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Abstract

For a permutation σ of length 3, we define the oriented graph Qn(σ). The graph
Qn(σ) is obtained by imposing edge constraints on the classical oriented hypercube Qn,
such that each path going from 0n to 1n in Qn(σ) bijectively encodes a permutation of
size n avoiding the pattern σ. The orientation of the edges in Qn(σ) naturally induces
an order relation �σ among its nodes. First, we characterize �σ. Next, we study
several enumerative statistics on Qn(σ), including the number of intervals, the number
of intervals of fixed length k, and the number of paths (or permutations) intersecting
a given node.

1 Introduction

In this paper, we study several structural and enumerative properties of the classical ori-
ented hypercube Qn when the hypercube satisfies certain additional edge constraints. The
constraints are given in terms of permutation patterns, focusing on patterns of length 3.

The connection between the oriented hypercube Qn defined over the set of n-binary words
Σn and the set of permutations of size n is determined by considering each path in Qn going
from 0n to 1n as a permutation. There are exactly n! paths from 0n to 1n and each one
of these uniquely determines a permutation. More precisely, the permutation πp associated
with the path p has the entry i placed in position j if the i-th step of p creates an entry 1 in
position j. See (3) and (4).
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Taking only those permutations that avoid a pattern σ of length 3, it is possible to
characterize those edges of Qn that need to be removed to maintain the correspondence
paths-permutations. In this way, a new ordered structure, Qn(σ), can be defined, where, as
in Qn, the partial order in Qn(σ) is naturally induced by the orientation of the edges (Fig. 1).

According to the classical definition of pattern avoidance, the set of permutations of size
n that avoid a pattern σ is denoted by Avn(σ) and, when |σ| = 3, the cardinality of Avn(σ)
is given by the well-known [10] sequence of Catalan numbers

cn = |Avn(σ)| =
1

n+ 1

(

2n

n

)

; (1)

see sequence A000108 of [9]. Several authors (see [2] and references therein) have focused on
the bijective and enumerative properties of these permutations. To the best of our knowledge,
their hypercube graph structure has not been investigated.

1.1 Motivation

Our general aim is to introduce — and hopefully motivate further studies of — certain
subgraphs Qn(σ) of the oriented hypercube Qn that can be defined for particular sets of
permutation patterns σ. As a case study, we investigate patterns of length three for which
Qn(σ) relates to the cn permutations of Avn(σ).

By linking hypercubes to classes of permutations, we can explore how permutation pat-
tern constraints can affect the different combinatorial statistics defined over the poset and
oriented graph Qn. In this spirit, we study the number of intervals (Section 3) and number
of paths intersecting a given node (Section 4) in the oriented graphs Qn(σ). We consider
the number of intervals in order to investigate the underlying poset structure of Qn(σ) and
compare it with that of the classic hypercube. The second statistic measures instead how
the symmetries of the hypercube Qn are modified in Qn(σ).

The effect of the introduced constraints is quite strong, both from a quantitative and
a qualitative point of view. For instance, we show that the expectation of the number of
nodes that lie at Hamming distance k and above a randomly selected node depends on both
k and n in the unconstrained Qn, whereas in Qn(σ) it depends only on k if n is large enough.
Another interesting new structural property of the oriented hypercube that emerges when
pattern constraints are imposed is the loss of symmetry. More precisely, whereas in the
unconstrained case Qn each node of given rank D (= number of 0’s) is intersected by a
fixed number n!

/(

n

D

)

of paths, other parameters (Table 1) become important when pattern
avoidance is considered. Section 4 is indeed dedicated to the computation, for σ ∈ {123, 132},
of the number of paths/permutations that intersect a node w in Qn(σ). This value does not
only depend on the rank of the node and it is strongly affected by the choice of the pattern σ.

Due to their topological structure, hypercubes find applications in the modelling of
physical phenomena, with examples ranging from computer science to evolutionary biology.
Changing the geometric structure of a model can be of help in understanding how results can
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be affected by deviations from the standard scenario. For instance, in evolutionary biology,
the oriented graph structure of Qn is commonly used to model accessibility phenomena in
random fitness landscapes [5, 6]: paths through the nodes of the hypercube represent the
possible evolutionary histories of a gene. In the model, the gene can be affected by binary
mutations 0, 1 at its n positions (loci). Each node of Qn is assigned a random variable that
determines the fitness value of that particular outcome. Researchers study the probability
that there is an accessible (i.e. fitness increasing) path from a global minimum (typically 0n)
to a global maximum (typically 1n). Recently, investigators have explored the relationships
of graph topology to the availability of accessible paths by defining fitness landscapes over
different geometric structures (e.g., [8]). The enumerative results provided in this paper can
be used in the accessibility computations for models of fitness landscapes defined over the
constrained hypercubes Qn(σ).

Finally, it is worth mentioning that the approach presented here to define Qn(σ) for
patterns σ of length 3 can be extended to include other permutation patterns (Section 6).

1.2 Summary of the results

In this study, we focus on patterns σ = 132, 123 as representatives of the two clusters
{132, 231, 312, 213} and {123, 321} that are not equivalent when considered under the stan-
dard operators of mirror image, complement, and inverse.

For each pattern σ, in Section 2 we define the oriented (sub)graph Qn(σ), which is
obtained by removing particular edges from the classic oriented hypercube Qn. For both
σ = 132, 123 the number of nodes in the graph Qn(σ) is 2n (as in Qn) and the number
of paths going from 0n to 1n is given by the n-th Catalan number cn. Indeed, each path
of Qn(σ) encodes a permutation of Avn(σ). However, though the considered two classes
of permutations Avn(132) and Avn(123) are equinumerous, Qn(132) and Qn(123) are not
isomorphic graphs. We conclude the section by characterizing the order relation �σ induced
on the nodes of Qn(σ) by the orientation of the edges.

In Section 3, we study en, the number of intervals, and en,k, the number of intervals of
fixed length k, in the posets (Qn(σ),�σ). These statistics are independent of the pattern σ
and they thus show a new common feature of permutations avoiding patterns of length 3.
We provide a closed formula for en,

en = 2n−3(n2 + 3n+ 8).
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We determine a recursion on k for the value en,k (24). For instance, if 0 ≤ k ≤ 5, we find

en,0 = 1 · 2n
en,1 = 2 · 2n − n− 2

en,2 = 3 · 2n − n2 − 2n− 3

en,3 = 4 · 2n − 1

2
n3 − 1

2
n2 − 3n− 4

en,4 = 5 · 2n − 1

6
n4 +

1

6
n3 − 11

6
n2 − 19

6
n− 5

en,5 = 6 · 2n − 1

24
n5 +

1

6
n4 − 23

24
n3 − 2

3
n2 − 9

2
n− 6.

In general, we show that for every k

en,k = (k + 1) · 2n +O(nk).

In Section 4, we find closed formulas to compute Tσ(w), the number of paths (or permu-
tations) intersecting a given node w ∈ Qn(σ). In the notation of Table 1, we find

T132(w) =

(

D + d

D

)

· D − d+ 1

D + 1
·

ℓ
∏

i=0

cui ,

T123(w) =

(

D + d

D

)

· D − d+ 1

D + 1
·
(

U + u

U

)

· U − u+ 1

U + 1
.

(2)

In general, T132(w) 6= T123(w), and we show by simulations that requiring w to satisfy certain
constraints can increase or decrease the value of T132(w) with respect to the value of T123(w).

We conclude in Section 5 by introducing a new problem related to path intersection in
Qn(σ) and solving some preliminary instances.

2 Constrained hypercubes

2.1 Hypercube and permutations

We let Qn denote the classic oriented hypercube on the set of binary words Σn = {0, 1}n.
Each node of the oriented graph Qn is a binary word of length n. Qn has exactly 2n nodes.

If w1, w2 ∈ Σn, their Hamming distance h(w1, w2) is defined as the number of positions
at which the two strings w1, w2 are different. For instance, h(0010, 1001) = 3 because at the
first, third and fourth position the two considered words do not match each other.

If w1, w2 ∈ Σn, we find an oriented edge of Qn going from w1 to w2 if and only if the
Hamming distance h(w1, w2) = 1 and h(w1, 0

n) < h(w2, 0
n). The edge orientation naturally
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induces an order relation � among the nodes of Qn. We thus consider Qn as a poset in what
follows.

With respect to the strict order relation ≺, the number of distinct increasing paths
through the nodes of Qn from 0n to 1n is given by n!. If Sn denotes the set of permutations
of size n, the bijective correspondence holding between a path p of Qn and a permutation
πp ∈ Sn is sketched in the following example given for size n = 5:

p = 00000 → 00010 → 01010 → 01011 → 11011 → 11111 (3)

πp = 00000 → 00010 → 02010 → 02013 → 42013 → 42513. (4)

The rule that leads from p to πp is such that, at each step, we place the lowest available
entry in the permutation in the position specified by the new entry 1 in the path.

2.1.1 Edge constraints of the hypercube

For each pattern σ ∈ {132, 123}, we define the oriented graph Qn(σ) as a constrained
version of Qn such that the previously described bijection p 7→ πp maps paths of Qn(σ)
onto permutations of Avn(σ). For σ = 132 and σ = 123 the definition of Qn(σ) is given as
follows:

(i) The constrained hypercube Qn(132) (Fig. 1 (right)) is obtained by removing from Qn

those edges w1 → w2 connecting two words w1 ≺ w2 such that there exist indices
j1 < j2 < j3 with w2(j3) = 1, w1(j3) = 0, w1(j1) = 1, and w1(j2) = 0. In other words,
we remove edges of type

w1 = α 1 β 0 γ 0 δ 9 α 1 β 0 γ 1 δ = w2.

(ii) The constrained hypercube Qn(123) (Fig. 1 (left)) is obtained by removing from Qn

those edges of type
w1 = α 1 β 0 γ 0 δ 9 α 1 β 1 γ 0 δ = w2.

Note that, in both cases (i) and (ii), all the nodes in Σn\{0n, 1n} have outdegree and indegree
greater than or equal to one in Qn(σ). Therefore, for any fixed σ ∈ {132, 123}, each node of
Σn has at least one path of Qn(σ) that intersects it. In particular, the set of nodes of Qn(σ)
corresponds to the entire set of binary words Σn as it is in Qn.

2.2 Structural properties of the constrained hypercubes

Inspection of Fig. 1 (circled nodes) shows that the two depicted graphs are not isomorphic.
Indeed, suppose there exists an isomorphism φ : Q4(123) 7→ Q4(132). The isomorphism φ
would give φ(0000) = 0000 and φ(1000) = 1000, because 1000 is the only node of outdegree
1 that covers 0000. Furthermore, because 1001 (resp., 1100) is the only node that covers
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0111 1101 1110

1010

1111

0111 1101 1110

00110101

0001

1111

0010 0100 0010

10111011

0011 0110 1100 1001

10000001 0100 1000

0000

0110 1100 1001 10100101

0000

Figure 1: The oriented graphs Q4(123) (left) and Q4(132) (right). There are c4 = 14 possible

paths from 0000 to 1111 following the orientation specified by the arrows. Circled nodes result in

two non-isomorphic regions. This fact shows that Q4(123) is not isomorphic to Q4(132) (see text

in Section 2.2).

1000 in Q4(123) (resp., Q4(132)), we would have φ(1001) = 1100. Besides covering node
1000, node 1001 (resp., 1100) covers node 0001 (resp., 0100) in Q4(123) (resp., Q4(132)).
Therefore, we would obtain

φ(0001) = 0100. (5)

At the same time, equality (5) is not compatible with an isomorphism φ because node 0001
of Q4(123) has outdegree 3, whereas node 0100 of Q4(132) has outdgree 2. It follows that
the two graphs Qn(132) and Qn(123) are not in general isomorphic.

2.2.1 Order relation in Qn(132) and Qn(123)

As for the classic hypercube Qn, when σ ∈ {132, 123}, the orientation of the edges in Qn(σ)
determines an order relation �σ among the 2n nodes of Qn(σ). By the definition of Qn(σ),
the order relation �σ is clearly a restriction of �. It is interesting to note that, even if the
two graphs Qn(132) and Qn(123) are not in general isomorphic (Fig. 1), there is a duality
holding between the order relations �132 and �123. The duality can be shown introducing
some further notation as follows.

Let w be a binary word. We denote by D = D(w) the total number of entries 0 in w
and we denote by d = d(w) ≤ D the length of the maximal (left) prefix of w containing only
0’s (Table 1). We define the word w(i) (D ≥ i ≥ 0) as the word obtained by replacing the
first i entries 0 of w with 1. For instance, given w = 001101, we have w(0) = 001101, w(1) =
101101, w(2) = 111101, and w(3) = 111111.

The definition of w(i) can be extended to i ≤ 0 as follows: if D ≥ j ≥ 0, then w(−j) is the
word obtained by replacing the last j entries 0 of w with 1. Taking as above w = 001101,
we have w(0) = 001101, w(−1) = 001111, w(−2) = 011111, and w(−3) = 111111.
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Table 1: Key parameters defined over the words in Σn. For instance, if w = 00101110, then

d = 2, u = 0, ℓ = 2, u1 = 1, and u2 = 3, whereas, setting w = 1101011, we obtain d = 0, u = 2, ℓ =

3, u1 = 2, u2 = 1, and u3 = 2.

D(w) number of 0’s in w

d(w) length of the maximal prefix of w containing only 0’s

U(w) number of 1’s in w

u(w) length of the maximal suffix of w containing only 1’s

ui(w) length of the i-th (from left to right) block of 1’s in w

ℓ(w) number of blocks of consecutive 1’s in w

With this notation, the next result describes the order relation �σ existing among the
nodes of Qn(σ) as it is induced by the orientation of the edges of Qn(σ).

Proposition 1. We have the following:

(i) If w1, w2 ∈ Σn and d = d(w1), then w1 �132 w2 if and only if

w2 = w ·
(

w1(d+ 1)w1(d+ 2) · · ·w1(n)
)(i)

, (6)

where i ≥ 0, w is any word of length d, and w1(m) denotes the m-th letter of w1.

(ii) If w1, w2 ∈ Σn and d = d(w1), then w1 �123 w2 if and only if

w2 = w ·
(

w1(d+ 1)w1(d+ 2) · · ·w1(n)
)(−j)

, (7)

where j ≥ 0, w is any word of length d, and w1(m) denotes the m-th letter of w1.

Proof. The result follows directly from the characterization of the covering relation in the
posets Qn(132) and Qn(123). In Qn(132) (resp., Qn(123)), a node v2 covers a node v1 if
and only if v2 can be obtained from v1 either by replacing any 0 belonging to the maximal
prefix of 0’s in v1 with an entry 1 or by replacing the first 0 (resp., last 0) to the right of the
leftmost 1 in v1 with an entry 1.
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Remark 2. As a corollary, Proposition 1 allows to define an inductive procedure ψ that,
given a path p of Qn(132), creates a dual path ψ(p) of Qn(123). This mapping is in fact a
bijection between Avn(132) and Avn(123) that, as far as we know, has not been previously
described in the framework of hypercubes.

Given a path p of Qn(132), such as

p = w0 → w1 → · · · → wn,

we define
ψ(p) = w′

0 → w′
1 → · · · → w′

n

inductively as follows. Set w′
0 = 0n and assume that we have already defined w′

i for each
0 ≤ i ≤ j. According to Proposition 1 (i), the word wj+1 that covers wj is obtained from wj
as

wj+1 = w ·
(

wj(d+ 1)wj(d+ 2) · · ·wj(n)
)(+i)

, (8)

where d = d(wj), w is a word of length d such that h(w, 0d) ≤ 1, and i = 1−h(w, 0d) ∈ {0, 1}.
Given (8), we set

w′
j+1 = w ·

(

w′
j(d+ 1)w′

j(d+ 2) · · · w′
j(n)

)(−i)
, (9)

where w is as in (8).
In particular, because d(w0) = d(0n) = n, we have w1 = w′

1 and, more in general,
d(wj) = d(w′

j) for all 0 ≤ j ≤ n. Therefore, because the word w placed at the beginning
of w′

j+1 has length d(w′
j), the word w′

j+1 covers w′
j in agreement with statement (ii) of

Proposition 1.
The bijection ψ acts on single paths, and it does not imply isomorphism properties of

the two considered constrained hypercubes. In particular, if a pair of paths (p1, p2) share
(or do not share) certain nodes in Qn(132), the same does not necessarily hold in Qn(123)
for the pair (ψ(p1), ψ(p2)). For instance, (2341, 1234) do not intersect in Q4(132), but both
ψ(2341) = 2431 and ψ(1234) = 1432 pass through the node 1011 in Q4(123).

3 Number of intervals

In this section, we study the number of intervals of Qn(σ). We are thus interested in those
pairs (w1, w2) ∈ Σn×Σn with w1 �σ w2. By Proposition 1, the statistic number of intervals
does not depend on the pattern σ and we denote by en the number of intervals in Qn(σ) for
each σ ∈ {132, 123} .

3.1 Enumeration of en

Fix a word w1. By Proposition 1, the number of words w2 greater than or equal to w1 in
Qn(σ) is given by

2d(D − d+ 1), (10)
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where D = D(w1) and d = d(w1).
Summing over all possible words w1, en can be computed as

en = 2n +
n−1
∑

D=0

D
∑

d=0

2d(D − d+ 1)

(

n− d− 1

n−D − 1

)

. (11)

The sequence (en)n≥1 starts as

3, 9, 26, 72, 192, 496, 1248, 3072, 7424, 17664.

Furthermore, observe that

ẽn = en − 2n =
n−1
∑

D=0

D
∑

d=0

2d(D − d+ 1)

(

n− d− 1

n−D − 1

)

(12)

counts the number of strict intervals of Qn(σ). Strict intervals are those pairs (w1, w2) with
w1 ≺σ w2.

The next proposition gives a closed formula for ẽn (and thus for en).

Proposition 3. For all n ≥ 1, we have

ẽn =
n−1
∑

D=0

D
∑

d=0

2d(D − d+ 1)

(

n− d− 1

n−D − 1

)

= 2n−3(n2 + 3n).

Proof. Observe that by performing the substitution A = n− d and B = n−D, we obtain

ẽn = 2n
n
∑

B=1

n
∑

A=B

(

1

2

)A

(A− B + 1)

(

A− 1

B − 1

)

.

By induction on n, we have

ẽn = 2n

[

n−1
∑

B=1

[

n−1
∑

A=B

(

1

2

)A

(A−B + 1)

(

A− 1

B − 1

)

]

+

(

1

2

)n

(n−B + 1)

(

n− 1

B − 1

)

]

+ 1

= 2ẽn−1 + 2n

[

n−1
∑

B=1

(

1

2

)n

(n−B + 1)

(

n− 1

B − 1

)

]

+ 1

= 2ẽn−1 + 2n
(

1

4
− 2−n +

n

4

)

+ 1

= 2ẽn−1 + 2n−2(n+ 1)

= 2 · 2n−4((n− 1)2 + 3(n− 1)) + 2n−2(n+ 1) = 2n−3(n2 + 3n).

This concludes the proof.
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Proposition 3 shows that (ẽn)n provides a new interpretation of sequence A001793 of [9].
Furthermore, we have the following corollary.

Corollary 4. A node of Qn(σ) has on average

ẽn
2n

=
n2 + 3n

8

nodes strictly above it.

It is interesting to observe that, in the unconstrained hypercube Qn, the number of
intervals w1 � w2 is given by

n
∑

D=0

2D
(

n

D

)

= 3n. (13)

Thus, on average, a random node of Qn has an exponential

3n − 2n

2n
∼ (3/2)n (14)

number of nodes strictly above it.

3.2 The number of intervals of given length k

In this section, we refine our previous results by considering the number of intervals with
length equal to k; i.e., we count those word pairs (w1, w2) such that w1 �σ w2 and h(w1, w2) =
k. We denote by en,k the number of intervals of length k, and so en =

∑n

k=0 en,k. Note that
Proposition 1 ensures, also in this case, that the statistic en,k does not depend on the pattern
σ ∈ {132, 123}.

By (6) and (7), for a given word w1, the number of words w2 greater than or equal to w1

in Qn(σ) and such that h(w1, w2) = k is given by

D−d
∑

i=0

(

d

k − i

)

, (15)

where D = D(w1) and d = d(w1).
Indeed, in the notation of Proposition 1, if w2 is obtained from w1 as

w2 = w ·
(

w1(d+ 1)w1(d+ 2) · · ·w1(n)
)(i)

, (16)

then their Hamming distance k = h(w1, w2) equals the sum of i and U(w), the latter being
the number of entries in w equal to 1. That is, from (16) we have

k = h(w1, w2) = i+ U(w)

10
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Table 2: Values of en,k for 1 ≤ n ≤ 10 and 0 ≤ k ≤ 10.

en,k k

0 1 2 3 4 5 6 7 8 9 10
n = 1 2 1 0 0 0 0 0 0 0 0 0
n = 2 4 4 1 0 0 0 0 0 0 0 0
n = 3 8 11 6 1 0 0 0 0 0 0 0
n = 4 16 26 21 8 1 0 0 0 0 0 0
n = 5 32 57 58 34 10 1 0 0 0 0 0
n = 6 64 120 141 108 50 12 1 0 0 0 0
n = 7 128 247 318 291 180 69 14 1 0 0 0
n = 8 256 502 685 708 535 278 91 16 1 0 0
n = 9 512 1013 1434 1612 1406 906 406 116 18 1 0
n = 10 1024 2036 2949 3512 3400 2568 1442 568 144 20 1

and (15) easily follows. Note that if D < k — that is, there are not enough 0’s in w1 — then
formula (15) returns 0 because k − i ≥ k − (D − d) = d+ (k −D) > d.

Summing over all possible nodes w1 of Qn(σ), we thus obtain

en,k =

(

n

k

)

+
n−1
∑

D=0

D
∑

d=0

(

n− d− 1

n−D − 1

)D−d
∑

i=0

(

d

k − i

)

. (17)

Using the sum in (17), we can compute the first terms of the sequences ((en,k)n)k. These
terms are shown in the table 2 for 1 ≤ n ≤ 10 and 0 ≤ k ≤ 10. Note that the first column
corresponds to entry A000079 of [9] while the second and the third appear respectively as
sequences A000295 (Eulerian numbers) and A047520.

Using (17), we can write that ∀k ≥ 0 and ∀n ≥ k + 1

en,k+1 − en,k =

(

n

k + 1

)

−
(

n

k

)

+
n−1
∑

D=0

D
∑

d=0

(

n− d− 1

n−D − 1

)[(

d

k + 1

)

−
(

d

k − (D − d)

)]

=

(

n

k + 1

)

−
(

n

k

)

+ an,k − bn,k, (18)

where, with 1 ≤ k + 1 ≤ n,

an,k ≡
n−1
∑

D=0

D
∑

d=0

(

n− d− 1

n−D − 1

)(

d

k + 1

)

= 2n −
k+1
∑

i=0

(

n

i

)

and (19)

bn,k ≡
n−1
∑

D=0

D
∑

d=0

(

n− d− 1

n−D − 1

)(

d

k − (D − d)

)

= (n− k)

(

n

k

)

. (20)
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To prove the equality in (19), observe that

an,k =
n−1
∑

D=0

n−1
∑

d=0

(

n− d− 1

n−D − 1

)(

d

k + 1

)

=
n−1
∑

d=0

(

d

k + 1

) n−1
∑

D=0

(

n− d− 1

n−D − 1

)

=
n−1
∑

d=0

(

d

k + 1

) n−1
∑

D=d

(

n− d− 1

n−D − 1

)

=
n−1
∑

d=0

(

d

k + 1

)

2n−d−1

= 2n−1

n−1
∑

d=k+1

(

d

k + 1

)(

1

2

)d

(21)

Thus, from (21), the recursion

an,k = 2an−1,k +

(

n− 1

k + 1

)

. (22)

Now, by induction on n, assuming that (19) holds for an−1,k, by substituting in (22) we
have

an,k = 2an−1,k +

(

n− 1

k + 1

)

= 2

(

2n−1 −
k+1
∑

i=0

(

n− 1

i

)

)

+

(

n− 1

k + 1

)

= 2n −
k+1
∑

i=0

(

n− 1

i

)

−
k
∑

i=0

(

n− 1

i

)

= 2n −
[

k+1
∑

i=0

(

n

i

)

−
(

n− 1

i− 1

)

]

−
k
∑

i=0

(

n− 1

i

)

= 2n −
k+1
∑

i=0

(

n

i

)

−
[

k
∑

i=0

(

n− 1

i

)

−
k+1
∑

i=0

(

n− 1

i− 1

)

]

= 2n −
k+1
∑

i=0

(

n

i

)

Checking (19) for ak+1,k completes the proof.

To prove the equality in (20), note that

bn,k =
n−1
∑

D=k

D
∑

d=0

(

n− d− 1

n−D − 1

)(

d

k − (D − d)

)

.

Thus, setting A = n− d and B = n−D, we have the recursion

12



bn+1,k =
n+1−k
∑

B=1

n+1
∑

A=B

(

A− 1

B − 1

)(

n+ 1− A

k − A+B

)

=

[

n−k
∑

B=1

n+1
∑

A=B

(

A− 1

B − 1

)(

n+ 1− A

k − A+B

)

]

+
n+1
∑

A=B=n+1−k

(

A− 1

n− k

)

· 1

=

(

n+ 1

k

)

+
n−k
∑

B=1

n+1
∑

A=B

(

A− 1

B − 1

)(

n+ 1− A

k − A+ B

)

=

(

n+ 1

k

)

+

[

n−k
∑

B=1

n
∑

A=B

(

A− 1

B − 1

)(

n+ 1− A

k − A+ B

)

]

+
n−k
∑

B=1

(

n

B − 1

)(

0

k − n− 1 + B

)

=

(

n+ 1

k

)

+
n−k
∑

B=1

n
∑

A=B

(

A− 1

B − 1

)[(

n− A

k − A+B

)

+

(

n− A

k − 1− A+ B

)]

=

(

n+ 1

k

)

+ bn,k +
n−k
∑

B=1

n
∑

A=B

(

A− 1

B − 1

)(

n− A

k − 1− A+ B

)

=

(

n+ 1

k

)

+ bn,k +





n−(k−1)
∑

B=1

n
∑

A=B

(

A− 1

B − 1

)(

n− A

k − 1− A+ B

)



−
n
∑

A=B=n+1−k

(

A− 1

n− k

)

· 1

=

(

n+ 1

k

)

+ bn,k + bn,k−1 −
(

n

k − 1

)

= bn,k + bn,k−1 +

(

n

k

)

. (23)

Now, by induction on n and k, assuming that (20) holds for bn,k and bn,k−1, by substituting
in (23),

bn+1,k = (n− k)

(

n

k

)

+ (n− k + 1)

(

n

k − 1

)

+

(

n

k

)

= (n− k)

[(

n

k

)

+

(

n

k − 1

)]

+

(

n+ 1

k

)

= (n+ 1− k)

(

n+ 1

k

)

.

Checking (20) for bn,0 (∀n ≥ 1) and bk+1,k (∀k ≥ 0) completes the proof.

Finally, plugging (19) and (20) in (18) we obtain a recursion for the number of intervals
of a given length.

Proposition 5. Starting with en,0 = 2n, for every k ≥ 0 and for every n ≥ k + 1, we have

en,k+1 = en,k + 2n −
k
∑

i=0

(

n

i

)

− (n− k + 1)

(

n

k

)

. (24)
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For 0 ≤ k ≤ 5 and n ≥ k, formulas for en,k are shown below

en,0 = 1 · 2n
en,1 = 2 · 2n − n− 2

en,2 = 3 · 2n − n2 − 2n− 3

en,3 = 4 · 2n − 1

2
n3 − 1

2
n2 − 3n− 4

en,4 = 5 · 2n − 1

6
n4 +

1

6
n3 − 11

6
n2 − 19

6
n− 5

en,5 = 6 · 2n − 1

24
n5 +

1

6
n4 − 23

24
n3 − 2

3
n2 − 9

2
n− 6.

By iterating (24), we obtain the next corollary.

Corollary 6. For a fixed k ≥ 0, when n ≥ k, we have

en,k = (k + 1) · 2n + Polk(n), (25)

where Polk(n) is a polynomial of degree k in n. Therefore, the average number of nodes
at distance k from a randomly selected one is given by

en,k
2n

= k + 1 +O
(

nk

2n

)

(n→ ∞). (26)

Formula (26) says that, if n is large enough, each node of Qn(σ) has on average k + 1
nodes at distance k above it. In the unconstrained hypercube Qn, the number of intervals
of length k is given by

n
∑

D=0

(

D

k

)(

n

D

)

= 2n−k
(

n

k

)

; (27)

also see sequences A038207 and A065109 of [9]. Thus, on average, a random node of Qn has
(

n

k

)/

2k (28)

nodes above at distance k. This value strongly depends on n (and k), whereas in Qn(σ), for
n sufficiently large, the only parameter is k (26).

4 Number of permutations intersecting a node

In this section, we compute the number of permutations belonging to Avn(σ) that intersect
a given node w of Qn(σ). This number is denoted by Tσ(w) or simply by T (w). For a fixed
node w, in general T132(w) 6= T123(w). The statistic Tσ(w) thus depends on the pattern σ.
To start, let us focus on σ = 132.
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Table 3: Values of αd,D for 0 ≤ d ≤ 10 and 1 ≤ D ≤ 10.

αd,D d

0 1 2 3 4 5 6 7 8 9 10
D = 1 1 1 0 0 0 0 0 0 0 0 0
D = 2 1 2 2 0 0 0 0 0 0 0 0
D = 3 1 3 5 5 0 0 0 0 0 0 0
D = 4 1 4 9 14 14 0 0 0 0 0 0
D = 5 1 5 14 28 42 42 0 0 0 0 0
D = 6 1 6 20 48 90 132 132 0 0 0 0
D = 7 1 7 27 75 165 297 429 429 0 0 0
D = 8 1 8 35 110 275 572 1001 1430 1430 0 0
D = 9 1 9 44 154 429 1001 2002 3432 4862 4862 0
D = 10 1 10 54 208 637 1638 3640 7072 11934 16796 16796

4.1 Case σ = 132

For a node w, we define α(w) as the number of paths in Qn(132) going from w to 1n.
Similarly, β(w) counts those paths from 0n to w. Then T (w) = α(w) · β(w).

Let us start by computing α(w). Using the notation of Table 1, we have recursion (29),
which is obtained by summing α(w′) over the nodes w′ that cover w:

α(w) = αd,D = αd,D−1 · (1− δd,D) +

(

d−1
∑

i=0

αi,D−1

)

, (29)

where α0,1 = α1,1 = 1.
Formula (29) allows the calculation of the terms αd,D, for the first values of d and D.

Results are collected in Table 3.
As it easily follows from (29), each entry of Table 3 above is computed by summing the

entries in the previous row with a lesser or equal d-value. This results in the equivalent
recursion

αd,D = αd−1,D + αd,D−1,

where α0,1 = α1,1 = 1 and αd,D = 0 if d > D . Table 3 thus corresponds to a well-known [1]
Catalan triangle A009766 whose entries also determine the distribution of important statis-
tics defined for other Catalan structures, such as the length of the last descent or the number
of primitive subpaths [4] in Dyck paths.

Defining the generating function

A(x, y) =
∑

D≥1

D
∑

d=0

αd,Dx
dyD,

then
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A(x, y) =
1

1− y
− 1 + xy ++y

∑

D≥1

D
∑

d=1

αd,Dx
dyD + x

∑

D≥2

D−1
∑

d=0

αd,Dx
dyD

=
1

1− y
− 1 + xy + y

(

A(x, y)− 1

1− y
+ 1

)

+x

[

A(x, y)− y − xy −
(

1−√
1− 4xy

2xy
− 1− xy

)]

.

Solving gives

A(x, y) =
1− 2xy − 2y2 −√

1− 4xy

2y(x+ y − 1)

and coefficients αd,D are therefore

α(w) =

(

D + d

D

)

· D − d+ 1

D + 1
. (30)

To compute the number of paths going from 0n to a node w, we consider, as in Table 1,
the parameters u1, u2, . . . , uℓ, where ℓ = ℓ(w) is the number of blocks of consecutive 1’s in w
and ui = ui(w) is the length of the i-th block taken from left to right. Indeed, observe that
each path connecting 0n to w = w(u1, . . . , uℓ) first creates the sequence of 1’s corresponding
to uℓ, followed by the sequence corresponding to uℓ−1, and so on up to u1. Each step ui can
be completed in exactly cui ways and therefore β(w) is given by

β(w) =
ℓ
∏

i=0

cui . (31)

We can now provide a new combinatorial interpretation of the following well-known
recursive relation

cn = β(1n) =
n−1
∑

i=0

β(1i01n−1−i) =
n−1
∑

i=0

ci · cn−1−i.

The next proposition determines a formula for the computation of T (w) = α(w) · β(w).

Proposition 7. For a node w of Qn(132), with the notation of Table 1, we have

T132(w) =

(

D + d

D

)

· D − d+ 1

D + 1
·

ℓ
∏

i=0

cui . (32)
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4.2 Case σ = 123

In the case σ = 123, the value of α(w) — the number of paths from the node w to 1n — can
be computed exactly as when σ = 132 (30). What is different is the computation of β(w):
the number of paths from 0n to w. In the easiest case, node w ends with an entry equal to 0,
and then β(w) = 1. In general, if u denotes the length of the maximal suffix of w containing
only entries equal to 1 (Table 1), then, similarly to (29), we have the recursion

β(w) = βu,U = βu,U−1 · (1− δU,u) +
u−1
∑

i=0

βi,U−1,

where β0,1 = β1,1 = 1 and the parameter U is as in Table 1. The same kind of computation
that led from (29) to (30) now gives

β(w) =

(

U + u

U

)

· U − u+ 1

U + 1
. (33)

Combining the results together, we obtain a formula for T (w) = α(w) · β(w).

Proposition 8. For a node w of Qn(123), with the notation of Table 1, we have

T123(w) =

(

D + d

D

)

· D − d+ 1

D + 1
·
(

U + u

U

)

· U − u+ 1

U + 1
. (34)

4.3 Expected number of intersections for a random node

Assuming a uniform distribution over the nodes w of Qn(σ), the expected value of Tσ(w)
coincides in the two cases σ = 132, 123. The expectation can be computed by considering
the natural ranking of Qn(σ), where two nodes w1, w2 have the same rank r if D(w1) =
D(w2) = r. Indeed, summing the value of Tσ(w) over all the possible nodes w rank by rank,

∑

w∈Qn(σ)

Tσ(w) = (n+ 1)cn =

(

2n

n

)

.

It follows that on average, both in Qn(132) and in Qn(123), we have

E
(

Tσ(w)
)

=
1

2n
·
(

2n

n

)

. (35)

Similarly, we obtain the expectation of Tσ(w) at each rank r as

E
(

Tσ(w)
∣

∣D(w) = r
)

= cn

/(

n

r

)

. (36)

The results obtained in (35) and (36) can be rephrased by saying that, removing a random
node chosen uniformly from the entire hypercube Qn(σ) or from a given rank {w : D(w) = r}
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Figure 2: Picking random nodes from Σni (left) and Σn−i (right) , for n = 15. The x-axis determines
the value of i. For each 0 ≤ i ≤ 15 we randomly select 2 · 103 nodes w from Σni (resp. Σn−i ). For
each selected node w, we compute ∆i,w = T132(w)−T123(w) and we take ∆i as the average of ∆i,w

over all the selected w’s. ∆i is shown on the vertical axis.

of Qn(σ), the number of paths (or permutations) that consequently cease to exist is on
average the same in the two scenarios σ = 132 and σ = 123.

This equivalence does not hold in general. Using random simulations, we show that if
we remove nodes from certain regions of the hypercube Qn(σ), the number of permutations
that remain in the graph can strongly depend on the pattern σ. As an example (Fig. 2), we
can indeed consider the two regions

Σn
i = {w ∈ Σn : w starts with j ≥ i entries 1}

Σn
−i = {w ∈ Σn : w ends with j ≥ i entries 1}.

In Fig. 2 (left), we pick random nodes from Σn
i , whereas on the right, we take nodes from Σn

−i.
In both cases, the vertical axis gives the value of the difference T132(w) − T123(w) averaged
over several randomly selected nodes w.

5 Open problem: intersecting permutations

In Section 4, we have studied the number of permutations of Avn(σ) that intersect a given
node w ∈ Σn. Going a step further, one can consider the number of permutations of Avn(σ)
that intersect a given permutation π ∈ Sn. In other words, it is interesting to address the
following general question:

Problem. Given a path p of Qn, say

p = 0n → w1 → · · · → wn−1 → 1n, (37)

how many paths of Qn(σ) intersect p only in the extreme points 0n and 1n?

When
p = pid = 0n → 10n−1 → 110n−2 → · · · → 1n (38)
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is the path associated with the identity permutation πid = (1 2 3 . . . n), the problem reduces
to the computation of the number of indecomposable permutations in Avn(σ). Indeed, a
permutation π = (π1 · · · πn) is indecomposable [3, 7, 10] when there is no index i ∈ [1, n)
such that {π1, . . . , πi} = {1, . . . , i}.

As introductory examples, we provide the answer to the problem defined above for two
instances of the path p. We indeed consider the case p = pid as in (38) and the case

p = ψ(pid) = 0n → 10n−1 → 10n−21 → 10n−311 → · · · → 101n−2 → 1n, (39)

where ψ is the bijection that maps paths of Qn(132) onto paths of Qn(123) as defined
in Section 2.2.1. Note that the path in (39) corresponds to the permutation πψ(pid) =
(1nn− 1 . . . 2).

If we denote by jn(p) the number of paths (permutations) of Qn(σ) that intersect p only
in the extreme poits 0n and 1n, we have the following result:

Proposition 9. If pid is the path of the identity permutation, then we have

jn(p) =



















cn − cn−1, if p = pid and σ = 132;

cn − n+ 1, if p = pid and σ = 123;

cn −
∑n−1

i=1 ci−1, if p = ψ(pid) and σ = 132;

cn − cn−1, if p = ψ(pid) and σ = 123.

Proof. We have four cases depending on the path p and the pattern σ.
i) Case p = pid. Following the notation of (37), for 1 ≤ i ≤ n−1 we thus have wi = 1i0n−i.

Let us first focus on σ = 123. Note that T123(w1) = T123(w2) = · · · = T123(wn−1) = 1. At
the same time, for all indices i 6= i′ in [1, n − 1] nodes wi and wi′ are incomparable in
�123 (Proposition 1) and therefore the path intersecting wi does not intersect wi′ . Thus, by
subtracting one path for each node wi from the total number cn of paths present in Qn(123),
we have

jn(p) = cn − n+ 1 (σ = 123). (40)

Take σ = 132. Note that all the paths that intersect wi also pass through wi+1, because
wi+1 is the only node that covers wi in �132 (Proposition 1). Thus

jn(p) = cn − T132(wn−1) = cn − T132(1
n−10) = cn − cn−1 (σ = 132), (41)

and jn(p) gives in this case a new interpretation of sequence A000245 of [9].

ii) Case p = ψ(pid). We now consider p as in (39). Thus, in the notation of (37), for
1 ≤ i ≤ n−1 we have wi = 10n−i1i−1. Take first σ = 123. In this case, all the paths through
wi also intersect wi+1, because wi+1 is the only node that covers wi in �123 (Proposition 1).
Therefore, as in (41), we have

jn(p) = cn − T123(wn−1) = cn − T123(101
n−2) = cn − cn−1 (σ = 123). (42)
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When σ = 132, we have T132(wi) = ci−1. Furthermore, for all indices i 6= i′ in [1, n − 1]
nodes wi and wi′ are incomparable in�132 (Proposition 1) and therefore the paths intersecting
wi do not intersect wi′ . Thus, by subtracting ci paths for each node wi from the total number
cn of paths present in Qn(132), we obtain

jn(p) = cn −
n−1
∑

i=1

ci−1 (σ = 132). (43)

Considering (40), (41), (42), and (43) concludes the proof.

6 Conclusions

We have introduced the oriented graphs Qn(σ) defined over the set of binary words Σn, where
σ is a permutation pattern of length three: σ ∈ {132, 123}. The poset Qn(σ), with its order
relation �σ, is obtained from the classical hypercube Qn by requiring edge constraints such
that each strictly increasing path in Qn(σ) from 0n to 1n bijectively encodes a permutation
of Avn(σ).

We have investigated some of the combinatorial properties of the posets Qn(σ). In par-
ticular, we have studied their numbers of intervals, which are independent of the pattern σ.
More precisely, Proposition 1 characterizes the order relations �σ induced by the orientation
of the edges in Qn(σ). Proposition 3 and Corollary 4 give closed formulas for the number of
intervals in Qn(σ) and the associated expectation. Proposition 5 and Corollary 6 refine the
result by considering the numbers of intervals of given length. We compared these results
with those obtained for the unconstrained hypercube Qn (see (13) and (27)).

To highlight some other differences between the non-isomorphic oriented graphs Qn(123)
and Qn(132) and the unconstrained hypercube Qn, in Section 4 we focused on the number of
paths/permutations intersecting a given node. Formulas are given according to the simple
parameters described in Table 1. Proposition 7 covers the case σ = 132, and Proposition 8
determines the result for σ = 123. Whereas the expected number of paths intersecting a
random node is the same in the two scenarios σ = 132, 123, simulations showed that this is
not true in general when we pick nodes from particular subsets of Σn.

Finally, in Section 5, we introduced a new problem related to path intersection in Qn(σ)
and solved some preliminary instances.

6.1 Other patterns

It is quite natural to ask whether results similar to those shown here could be obtained for
other types of constrained hypercubes, such as Qn(σ) where σ is a permutation-pattern of
length greater than 3. If we take any single pattern σ, with |σ| > 3, it is easy to see that the
approach used above to define Qn(σ) by removing single edges from the unconstrained Qn

does not apply anymore. Indeed, we cannot explicitly characterize those edges of Qn that
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are responsible for the presence of those paths/permutations containing the pattern σ. For
example, if we take σ = 1243, we cannot remove from Q4 the edge 1100 → 1101 because,
besides 1243, this would cancel also the permutation 2143. In other words, for single patterns
|σ| > 3, there is no subset of the edges of Qn that is responsible for the appearance of all
and only the permutations containing σ.

Considering sets of patterns things change and, in some special cases, for sets of pat-
terns of length greater than 3, we can still define the associated hypercube. For instance,
considering the set of patterns σ = {1243, 2143}, Qn(σ) can be obtained by removing from
Qn edges of the form

α 1 β 1 γ 0 δ 0 ǫ→ α 1 β 1 γ 0 δ 1 ǫ.

A complete characterization of those sets of patterns σ for which the associated class of
permutations Avn(σ) admits an hypercube representation is still missing. It would be of
interest to see whether the classes of permutations with an hypercube representation share
some common enumerative features that characterize them.
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