10], but have appeared in many guises. See Broder [3] and Koutras
[8] for some examples. We will use the notation for the r-Stirling numbers of the first kind,

which are defined as follows. We let

{

n
m

}

r

be the number of permutations in Sn with exactly

m left-to-right-maxima such that n, n − 1, . . . , n − r + 1 are all left-to-right maxima. (We
will typically refer to these as just the r-Stirling numbers. While r-Stirling numbers of the
second kind exist, we will not use them here.) Theorem 3 immediately implies the following
result, but our main goal is an explicit combinatorial correspondence connecting Pn(x) and
the r-Stirling numbers.

Theorem 5. For n ≥ k ≥ 2 and j ≥ 0, the coefficient Cn,k,j is given by

(k − 1)!

{

n
j + k − 1

}

k−1

Proof. First, fix j and assume σ ∈ Sn has exactly j + k − 1 left-to-right maxima, including
n, n − 1, . . . , n − k + 2. Say that these left-to-right maxima occur at σi1 , . . . , σij+k−1

, where
σij+k−1

= n. From σ, we will construct (k − 1)! permutations counted by Cn,k,j, and show
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that this gives a 1-to-(k − 1)! correspondence. We first note that if j ≥ 1, σij−1
matches

MMPk in σ, since σij , . . . , σij+k−1
= n are all larger than σij−1

and occur after it. (If j = 1

we interpret this conventionally to mean σi0 = 0 matches MMPk in σ.) If j = 0, then since
σ has k − 1 left-to-right maxima, n must occur in position k − 1 or later in σ.

Now, our argument changes based on whether σij matches MMPk in σ. Again, if j = 0,
we will conventionally treat σi0 = 0.

Case 1: First assume j > 0. If σij does not match MMPk in σ, then we claim that any el-
ements σr ≥ σij that occur between between σij−1

and n must be one of σij , σij+1
, . . . , σij+k−2

.
If σr were such an “extra” element, it could not occur before σij since σij is a left-to-right

maximum, and it could not occur after σij , or else σij would match MMPk in σ. Then if we
rearrange the elements σij , σij+1

, . . . , σij+k−2
, but leave all the other entries of σ in the same

place, then σij−1
will still match MMPk in σ. Moreover, no matter how these elements are

rearranged, none of them will match MMPk in the resulting permutation, since there are
only k − 1 elements between positions ij and ij+k−1 that are greater than σij , which is the
least of all these elements. Then taking all possible rearrangements of σij through σij+k−2

gives us (k − 1)! permutations σ′ with mmpk(σ′) = j.
The analogous case for j = 0, where 0 does not match MMPk in σ, is the set of permu-

tations with σk−1 = n. We can rearrange the first k − 1 entries of σ in any order, and all of
the resulting permutations cannot match MMPk.

Case 2: Now assume σij does match MMPk in σ. (Note that we now make no assumptions
on j, so that case 2 includes the possibility that j = 0 and n appears at position k or later.)
Since the k − 1 elements n, n − 1, . . . , n − k + 2 must be among the left-to-right maxima
in σ, and σij is the kth largest left-to-right maximum, we must have σij+1

= n − k + 2,
σij+2

= n − k + 3, etc. This implies that the elements that are larger than σij that occur
between σij and n are either in the list σij+1

, . . . , σij+k−1
, or occur between some σir and σir+1

,
with r > j. We will create a new permutation σ′ by rearranging σ. The entry σij and all
entries before it will be left in the same place. However, some of the entries that occur after
σij but before n will be moved to the end of the string, according to the following algorithm.

For each element σir , for r from j + 1 to j + k− 2, we call an entry that lies between σir

and σir+1
that is larger than σij a “large follower” of σir . If σir has no large followers, then

the string σir · · · σir+1−1 will not be directly moved when we rearrange σ. If, however, σir has
at least one large follower, then we will remove the substring starting at σir and ending at
the entry before its final large follower, and move that substring to the end of σ. If several
entries σir have large followers, then we move the strings starting at each σir in order based
on the last large follower of σir , starting with the smallest one. The permutation that results
after we have moved all of these strings will be called σ′.

For example, let n = 8, k = 4, and j = 2. (Then we are constructing a permutation in
S8 that matches MMP4 exactly once.) If

σ = 13625748, then σ′ = 13548762.
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We have σij = 3 which does not match MMPk in σ, and thus we are in case 2. Both 6 and
7 have large followers, and the algorithm tells us to move the substrings 7 and 62 to the end
of the string, in that order, since the remaining large followers are 4 and 5 respectively. As
another example, if

σ = 13647582, then σ′ = 13458267,

since both 6 and 7 are moved to the end of the string (after the 2), in that order.
Now, we show that the constructed permutation σ′ satisfies mmpk(σ′) = j. To do this,

it suffices to check that σij does not match MMPk in σ′ and σij−1
does, which will imply

that mmpk(σ′) = j. But, the given algorithm moves all but one large follower from each
substring σir · · · σir+1−1 after n so that only one element from that substring that is greater
than σij remains between σij and n. And as noted above, all entries of σ greater than σij

that occur between σij and n are in one of those substrings. Thus σij matches MMPk−1 but

not MMPk in σ′. And since σij−1
< σij , σij−1

matches MMPk in σ. Then, as in case 1, taking
all possible rearrangements of the k − 1 largest elements that occur after σij−1

and before n
gives a total of (k − 1)! permutations σ′′ with mmpk(σ′′) = j, constructed from the original
σ.

Our work so far has given us a way of constructing (k − 1)! permutations σ′ with

mmpk(σ′) = j out of each permutation σ counted by by

{

n
j + k − 1

}

k−1

. Now, we must

show that the correspondence we have constructed is exactly one-to-(k − 1)! and onto. To
do so, we construct an inverse correspondence.

Let σ ∈ Sn be a permutation with mmpk(σ) = j. We must construct a permutation σ′

with exactly j + k − 1 left-to-right maxima, including the set X = {n − 1, . . . , n − k + 2}.
By assumption, σij−1

, the j − 1st left-to-right maximum, is the last element that matches

MMPk in σ. Let a1, a2, . . . , ak−1 be the k − 1 largest elements that occur between σij−1
and

n. Then we rearrange the elements a2, a3, . . . , ak−1 in such a way that, if we were to switch
the positions of the mth element (in order as the numbers appear in σ) of X that appears
after n with the mth smallest of the elements a2, . . . , ak−1, the elements of X would appear
in order.

Finally, for each element r ∈ X that occurs after n, we remove the substring starting at
r and ending just before the next occurrence of an entry from X. Each of these substrings
is then re-inserted in the string so that the substring starting with the mth element from
X after n is inserted just before the mth smallest of the ai. This has the effect that the
elements of X now appear in order, after σij .

For example, let n = 7, k = 4, and j = 2. Then given the permutation σ = 1324756,
we have s = 2, and the ai are the elements 3,2, and 4. We rearrange 2,3, and 4 in σ to get
1423756 since swapping 5 with 2 and 6 with 3 would put 456 in order. Next, we remove
the strings 5 and 6 from 1423756 and re-insert them just before 2 and 3 respectively to get
σ′ = 1452637. One can easily check that if we apply the original algorithm to σ′, the (k−1)!
permutations we make from σ′ are σ and the permutations we get by rearranging 2,3, and 4
in σ.
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Because of the way that we arranged the ai, each of the k−1 elements n−k+2 through n,
as well as σij , will be left-to-right maxima in the resulting permutation. Also, by assumption,
there are exactly j − 1 left-to-right maxima that occur at or before σj−1. Thus, there are
exactly j + k − 1 left-to-right maxima in the resulting permutation. Moreover, this process
will reverse the correspondence described above, because of the way (including the order)
we chose to move elements with large followers after n in the original algorithm. Thus, the
original correspondence is 1-to-(k − 1)!.

This description of the coefficients of P k
n (x) allows us to answer an unresolved question

about a formula for these coefficients. Kitaev and Remmel [7] observed that a formula for
Cn,4,2 (from entry A001712 in the OEIS [11]) is

6
n−3
∑

i=2

(−1)n+i+1

(

i

2

)

3i−2s(n− 3, i).

This formula is, in fact, an example of a formula of Mitrinovic [10], which we prove a version
of here.

Theorem 6. For k ≥ 2, and 0 ≤ j ≤ n− k + 1, we have

1

(k − 1)!
Cn,k,j =

{

n
j + k − 1

}

k−1

=
n−k+1
∑

i=j

(

i

j

)

c(n− k + 1, i)(k − 1)i−j.

Thus

Cn,k,j = (k − 1)!
n−k+1
∑

i=j

(

i

j

)

c(n− k + 1, i)(k − 1)i−j .

Proof. We construct a permutation σ counted by

{

n
j + k − 1

}

k−1

. First, we know that the

elements n, n − 1, . . . , n − k + 2 must be left-to-right maxima, and so must occur in order
in σ. We choose a way to insert the entries 1 through n − k + 1 to complete σ. For any
i from j to n − k + 1, choose one of the c(n − k + 1, i) permutations of 1, . . . , n − k + 1
(in one-line notation) with exactly i pseudocycles. We choose j of these pseudocycles to be
inserted before n − k + 2, and insert them in increasing order of their first entry, so that
those first entries are left-to-right maxima of σ. The other i − j pseudocycles will then be
inserted somewhere after n − k + 2: between n − k + 2 and n − k + 3, between n − k + 3
and n− k + 4, etc., up to between n− 1 and n, or after n. That gives k − 1 possible places
that a given pseudocycle could be inserted. If multiple pseudocycles are inserted in the
same place, we arrange the pseudocycles in increasing order of their first entries. There are
exactly

(

i

j

)

c(n− k+ 1, i)(k− 1)i−j ways to construct σ in this way, and every such σ can be
constructed uniquely in this way. The formula for Cn,k,j follows immediately from the first
part.
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Example 7. Let n = 7, k = 4, and j = 2. Then the theorem gives us

119 =

{

7
5

}

3

= 6 · 1 · 9 + 3 · 6 · 3 + 1 · 11 · 1.

The first term counts permutations using the permutation 1234 (consisting of 4 different
pseudocycles) inserted around 5,6, and 7. The second term includes permutations where
1,2,3, and 4 are arranged in a permutation with three pseudocycles, while the last terms fit
1,2,3,4 into two pseudocycles.

The second part of this theorem is somewhat difficult to see directly. Theoretically,
we can apply the correspondence described in Theorem 5 to the proof of this theorem to
understand it. However, the manner of counting is different for permutations in Case 1 of
the proof of Theorem 5 as opposed to Case 2. For example, if n = 6, k = 4, and j = 2,
the term

(

3
2

)

· c(3, 3) · 31 counts the permutations 123564, 124365, 124563, 134256, 134526,
134562, 234156,234516, and 234561. The middle 3 and last 3 of these are easily counted - we
choose two numbers out of 1,2,3 to start the permutation and then choose for the remaining
one to be placed after 4,5, or 6. However, the first 3 (which correspond to Case 1 in Theorem
5) are counted by choosing 1 and 2 to start the permutation and then choosing which of
3,4, or 5 is placed after 6. Now the factor 3 chooses an element, rather than a position for
that element. These two cases make the counting argument much clearer for the r-Stirling
numbers proper than for the coefficients Cn,k,j.

5 A recurrence for fixed n

Now, we examine some more consequences of this description of the coefficients of P k
n (x).

Broder [3, Theorem 3] shows that the numbers

{

n
m

}

r

satisfy the following recursion in r.

{

n
m

}

r

=
1

r − 1

({

n
m− 1

}

r−1

−

{

n
m− 1

}

r

)

.

We prove an equivalent result directly for the coefficients of P k
n (x). First, we make an

observation.

Lemma 8. Let σ be a permutation. For j ≥ 0,

if mmpk(σ) = j + 1, then mmpk+1(σ) = j + 1 or j.

Proof. The condition of matching MMPk+1 is strictly stronger than matching MMPk, so
mmpk+1(σ) ≤ mmpk(σ). This implies the result for j = 0, so we now assume j ≥ 1. Let
σ = a1a2 · · · an, and let ai1 , ai2 , . . . , aij be the j elements (besides 0) which match MMPk

in σ, written so that i1 < i2 < · · · < ij. Since aij matches MMPk in σ, we know that
aij−1

< aij , and that there are at least k entries of σ larger than aij that occur after aij but

11



(weakly) before n. Then those k entries and aij are a set of k + 1 elements that are larger

than aij−1
and occur after it in σ, but weakly before n. Thus aij−1

matches MMPk+1 in σ.

Then Lemma 1 implies that ai1 , . . . , aij−2
match MMPk+1, and mmpk+1(σ) ≥ j.

Theorem 9. Let k > 1 and j > 0. Then

(k − 1) ·
∣

∣{σ ∈ Sn |mmpk(σ) = j and mmpk+1(σ) = j − 1}
∣

∣

=
∣

∣{σ ∈ Sn |mmpk(σ) = j − 1 and mmpk+1(σ) = j − 1}
∣

∣ .

As a result, Cn,k+1,j−1 is given by

k ·
∣

∣{σ ∈ Sn |mmpk(σ) = j and mmpk+1(σ) = j − 1}
∣

∣ .

Proof. We give an explicit k − 1-to-one correspondence between the two sets in question.
Write σ in its pseudocycle factorization, with a1,1 < a2,1 < · · · < ap,1 the left-to-right maxima
of σ. Moreover, assume that mmpk(σ) = j and mmpk+1(σ) = j − 1. Then, by Lemma 1,
aj−1,1 matches MMPk but not MMPk+1. (If j = 1, then a0,1 is again considered to be the
“virtual” entry 0 at the start of σ.) Then, there are exactly k− 1 entries of σ that are larger
than aj−1,1 that occur after aj−1,1 but strictly before ap,1 = n. Say that these entries are
indexed ai1 , ai2 , . . . , aik−1

, with aj−1,1 < ai1 < ai2 < · · · < aik−1
. Note that the aiq and aj−1,1

are the k largest elements that occur in the j − 1st through p− 1st pseudocycles of σ, since
the aiq are the only elements larger than aj−1,1 that occur in those pseudocycles.

Then, for q from 1 to k−1, define πq to be the permutation identical to σ, except with the
positions of aj−1,1 and aiq switched. We claim that mmpk(πq) = j − 1 = mmpk+1(πq). First,

we note that the entries a1,1, a2,1, . . . , aj−2,1 still match MMPk+1 in πq, since for any r from 1
to j−2, the set of numbers between ar,1 and ap,1 in πq is the same as in σ. However, aiq does

not match MMPk in πq since the only entries of πq that are larger than aiq that occur after
the j − 2nd pseudocycle but before the last pseudocycle are aiq+1

, . . . , aik−1
. However, there

are only k−1−q < k−1 such elements. Moreover, since aj−1,1 began the j−1st pseudocycle
of σ, it was greater than all the entries of σ before it. Since aiq > aj,1, we know that aiq is
now the first entry of the j − 1st pseudocycle of πq. Thus, mmpk(πq) = j − 1 = mmpk+1(σ).

To finish the proof, we construct the correspondence in the opposite direction. Let π be
any permutation with mmpk(π) = j−1 and mmpk+1(π) = j−1. Write π in the pseudocycle
notation of (1). Then, by assumption and Lemma 1, aj−2,1 matches MMPk+1 and MMPk

in π, but aj−1,1 matches neither. Thus, there are at least k entries of π larger than aj−2,1

that occur after aj−2,1 but strictly before ap,1 = n, but at most k − 1 of those occur after
aj−1,1. Since none of those entries larger than aj−2,1 can occur in the j − 2nd pseudocycle,
there must be exactly k of these (aj−1,1 and k − 1 others that occur after aj−1,1) which
we call ai1 , ai2 , . . . , aik . Assume that ai1 < ai2 < · · · < aik . Let q be the index so that
aj,1 = aiq . Notice that q 6= 1, since if it were, then aj,1 would match MMPk in π. Then,
let σ be the permutation identical to π, except with the positions of ai1 and aiq switched.
Then by construction, π is exactly the permutation πq constructed from σ as in the previous
paragraph.

12



24 +50x +35x2 +10x3 +x4

↓24 ւ24 ↓26 ւ26 ↓9 ւ9 ↓1 ւ1

48 +52x +18x2 +2x3

↓48 ւ24 ↓28 ւ14 ↓4 ւ2

72 +42x +6x2

↓72 ւ24 ↓18 ւ6

96 +24x
↓96 ւ24

120

Figure 2: A Recursive Calculation of P k
5 (x) for k ≤ 5.

This shows that the correspondence above is exactly (k − 1)-to-one, and its image is the
entire set {σ ∈ Sn |mmpk(σ) = j − 1 and mmpk+1(σ) = j − 1}.

The second part of the result then follows from the first part and Lemma 8.

This result can be seen in Table 2, displaying the generating functions P k
5 (x), beginning

with k = 2 in the first row. The arrows between the polynomials demonstrate the number
of permutations in the sets described by the theorem. For example, the arrow from 10x3 in
the first row to 18x2 in the second row depicts the 9 permutations σ with mmp2(σ) = 3 and
mmp3(σ) = 2. We can determine the labels on the arrows from right-to-left, since the first
diagonal arrow on the right in each row must be labeled with the coefficient of the highest
degree term, each diagonal arrow determines the vertical arrow pointing to the same term
(by the theorem), and the total labels on the two arrows coming from any given term must
add up to the coefficient of that term.

We define the notation

mn,k,i,j =
∣

∣{σ ∈ Sn |mmpk(σ) = i and mmpk+1(σ) = j}
∣

∣

for the marks on the arrows in diagrams like this one.
As a result, we can easily deduce the following recurrence relation satisfied by the coef-

ficients of P k
n (x). It essentially describes the process of determining one row of the above

table from the previous row.

Corollary 10. For k ≥ 2 and 0 ≤ j ≤ n− k,

Cn,k+1,j =
n−k+1
∑

i=j+1

k(1− k)i−j−1Cn,k,i.

Proof. We prove the corollary inductively. By Lemma 8, if mmpk(σ) = n − k + 1, then
mmpk+1(σ) = n− k. Thus the theorem implies that Cn,k+1,n−k = k ·Cn,k,n−k+1. That is, the

13



corollary holds for j = n− k. Then, assume that the formula in the corollary holds for some
j > 1. This implies (using the second part of the theorem) that

n−k+1
∑

i=j+1

(k)(1− k)i−j−1Cn,k,i = Cn,k+1,j = k ·mn,k,j+1,j. (3)

Then, by Lemma 8 and the theorem,

Cn,k+1,j−1 = mn,k,j−1,j−1 +mn,k,j,j−1 = k ·mn,k,j,j−1 (4)

and
mn,k,j,j−1 = Cn,k,j −mn,k,j,j = Cn,k,j − (k − 1)mn,k,j+1,j. (5)

Thus, by (3), (4), and (5),

Cn,k+1,j−1 = k(Cn,k,j + (1− k)mn,k,j+1,j)

= kCn,k,j + (1− k) ·
n−k+1
∑

i=j+1

(k)(1− k)i−j−1Cn,k,i

=
n−k+1
∑

i=j

(k)(1− k)i−jCn,k,i.

That is, the theorem is true for j − 1, and by induction, it is true for all j ≥ 0.

Corollary 11. For k ≥ 2 and 0 ≤ j ≤ n− k,

{

n
j + k

}

k

=
n−k+1
∑

i=j+1

(1− k)i−j−1

{

n
i+ k − 1

}

k−1

.

Proof. Simply substituting the formula for Cn,k,j given in Theorem 5 into the previous corol-
lary and canceling k! from both sides gives this result.

This corollary is a special case of a theorem of Broder [3, Theorem 19], but is included
since it is such an easy consequence of Theorem 9. However, our main goal for the results of
this section (and pictures like Figure 2) is to describe a (seemingly new) connection between
the r-Stirling numbers and the classical Stirling numbers.

6 The classical Stirling numbers

The recursive description of the coefficients of P k
n (x) gives us another way to compute an

explicit formula for any coefficient Cn,k,j. For example, we can compute a formula for the
coefficients of P 3

n(x) as follows. We assume that n is large, and begin by writing the entries
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c(n, 1) c(n, 2)x c(n, 3)x2 · · ·
↓c(n,1) ւ ↓c(n,2)−c(n,1) ւ ↓c(n,3)−c(n,2)+c(n,1) · · ·
2c(n, 1) 2(c(n, 2)− c(n, 1))x 2(c(n, 3)− c(n, 2) + c(n, 1))x2 · · ·

Figure 3: Table to compute Cn,3,j in terms of c(n, k).

c(n, 1), c(n, 2), etc. in the first row. We can then mark the arrows in the diagram left-to-right
- the first vertical arrow (And thus the first diagonal arrow) is marked with c(n, 1). Thus
the second pair of arrows are both marked with c(n, 2)− c(n, 1). Continuing in this fashion,
we can fill out the entire second row of the diagram.

The alternating sum of Stirling numbers of the first kind that appear in this diagram is
in fact plus or minus the sum of signed Stirling numbers of the first kind, whichever makes
the total sum positive. Thus, the computations depicted in the diagram prove the following
corollary.

Corollary 12. For any n > 1,

P 3
n(x) =

n−2
∑

j=0

2

∣

∣

∣

∣

∣

j+1
∑

i=1

s(n, i)

∣

∣

∣

∣

∣

xj.

Kitaev and Remmel pointed out a special case of this theorem [7, Proposition 4]. As
another example, we find a formula for the number of permutations that almost match
MMPk. To do so, we fill out only the first two columns of the diagram above. The first
vertical and diagonal arrows are determined, and from the first diagonal arrow and the
second entry in each row, we can compute the mark on the second vertical arrow. Thus we
can compute the entire table one column at a time, since each entry in the kth row of the
table is k

k−1
times the mark on the vertical arrow pointing to it.

c(n, 1) c(n, 2)x c(n, 3)x2

↓c(n,1) ւ ↓c(n,2)−c(n,1) ւ ↓c(n,3)−c(n,2)+c(n,1)

2c(n, 1) (2c(n, 2)− 2c(n, 1)) x (2c(n, 3)− 2c(n, 2) + 2c(n, 1)) x2

↓2c(n,1) ւ ↓2c(n,2)−3c(n,1) ւ ↓2c(n,3)−3c(n,2)+ 7

2
c(n,1)

3c(n, 1)
(

3c(n, 2)− 9
2
c(n, 1)

)

x
(

3c(n, 3)− 9
2
c(n, 2) + 21

4
c(n, 1)

)

x2

↓3c(n,1) ւ ↓3c(n,2)− 11

2
c(n,1) ւ ↓3c(n,3)− 11

2
c(n,2)+ 170

24
c(n,1)

4c(n, 1)
(

4c(n, 2)− 44
6
c(n, 1)

)

x
(

4c(n, 3)− 44
6
c(n, 2) + 340

36
c(n, 1)

)

x2

↓4c(n,1) ւ ↓4c(n,2)− 50

6
c(n,1)x ւ ↓4c(n,3)− 50

6
c(n,2)+ 415

36
c(n,1)

5c(n, 1)
(

5c(n, 2)− 250
24
c(n, 1)

)

x
(

5c(n, 3)− 250
24
c(n, 2) + 2075

144
c(n, 1)

)

x2

Figure 4: Table to compute Cn,k,1 and Cn,k,2 in terms of c(n, k)

We can see from this computation that the number of permutations that almost match
MMPk is of the form (k − 1)c(n, 2) − Ac(n, 1) for some positive constant A, which can
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be found recursively, or by using boundary conditions to solve for A = c(k,2)−(k−2)!
(k−2)!

. (The

numerator of the coefficient of c(n, 1) in this formula is A052881 in the OEIS [11].)

In light of Theorem 5, this formula expresses

{

n
r + 1

}

r

as a linear combination of the

classical Stirling numbers. But this procedure could be continued, so that we have the
following.

Fact 13. For any j ≥ 0 and k ≥ 2, there are constants am,r,1, am,r,2, . . . , am,r,m−r so that, for
all n > j + k − 2, we have

{

n
m

}

r

=
m−r
∑

i=1

am,r,ic(n, i).

We will describe these coefficients more precisely in Theorem 14 below. Note that the
r-Stirling numbers were previously known to be linear combinations of classical Stirling

numbers of the first kind. Koutras [8, Equation 1.8] (for example) describes

{

n
m

}

r

as a

linear combination of c(k, k), c(k + 1, k), . . . , c(n, k) rather than c(n, 1), c(n, 2), . . . , c(n, k),

as we have here. Broder [3, Equation 43] also describes

{

n
m

}

r

as a linear combination of

Stirling numbers, but as an integer linear combination of c(n,m), c(n,m+1), . . . , c(n, n), so
that the formulas described in this fact are new. (In fact, Broder’s formula can be recovered
by drawing a table like Figure 4 that starts from the right-hand side rather than the left.)

7 Harmonic sums

The Stirling numbers (and thus the r-Stirling numbers) have a number of connections to
harmonic numbers, which we now explore. We define the nth harmonic number to be
H

(1)
n =

∑n

i=1
1
i
. We recursively define the iterated harmonic sum for j > 1 by

H(j)
n =

n
∑

i=1

H
(j−1)
i

i
.

Conventionally, we will set H
(0)
n = 1 for any n > 0.

We will be most interested in the sequences nH
(j)
n−1. For example, nH

(1)
n−1 is the sequence

2, 9/2, 44/6, 250/24, . . .

which are exactly the coefficients of c(n, 1) that appear in the second column of Figure 4.

We can also check that nH
(2)
n−1 is

2, 21/4, 340/36, . . .

which appear in the third column of Figure 4. This leads us to the following theorem.
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Theorem 14. For j > 0, and k > 2, the coefficients of P k
n (x) satisfy

Cn,k,j =

j+1
∑

i=1

(k − 1)H
(j+1−i)
k−2 (−1)j+1−ic(n, i).

Proof. We proceed inductively. For k = 3, the statement is exactly the same as Corollary
12. Now, we assume the result for a fixed value of k, and prove the result for Cn,k+1,j by
induction on j. Again, the result for j = 0 is obvious since Cn,k+1,0 = k(n − 1)! = kc(n, 1),
as the theorem claims. Now, we assume the result for Cn,k+1,j for some fixed j, and prove
the result for j + 1.

By assumption, Cn,k+1,j =
∑j+1

i=1 kH
(j+1−i)
k−1 (−1)j+1−ic(n, i). Then, we imagine the ta-

bles as drawn in Figure 4, focusing on Cn,k,j+1, Cn,k+1,j, and Cn,k+1,j+1. Recall the nota-
tion mn,k,j,j′ for the mark on the arrow pointing from Cn,k,j to Cn,k+1,j′ . By Theorem 9,

mn,k,j+1,j =
∑j+1

i=1 H
(j+1−i)
k−1 (−1)j+1−ic(n, i). Then, we compute

mn,k,j+1,j+1 =Cn,k,j+1 −

j+1
∑

i=1

H
(j+1−i)
k−1 (−1)j+1−ic(n, i)

=

j+2
∑

i=1

(k − 1)H
(j+2−i)
k−2 (−1)j+2−ic(n, i)−

j+1
∑

i=1

H
(j+1−i)
k−1 (−1)j+1−ic(n, i)

= (k − 1)c(n, j + 2) +

j+1
∑

i=1

(−1)j+2−ic(n, i)
(

(k − 1)H
(j+2−i)
k−2 +H

(j+1−i)
k−1

)

=(k − 1)

(

c(n, j + 2) +

j+1
∑

i=1

(−1)j+2−ic(n, i)

(

H
(j+2−i)
k−2 +

1

k − 1
H

(j+1−i)
k−1

)

)

=(k − 1)

(

c(n, j + 2) +

j+1
∑

i=1

(−1)j+2−ic(n, i)H
(j+2−i)
k−1

)

.

But again by Theorem 9, Cn,k+1,j+1 is

k

k − 1
mn,k,j+1,j+1 =

j+2
∑

i=1

(−1)j+2−ik · c(n, i)H
(j+2−i)
k−1 ,

as desired.

Loeb [9] defines a generalization of the Stirling numbers s(n, k) for arbitrary values of n,
and examines these numbers when n is a negative integer. Briefly, s(n, k) can be defined for
all integers n and k ≥ 0 using the recursive relation s(n+ 1, k) = s(n, k − 1)− ns(n, k) and
the initial conditions s(n, 0) = δn0.

For our purposes, we will only use the following theorem.
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Theorem 15. ([9, Theorem 2]) Using Loeb’s [9] definition of s(−n, k), we have

(−1)kn!s(−n, k) = H(k)
n .

Substituting this formula for H
(k)
m into Theorem 14 gives us an appealing formula for the

coefficients Cn,k,j and the r-Stirling numbers in terms of c(n, k) and s(−n, k).

Corollary 16. For j > 0 and k > 2, we have

Cn,k,j =

j+1
∑

i=1

(k − 1)!s(2− k, j + 1− i)c(n, i)

and
{

n
j + r

}

r

=

j+1
∑

i=1

s(1− r, j + 1− i)c(n, i).

Interestingly, this is not the only connection between r-Stirling numbers and iterated
harmonic sums. We define another set of iterated harmonic sums as follows. Set

H1
n,j =

∑

1≤i1<i2<···<ij≤n

1

i1i2 · · · ij
,

and then for k > 1, recursively define

Hk
n,j =

n
∑

i=1

Hk−1
i,j .

(Notice the slight change in notation to distinguish this notion from H
(j)
n .) Of course,

Hk
n,j = 0 for any n < j.
First, we note that the generating function for the Stirling numbers of the first kind,

(x+ 1)(x+ 2) · · · (x+ n− 1) =
n−1
∑

j=0

c(n, j + 1)xj

easily implies that

c(n, j + 1) =
∑

1≤i1<i2<···<in−j−1≤n−1

i1i2 · · · in−j−1 = en−j−1(1, 2, . . . , n− 1).

(Here, ek is the usual elementary symmetric function.) We can re-write this formula for
j > 0 as

c(n, j + 1) = (n− 1)!
∑

1≤i1<i2<···<ij≤n−1

1

i1i2 · · · ij
= (n− 1)!H1

n−1,j . (6)
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Similarly, the r-Stirling numbers have generating function

(x+ r)(x+ r + 1) · · · (x+ n− 1) =
n−r
∑

j=0

{

n
j + r

}

r

xj,

so that
{

n
j + r

}

r

=
∑

r≤i1<i2<···<in−j−r≤n−1

i1i2 · · · in−j−r = en−j−r(r, r + 1, . . . , n− 1),

which is equivalent to
{

n
j + r

}

r

=
(n− 1)!

(r − 1)!

∑

r≤i1<i2<···<ij≤n−1

1

i1i2 · · · ij
.

A combinatorial interpretation is of this formula is described by Broder [3, Theorem 7].
However, there is another way to generalize equation (6). We begin with another re-

currence we can use to describe the r-Stirling numbers, which is due to Broder [3, Lemma
11].

Proposition 17. For r > 1 and n ≥ m ≥ r, the r-Stirling numbers satisfy

{

n
m

}

r

=
n−m
∑

i=0

(n− r)!

(m+ i− r)!

{

m+ i− 1
m− 1

}

r−1

.

Proof. We count the permutations counted by

{

n
m

}

r

according to the position of n. Consider

a permutation σ in Sn withm left-to-right maxima that include n, n−1, . . . , n−r+1. Since n
is the mth largest left-to-right maximum, it must occur at position m or later in σ. Now, for
i from 0 to n−m, we notice that if n is in position m+i, then the n−i−m entries that occur
after n in σ will not be left-to-right maxima, so they must be chosen from 1, 2, . . . , n − r.
There are then (n−r)!

(m+i−r)!
ways to choose and place these elements. We also note that exactly

m− 1 more left-to-right maxima must occur before n, including n− 1, n− 2, . . . , n− r + 1.
This implies that red(σ1σ2 · · · σm+i−1) is a permutation in Sm+i−1 with exactly m− 1 left-to-
right maxima, including m + i− 1,m + i− 2, . . . ,m + i− r + 1, of which there are exactly
{

m+ i− 1
m− 1

}

r−1

.

Then another formula for the r-Stirling numbers is given by the following.

Theorem 18. For r ≥ 1, m > r and n ≥ r,
{

n
m

}

r

= (n− r)!Hr
n−r,m−r.
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Proof. The result is clear if r = 1, since then the formula coincides with that given in (6).
We proceed by induction on r. Recall that

(n− r)!Hr
n−r,m−r = (n− r)!

n−r
∑

i=1

Hr−1
i,m−r = (n− r)!

n−r
∑

i=m−r

Hr−1
i,m−r

= (n− r)!
n−m
∑

i=0

Hr−1
m+i−r,m−r

We claim that, for i from 0 to n−m, the term (n−r)!Hr−1
m+i−r,m−r counts the permutations σ

with n in position m+ i. By the proof of Proposition 17, there are (n−r)!
(m+i−r)!

{

m+ i− 1
m− 1

}

r−1

such permutations. However, inductively, we may assume that

{

m+ i− 1
m− 1

}

r−1

= (m+ i− r)!Hr−1
m+i−r,m−r.

Then the total number of permutations we have just counted is

(n− r)!

(m+ i− r)!
· (m+ i− r)!Hr−1

m+i−r,m−r = (n− r)!Hr−1
m+i−r,m−r.

Then summing over all i from 0 to n−m gives the desired result.

Although this particular description of this formula for the r-Stirling numbers seems
to be new, the formula itself is not entirely new. We could trace back the nested sums

Hr
n−r,m−r to express

{

n
m

}

r

as an integer linear combination of the original harmonic sums

H1
i,m−1 =

1
i!

{

1 + i
m

}

1

. That formula appears to be a special case of a theorem of Broder [3,

Theorem 12, the case p = 1].
Adamchik [1] makes some other connections between the classical Stirling numbers and

generalized harmonic numbers.

8 Border patterns

Finally, we note that the r-Stirling numbers

{

n
r + 2

}

r

are also related to another permutation

pattern. Kitaev and Liese [6] introduce the border mesh pattern p in Figure 5.
This pattern is called a border pattern since the squares around the outside edge of the

pattern are all marked “= 0”. We say that a permutation σ = σ1 · · · σn matches the pattern
p if σ1 > 1, σn = n, and there is an entry a so that σ1 < a < n, and a occurs after 1 in σ.
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Figure 5: The pattern p

(The first dot in the picture is σ1, the second must be 1, and the fourth must be n. The
third dot in the picture is a.) When we count occurrences of p, we will count every set of 4
entries of σ that meet the description of the pattern. Since σ1, 1, and n must be involved in
the pattern, this is equivalent to counting the number of possibilities for a - i.e., the number
of entries between 1 and n that are larger than σ1.

Theorem 19. For any k ≥ 1, the number of permutations in Sn that match p exactly k
times is exactly the number of permutations in Sn−1 that match MMPk+1 exactly once, but
almost match MMPk+2.

Proof. Again, we can give a bijective proof. First, we note that if σ = σ1 · · · σn ∈ Sn matches
p exactly k times, then σ = σ1A1Bn, where A and B are strings, and B contains exactly k
elements larger than σ1. Then we form σ′ = σ1BnA, and let φ = (σ1 − 1)B′(n− 1)A′, where
A′ and B′ are obtained from A and B, respectively, by subtracting 1 from each number in
the string. Then φ ∈ Sn−1 since σ′ contained 2, . . . , n.

Since the string B contains exactly k elements greater than σ1, B
′ will contain exactly

k elements greater than σ1 − 1. Hence φ will match MMPk+1 but not MMPk+2. This map
will be a bijection since its inverse can be constructed easily.
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