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Abstract

We begin by introducing an interesting class of functions, known as the Schemmel
totient functions, that generalizes the Euler totient function. For each Schemmel to-
tient function Lm, we define two new functions, denoted Rm and Hm, that arise from
iterating Lm. Roughly speaking, Rm counts the number of iterations of Lm needed
to reach either 0 or 1, and Hm takes the value (either 0 or 1) that the iteration tra-
jectory eventually reaches. Our first major result is a proof that, for any positive
integer m, the function Hm is completely multiplicative. We then introduce an iter-
ate summatory function, denoted Dm, and define the terms Dm-deficient, Dm-perfect,
and Dm-abundant. We proceed to prove several results related to these definitions,
culminating in a proof that, for all positive even integers m, there are infinitely many
Dm-abundant numbers. Many open problems arise from the introduction of these
functions and terms, and we mention a few of them, as well as some numerical results.

1 Introduction

Throughout this paper, N, N0, and P will denote the set of positive integers, the set of
nonnegative integers, and the set of prime numbers, respectively. For any function f , we will
write f (1) = f and f (k+1) = f ◦ f (k) for all k ∈ N. The letter p will always denote a prime
number. For any n ∈ N, υp(n) will denote the unique nonnegative integer k such that pk | n

1

mailto:cdefant@ufl.edu


and pk+1 ∤ n. Finally, in the canonical prime factorization
∏r

i=1 p
αi

i of a positive integer, it
is understood that, for all distinct i, j ∈ {1, 2, . . . , r}, we have pi ∈ P, αi ∈ N, and pi 6= pj.

The well-known Euler φ function is defined to be the number of positive integers less than
or equal to n that are relatively prime to n. For each m ∈ N, the Schemmel totient function
Lm(n) is defined as the number of positive integers k ≤ n such that gcd(k+ s, n) = 1 for all
s ∈ {0, 1, . . . ,m − 1} [2]. In particular, L1 = φ. For no reason other than a desire to avoid

cumbersome notation and the possibility of dealing with undefined objects such as L
(2)
2 (6),

we will define Lm(0) to be 0 for all positive integers m.
For any integer n > 1, let p(n) be the smallest prime number that divides n. Schemmel [7]

showed that, for any positive integerm, Lm is multiplicative. Thus, Lm(1) = 1. Furthermore,
for n > 1,

Lm(n) =











0, if p(n) ≤ m;

n
∏

p|n

(

1−
m

p

)

, if p(n) > m. (1)

Letting
∏r

i=1 p
αi

i be the canonical prime factorization of n, we may rewrite the above formula
as

Lm(n) =











0, if p(n) ≤ m;
r
∏

i=1

pαi−1
i (pi −m), if p(n) > m

(2)

for n > 1.
In 1929, S. S. Pillai introduced a function that counts the number of iterations of the

Euler φ function needed to reach 1 [5]. In the following section, we generalize Pillai’s function
via the Schemmel totient functions. Then, in the third section, we generalize the concept
of perfect totient numbers with the introduction, for each positive integer m, of a function
Dm, which sums the first Rm iterates of Lm.

2 The functions Rm and Hm

We record the following propositions, which follow immediately from (2), for later use.

Proposition 1. For x, y,m ∈ N, if x|y, then Lm(x)|Lm(y).

Repeatedly applying Proposition 1, we find

Proposition 2. For x, y,m, r ∈ N, if x|y, then L
(r)
m (x)|L(r)

m (y).

Proposition 3. For m,n ∈ N, if m is even and n is odd, then either Lm(n) = 0 or Lm(n)
is odd.

In addition, the following theorem is now quite easy to prove.
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Theorem 4. For any prime number p and positive integer x,

Lp−1(px) =

{

Lp−1(x), if p ∤ x;

pLp−1(x), if p|x.

Proof. If p ∤ x, it follows from the multiplicativity of Lp−1 that Lp−1(px) = Lp−1(p)Lp−1(x) =
Lp−1(x). If p|x, then we have

Lp−1(px) = Lp−1

(

p · pυp(x) ·
x

pυp(x)

)

= Lp−1

(

pυp(x)+1
)

Lp−1

(

x

pυp(x)

)

= pυp(x)Lp−1

(

x

pυp(x)

)

= pLp−1

(

pυp(x)
)

Lp−1

(

x

pυp(x)

)

= pLp−1(x).

Notice that, for any positive integers m and n with n > 1, we have Lm(n) < n and
Lm(n) ∈ N0. It is easy to see that, by starting with a positive integer n and iterating the
function Lm a finite number of times, we must eventually reach either 0 or 1. More precisely,
there exists a positive integer k such that L

(k)
m (n) ∈ {0, 1}. This leads us to the following

definitions.

Definition 5. For all m,n ∈ N, let Rm(n) denote the least positive integer k such that

L
(k)
m (n) ∈ {0, 1}. Furthermore, we define the function Hm by

Hm(n) = L(Rm(n))
m (n).

Though the functions Hm only take values 0 and 1, they prove to be surprisingly in-
teresting. For example, we can show that, for each positive integer m, Hm is a completely
multiplicative function. First, however, we will need some definitions and preliminary results.

Definition 6. For m ∈ N, we define the following sets:

Pm = {p ∈ P : Hm(p) = 1}

Qm = {q ∈ P : Hm(q) = 0}

Sm = {n ∈ N : q ∤ n ∀ q ∈ Qm}

We define Tm to be the unique set of positive integers defined by the following criteria:

• 1 ∈ Tm.

• If p is prime, then p ∈ Tm if and only if p−m ∈ Tm.

• If x is composite, then x ∈ Tm if and only if there exist x1, x2 ∈ Tm such that x1, x2 > 1
and x1x2 = x.
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Lemma 7. Let k,m ∈ N. If all the prime divisors of k are in Tm, then all the positive
divisors of k (including k) are in Tm. Conversely, if k ∈ Tm, then every positive divisor of
k is an element of Tm.

Proof. First, suppose that all the prime divisors of k are in Tm, and let d be a positive divisor
of k. Then all the prime divisors of d are in Tm. Let d =

∏r

i=1 w
αi

i be the canonical prime
factorization of d. As w1 ∈ Tm, the third defining criterion of Tm tells us that w2

1 ∈ Tm.
Then, by the same token, w3

1 ∈ Tm. Eventually, we find that wα1

1 ∈ Tm. As w
α1

1 , w2 ∈ Tm, we
have wα1

1 w2 ∈ Tm. Repeatedly using the third criterion, we can keep multiplying by primes
until we find that d ∈ Tm. This completes the first part of the proof. Now we will prove
that if k ∈ Tm, then every positive divisor of k is an element of Tm. The proof is trivial if k
is prime, so suppose k is composite. We will induct on Ω(k), the number of prime divisors
(counting multiplicities) of k. If Ω(k) = 2, then, by the third defining criterion of Tm, the
prime divisors of k must be elements of Tm. Therefore, if Ω(k) = 2, we are done. Now,
suppose the result holds whenever Ω(k) ≤ h, where h > 1 is a positive integer. Consider the
case in which Ω(k) = h + 1. By the third defining criterion of Tm, we can write k = k1k2,
where 1 < k1, k2 < k and k1, k2 ∈ Tm. By the induction hypothesis, all of the positive
divisors of k1 and all of the positive divisors of k2 are in Tm. Therefore, all of the prime
divisors of k are in Tm. By the first part of the proof, we conclude that all of the positive
divisors of k are in Tm.

Theorem 8. If m is a positive integer, then Sm = Tm.

Proof. Fix m∈N. Let u be a positive integer such that, for all k ∈ {1, 2, . . . , u − 1}, either
k ∈ Sm and k ∈ Tm or k 6∈ Sm and k 6∈ Tm. We will show that u ∈ Sm if and only if
u ∈ Tm. First, we must show that if k ∈ {1, 2, . . . , u − 1}, then k ∈ Sm if and only if
Lm(k) ∈ Sm. Suppose, for the sake of finding a contradiction, that Lm(k) ∈ Sm and k 6∈ Sm.
As k 6∈ Sm, we have that k > 1 and k 6∈ Tm. Lemma 7 then guarantees that there exists a
prime q such that q|k and q 6∈ Tm. As q 6∈ Tm, the second defining criterion of Tm implies
that q − m 6∈ Tm. We know that q > m because, otherwise, p(k) ≤ q ≤ m, implying that
Lm(k) = 0 6∈ Sm. Therefore, q −m ∈ {1, 2, . . . , u − 1} and q −m 6∈ Tm. By the induction
hypothesis, q −m 6∈ Sm. Therefore, there exists some q0 ∈ Qm such that q0|q −m. Because
q|k, Proposition 1 implies that Lm(q)|Lm(k). Thus, q0|q −m = Lm(q)|Lm(k), which implies
that Lm(k) 6∈ Sm. This is a contradiction. Now suppose, so that we may again search for a
contradiction, that Lm(k) 6∈ Sm and k ∈ Sm. Lm(k) 6∈ Sm implies that k > 1, and k ∈ Sm

implies (by the induction hypothesis) that k ∈ Tm. By Lemma 7, all positive divisors of k
are elements of Tm. Let k =

∏r

i=1 p
αi

i be the canonical prime factorization of k. Then, by
(2),

Lm(k) =











0, if p(k) ≤ m;
r
∏

i=1

pαi−1
i (pi −m), if p(k) > m.

If p(k) ≤ m, then Hm (p(k)) = 0, which mean that p(k) ∈ Qm. As p(k)|k, we have con-
tradicted k ∈ Sm. Therefore, p(k) > m, so Lm(k) =

∏r

i=1 p
αi−1
i (pi − m). For each
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i ∈ {1, 2, . . . , r}, pi is a positive divisor of k, so pi ∈ Tm. The second criterion defining
Tm then implies that pi −m ∈ Tm, so all positive divisors (and, specifically, all prime divi-
sors) of pi −m are in Tm. This implies that all prime divisors of Lm(k) are elements of Tm,
so Lemma 7 guarantees that Lm(k) ∈ Tm. However, we have shown that 0 < Lm(k) < k,
so Lm(k) ∈ {1, 2, . . . , u − 1}. By the induction hypothesis, we have Lm(k) ∈ Sm, a contra-
diction. Thus, we have established that if k ∈ {1, 2, . . . , u − 1}, then k ∈ Sm if and only if
Lm(k) ∈ Sm.

We are now ready to establish that u ∈ Sm if and only if u ∈ Tm. Suppose that u ∈ Sm

and u 6∈ Tm. We know that u > m because, otherwise, Lm (p(u)) = Hm (p(u)) = 0,
implying that p(u) ∈ Qm and contradicting u ∈ Sm. If u is prime, then u ∈ Sm implies that

u ∈ Pm. Then Hm(u) = Hm(u − m) = L
(Rm(u−m))
m (u − m) = 1 ∈ Sm. As L

(Rm(u−m))
m (u −

m) = Lm

(

L
(Rm(u−m)−1)
m (u−m)

)

∈ Sm (we assume here and in the rest of the proof that

Rm(u−m) is large enough so that the notation L
(·)
m makes sense as we have defined it, but the

argument is valid in any case), it follows from the preceding argument that L
(Rm(u−m)−1)
m (u−

m) = Lm

(

L
(Rm(u−m)−2)
m (u−m)

)

∈ Sm. Continuing this pattern, we eventually find that

Lm(u−m) ∈ Sm, so u−m ∈ Sm. By the induction hypothesis, u−m ∈ Tm. However, by the
second criterion defining Tm, the primality of u then implies that u ∈ Tm, a contradiction.
Thus, u must be composite. We assumed that u 6∈ Tm, so Lemma 7 guarantees the existence
of a prime q 6∈ Tm such that q|u. As u is composite, q ∈ {1, 2, . . . , u − 1}. The induction
hypothesis then implies that q 6∈ Sm, so q ∈ Qm. However, this contradicts u ∈ Sm, so
we have shows that if u ∈ Sm, then u ∈ Tm. Suppose, on the other hand, that u 6∈ Sm

and u ∈ Tm. Again, we begin by assuming u is prime. Then, because u ∈ Tm, we must
have u − m ∈ Tm. Therefore, by the induction hypothesis and the fact that u − m ∈
{1, 2, . . . , u − 1}, it follows that u − m ∈ Sm. Now, u 6∈ Sm, so we must have u ∈ Qm.

Therefore, Hm(u) = Hm (Lm(u)) = Hm(u−m) = L
(Rm(u−m))
m (u−m) = 0 6∈ Sm. However, as

L
(Rm(u−m))
m (u−m) = Lm

(

L
(Rm(u−m)−1)
m (u−m)

)

6∈ Sm, it follows that L
(Rm(u−m)−1)
m (u−m) =

Lm

(

L
(Rm(u−m)−2)
m (u−m)

)

6∈ Sm. Again, we continue this pattern until we eventually find

that Lm(u − m) 6∈ Sm, which means that u − m 6∈ Sm. This is a contradiction, and we
conclude that u must be composite. From u ∈ Tm and Lemma 7, we conclude that all of
the prime divisors of u are elements of Tm. Furthermore, as u is composite, all of the prime
divisors of u are elements of {1, 2, . . . , u− 1}. Then, by the induction hypothesis, all of the
prime divisors of u are in the set Sm. This implies that none of the prime divisors of u are
in Qm, so u ∈ Sm. This is a contradiction, and the induction step of the proof is finally
complete. All that is left to check is the base case. However, the base case is trivial because
1 ∈ Sm and 1 ∈ Tm.

We may now use the sets Sm and Tm interchangeably. In addition, part of the above
proof gives rise to the following corollary.

Corollary 9. Let k,m, n ∈ N. Then L
(k)
m (n) ∈ Sm if and only if n ∈ Sm.
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Proof. The proof follows from the argument in the above proof that Lm(n) ∈ Sm if and only
if n ∈ Sm whenever n ∈ {1, 2, . . . , u − 1}. As we now know that we can make u as large as

we need, it follows that Lm(n) ∈ Sm if and only if n ∈ Sm. Then L
(2)
m (n) ∈ Sm if and only

if Lm(n) ∈ Sm, L
(3)
m (n) ∈ Sm if and only if L

(2)
m (n) ∈ Sm, and, in general, L

(r+1)
m (n) ∈ Sm if

and only if L
(r)
m (n) ∈ Sm (r ∈ N). The desired result follows immediately.

Corollary 10. Let m,n ∈ N. Then Hm(n) ∈ Sm if and only if n ∈ Sm.

Proof. It is clear that Hm(n) ∈ Sm if and only if Hm(n) = 1. Therefore, the proof follows
immediately from setting k = Rm(n) in Corollary 9.

Notice that, for a given positive integer m, Corollary 10, along with Theorem 8 and the
defining criteria of Tm, provides a simple way to construct the set of all positive integers x
that satisfy Hm(x) = 1. Corollary 10 also expedites the proof of the following theorem.

Theorem 11. The function n 7→ Hm(n) is completely multiplicative for all m ∈ N.

Proof. Choose some m,x, y ∈ N. First, suppose Hm(x) = 0. By Corollary 10, x 6∈ Sm.
Therefore, there exists q ∈ Qm such that q|x. This implies that q|xy, so xy 6∈ Sm. Thus,
Hm(xy) = 0. A similar argument shows that Hm(xy) = 0 if Hm(y) = 0. Now, suppose that
Hm(x) = Hm(y) = 1. Then Corollary 10 ensures that x, y ∈ Sm. Therefore, xy ∈ Sm, so
Hm(xy) = 1. As the function Hm can only take values 0 and 1, the proof is complete.

In concluding this section, we note that if m + 1 is composite, then it is impossible for
any integer greater than 1 to be in Sm. Therefore, whenever m + 1 is composite, we have
Hm(1) = 1 and Hm(n) = 0 for all integers n > 1.

3 Summing the iterates

A perfect totient number is defined [3] to be a positive integer n > 1 that satisfies (using our
previous notation)

n =

R1(n)
∑

i=1

φ(i)(n).

In the following definitions, we generalize the concept of perfect totient numbers. We also
borrow some other traditional terminology related to perfect numbers.

Definition 12. Let m be a positive integer. We define the arithmetic function Dm by
Dm(1) = 0 and

Dm(n) =

Rm(n)
∑

i=1

L(i)
m (n)

for all integers n > 1. If Dm(n) < n, we say that n is Dm-deficient. If Dm(n) = n, we say
that n is Dm-perfect. If Dm(n) > n, we say that n is Dm-abundant. Finally, in the case when
Dm(n) = 0, we say that n is Dm-stagnant.
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We now present a series of theorems related to these definitions.

Theorem 13. If m > 1 is odd, then all positive integers are Dm-deficient.

Proof. Let m > 1 be an odd integer, and let n be any positive integer. If n = 1 or p(n) ≤ m,
then n is Dm-stagnant. A fortiori, n is Dm-deficient. If p(n) > m, then p(n)−m is even and

p(n)−m|Lm(n) (by Proposition 1). Thus, 2|Lm(n), which implies that L
(2)
m (n) = 0. Hence,

Dm(n) = Lm(n) < n.

Theorem 14. All positive even integers are Dm-deficient for all positive integers m.

Proof. The proof is trivial for m > 1 because, in that case, any positive even integer is clearly
Dm-stagnant. For m = 1, we use the fact that all totient numbers greater than 1 are even.
Therefore,

D1(n) = φ(n) + φ(2)(n) + · · ·+ φ(R1(n))(n) ≤
1

2
n+

1

4
n+ · · ·+

1

2R1(n)
n < n.

Theorem 14 is nothing revolutionary, but we include it because it fits nicely with the
next theorems.

For the next two theorems, which are not quite as trivial as the previous two, we require
the following lemma.

Lemma 15. If k > 1 is an odd integer, then at least one element of the set {k, L2(k), L
(2)
2 (k)}

is divisible by 3.

Proof. Let k > 1 be an odd integer with prime factor p, and suppose 3 ∤ k and 3 ∤ L2(k).
We know that p 6≡ 2 (mod 3) because p− 2|L2(k), so p ≡ 1 (mod 3). As p− 2 ≡ 2 (mod 3),
p− 2 must have some prime factor p′ such that p′ ≡ 2 (mod 3). But then, using Proposition

2, 3|p′ − 2 = L2(p
′)|L2(p− 2) = L

(2)
2 (p)|L

(2)
2 (k).

Theorem 16. For any integer m > 1, all positive multiples of 3 are Dm-deficient.

Proof. If m ≥ 3, then any positive multiple of 3 is clearly Dm-stagnant. Therefore, we only
need to check the case m = 2. Write K = {n ∈ N : 3|n,D2(n) ≥ n}. Suppose K 6= ∅
and let n0 be the smallest element of K. If n0 = 3α for some α ∈ N, then D2(n0) =

3α−1 +3α−2 + · · ·+3+ 1 =
n0 − 1

2
< n0. Therefore, n0 must have some prime divisor p 6= 3.

From Theorem 13, p 6= 2. Also, by Proposition 2, L2(p)|L2(n0) and L
(2)
2 (p)|L

(2)
2 (n0). By

Lemma 15, at least one of L2(p) and L
(2)
2 (p) must be divisible by 3. Suppose 3|L2(p) so that

3|L2(n0). By the choice of n0 as the smallest element of K, we have D2 (L2(n0)) < L2(n0).

This implies that D2(n0) = L2(n0) + D2 (L2(n0)) < 2L2(n0) <
2

3
n0 because 3|n0. From
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this contradiction, we conclude that 3|L
(2)
2 (p), so 3|L

(2)
2 (n0). Again, by the choice of n0, we

have D2

(

L
(2)
2 (n0)

)

< L
(2)
2 (n0). However, this implies that D2(n0) = L2(n0) + L

(2)
2 (n0) +

D2

(

L
(2)
2 (n0)

)

< L2(n0)+2L
(2)
2 (n0) < 3L2(n0) < n0, which is a contradiction. It follows that

K is empty.

Theorem 17. If m > 1 is a positive integer and m 6= 4, then all positive multiples of 5 are
Dm-deficient.

Proof. Let m be a positive integer other than 1 or 4, and let n be a multiple of 5. If m ≥ 5,
then n is Dm-stagnant. If m = 3, then n is Dm-deficient by Theorem 13. We therefore only
need to check the case m = 2. Write n = 5αk, where α, k ∈ N. We may assume that 2 ∤ k
and 3 ∤ k because, otherwise, the desired result follows immediately from either Theorem 14
or Theorem 16. We now consider two cases.

Case 1: α ≥ 2. Write L2(k) = 3α15α2t, where t is a positive integer not divisi-
ble by 2, 3, or 5 and α1, α2 ∈ N0 (we use Proposition 3 to conclude that t is odd).

Then L2(n) = L2(5
α)L2(k) = 3α1+15α+α2−1t and L

(2)
2 (n) = L2(3

α1+1)L2(5
α+α2−1)L2(t) =

3α1+15α+α2−2L2(t). As 3|L2(n), we can use Theorem 16 to write D2(n) = L2(n) + L
(2)
2 (n) +

D2

(

L
(2)
2 (n)

)

< L2(n)+2L
(2)
2 (n) = 3α1+15α+α2−1t+2 (3α1+15α+α2−2L2(t)) ≤ 7 (3α1+15α+α2−2t) ≤

21

25
5αk =

21

25
n. This completes the proof of the case when α ≥ 2.

Case 2: α = 1. In this case, n = 5k, so L2(n) = 3L2(k). We may assume that k > 1

because the case n = 5 is trivial. First, suppose that 3|L2(k). In this case, L
(2)
2 (k) ≤

1

3
L2(k), and, by Theorem 4, L

(2)
2 (n) = 3L

(2)
2 (k). Then, using Theorem 16, we have D2(n) =

L2(n) + L
(2)
2 (n) +D2

(

L
(2)
2 (n)

)

= 3L2(k) + 3L
(2)
2 (k) +D2

(

3L
(2)
2 (k)

)

< 3L2(k) + 6L
(2)
2 (k) ≤

5L2(k) ≤ n − 10. Now suppose that 3 ∤ L2(k). By Lemma 15 and our assumption that

3 ∤ k, we have 3|L
(2)
2 (k). Using Theorem 4 and Theorem 16 again, we have D2(n) =

L2(n) + L
(2)
2 (n) + D2

(

L
(2)
2 (n)

)

= 3L2(k) + L
(2)
2 (k) + D2

(

L
(2)
2 (k)

)

< 3L2(k) + 2L
(2)
2 (k) ≤

3(k − 2) + 2(k − 4) = n− 14. This completes the proof of all cases.

The last few theorems have dealt with Dm-deficient numbers, so it is natural to ask
questions about Dm-abundant numbers. We might wish to know the positive integers m

for which Dm-abundant numbers even exist. How many Dm-abundant numbers exist for a
given m? How large can we make Dm(n) − n? Theorem 13 deals with these questions for
the cases when m is odd and greater than 1. Also, a great deal of literature [3, 4] already
exists concerning the case m = 1. In the following theorem, we answer all of the preceding
questions for the cases when m is a positive even integer.

Theorem 18. Let m be a positive even integer. For any positive A and δ, there exist
infinitely many primes p0 such that Lm(p

α
0 ) +L

(2)
m (pα0 ) > pα0 +Apα−δ

0 for all positive integers
α.
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Proof. Fix m, A, and δ to be positive real numbers, where m is an even integer. Let
p1, p2, . . . , pr be all the primes that divide m, and let q1, q2, . . . , qt be all the primes that are
less than m and do not divide m. For each j ∈ {1, 2, . . . , t}, define σj by

σj =

{

1, if m 6≡ 1 (mod qj);

−1, if m ≡ 1 (mod qj).

Write M =
∏

p≤m

p. By the Chinese remainder theorem, there exists a unique solution modulo

M to the system of congruences defined by

{

x ≡ 1 (mod pi) if i ∈ {1, 2, . . . , r};

x ≡ σj (mod qj) if j ∈ {1, 2, . . . , t}.
(3)

It is easy to see that if x0 is a solution to (3), then x0 and x0 −m are each relatively prime
to every prime less than or equal to m. By Dirichlet’s theorem concerning the infinitude
of primes in arithmetic progressions, there must be infinitely many primes that satisfy the
system (3). Let p0 be one such prime, and write

β =
∏

p|p0−m

(

1−
m

p

)

.

As p0 is relatively prime to all primes less than or equal to m, we have

∏

m<p≤p0

(

1−
m

p

)

≤ β ≤ 1.

It is well-known [6], that, as p0 → ∞,

∏

m<p≤p0

(

1−
m

p

)

∼
cm

(log p0)m

for some constant cm that depends only on m. We find that

βp20 ≥ p20

∏

m<p≤p0

(

1−
m

p

)

∼
cmp

2
0

(log p0)m
.

Therefore, we may choose p0 to be large enough so that βp20 > Ap2−δ
0 + 3mp0. With this

choice of p0, we may write β(p0 −m)2 > βp20 − 2βmp0 ≥ βp20 − 2mp0 > Ap2−δ
0 +mp0. But

β(p0 −m) = Lm(p0 −m) because p(p0 −m) > m. Thus,

(p0 −m)Lm(p0 −m) > Ap2−δ
0 +mp0. (4)
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Let α be an integer, and, for now, assume α ≥ 2. Rearranging and multiplying the inequality
(4) by pα−2

0 , we have −mpα−1
0 +pα−1

0 Lm(p0−m) > mpα−2
0 Lm(p0−m)+Apα−δ

0 . After further
algebraic manipulation, we find pα−1

0 (p0 − m) + pα−2
0 (p0 − m)Lm(p0 − m) > pα0 + Apα−δ

0 .

Noticing that the left-hand side of the preceding inequality is simply Lm(p
α
0 ) + L

(2)
m (pα0 ), we

have Lm(p
α
0 ) + L

(2)
m (pα0 ) > pα0 + Apα−δ

0 . This is the desired result for α ≥ 2. To show that

the result holds when α = 1, it suffices to show that Lm(p0) +L
(2)
m (p0) >

Lm(p
2
0) + L

(2)
m (p20)

p0
.

This reduces to p0 − m + Lm(p0 − m) > p0 − m +
p0 −m

p0
Lm(p0 −m), which is obviously

true.

Corollary 19. For any positive even integer m, there exist infinitely many Dm-abundant
numbers.

We conclude this section with a remark about Dm-perfect numbers. Using Mathematica,
one may check that for m ∈ {2, 4, 6}, the only Dm-perfect number less than 100, 000 is
37, 147, which is D2-perfect. Unfortunately, this data is too scarce to make any reasonable
conjecture about the nature or distribution of Dm-perfect numbers for positive even integers
m.

4 Numerical analysis and concluding remarks

In 1943, H. Shapiro investigated a function C, which counts the number of iterations of the
φ function needed to reach 2 [8]. Shapiro showed that the function C is additive, and he
established bounds for its values. In this paper, we have not gone into much detail exploring
the functions Rm because they prove, in general, to be either completely uninteresting or
very difficult to handle. For example, for any integer n > 1,

R3(n) =

{

1, if n 6≡ 1, 5 (mod 6);

2, if n ≡ 1, 5 (mod 6).

On the other hand, the function R4 does not seem to obey any nice pattern or exhibit any
sort of nice additive behavior. There seems to be some hope in analyzing the function R2,
so we make the following conjecture.

Conjecture 20. If x > 3 is an odd integer, then

R2(x) ≥
log

(

49
15
x
)

log 7
.

We note that it is not difficult to prove, using Lemma 15 and a bit of case work, that

R2(x) ≤ 3
log(x+ 2)

log 3
− 3 for all integers x > 1 (with equality only at x = 7). How-

ever, as Figure 1 shows, this is a very weak upper bound (at least for relatively small

10



Figure 1: A plot of the first 300, 000 values of the function R2, as well as some important
curves. Note that the black streaks in the figure are, in actuality, several overlapping dots.

x). It is tempting to think, based on the figure, that R2(x) ≤ 3 +
log x

log 3
for all posi-

tive integers x. However, setting x = 480, 314, 203 yields a counterexample because 3 +
log 480, 314, 203

log 3
≈ 21.196 < 22 = R2(480, 314, 203).

The author has found that investigating bounds of the function R2 naturally leads to
a question about the infinitude of twin primes, which hints at the potential difficulty of
the problem. Indeed, Harrington and Jones [1] have arrived at the same conclusion while
studying the function C2(x) := R2(x) − 1, and they conjecture that the values of C2(x) +
C2(y) − C2(xy) can be arbitrarily large. To avoid the unpredictability of the values of the
function C2, Harrington and Jones have restricted the domain of C2 to the set D of positive
integers k with the property that none of the numbers in the set {k, L2(k), L

(2)
2 (k), . . .}

has a prime factor that is congruent to 1 modulo 3. With this restriction of the domain
of C2, these two authors have established results analogous to those that Shapiro gave for
the function C mentioned earlier. In fact, we speculate that methods analogous to those
that Harrington and Jones have used could easily generalize to allow for analogous results
concerning functions Cm(x) := Rm(x) − 1 if one is willing to use a sufficiently restricted
domain of Cm.

We next remark that, in Theorem 17, the requirement that m 6= 4 is essential. For
example, write p1 = 306, 167, p2 = 4 + p21, p3 = 4 + p22, p4 = 4 + p23, and p5 = 4 + p24. Then
the number 5p5 is a D4-abundant multiple of 5.

Lastly, we have not spent much effort analyzing the “sizes” of the functions Dm or
searching for Dm-perfect numbers. We might inquire about the average order or possible

11



upper and lower bounds for Dm for a general positive even integer m. In addition, it is
natural to ask if there even are any Dm-perfect numbers other than 37, 147 for even positive
integers m.
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[7] V. Schemmel, Über relative Primzahlen, J. Reine Angew. Math., 70 (1869), 191–192.

[8] H. Shapiro, An arithmetic function arising from the φ function. Amer. Math. Monthly
50 (1943), 18–30.

[9] G. K. White, Iterations of generalized Euler functions. Pacific J. Math. 12 (1962), 777–
783.

2010 Mathematics Subject Classification: Primary 11N64; Secondary 11B83.

12

https://cs.uwaterloo.ca/journals/JIS/VOL6/Cohen2/cohen50.html
https://cs.uwaterloo.ca/journals/JIS/VOL9/Luca/luca66.html


Keywords: Schemmel totient function, iterated arithmetic function, summatory function,
perfect totient number.

(Concerned with sequences A000010, A003434, A058026, A092693, A123565, A241663, A241664,
A241665, A241666, A241667, and A241668.)

Received April 26 2014; revised versions received October 12 2014; November 7 2014; January
8 2015. Published in Journal of Integer Sequences, January 13 2015.

Return to Journal of Integer Sequences home page.

13

http://oeis.org/A000010
http://oeis.org/A003434
http://oeis.org/A058026
http://oeis.org/A092693
http://oeis.org/A123565
http://oeis.org/A241663
http://oeis.org/A241664
http://oeis.org/A241665
http://oeis.org/A241666
http://oeis.org/A241667
http://oeis.org/A241668
http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	The functions Rm and Hm
	Summing the iterates
	Numerical analysis and concluding remarks
	Acknowledgments and dedications

