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Abstract

Let A ∈ {k2(k2l2 + 1), 4k2(k2(2l − 1)2 + 1)}, where k and l are positive integers,
and let B be a non-zero square-free integer such that |B| <

√
A. In this paper we

determine all the possible integer solutions of the equation y2 = Ax4 + B by using
terms of Lucas sequences of the form mx2.

1 Introduction and statement of results

Diophantine equations of the form Dy2 = Ax4+B have been widely studied with a variety of
methods. A number of innovative ideas have been developed in order to study such equations.
For instance, Ljunggren [13, 14, 15], by studying units in quadratic and biquadratic fields,
showed that the equation x2 − dy4 = ±1 has at most two solutions. Some equations of the
previous form are given in Table 1.
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Equation Ref. Equation Ref.
x4 ± 1 = (4r2 + 1)y2 [10] y2 − dx4 = 1 [8, 22]

x4 − 1 = dy2 [9] y2 − dx4 = −1 [6]
x4 + 1 = dy2 [7] (m2 +m+ 1)x4 − (m2 +m)y2 = 1 [25]

ty2 = (t+ 2)x4 − 2 [1] x4 − dy2 = 1, d prime [17]
b2x4 − 1 = dy2 [2] x4 − dy2 = 1, d prime or twice a prime [18]

Table 1: Quartic equations of the form αX2 + βY 4 = ±1.

Moreover, Tzanakis [23, 24] introduced a method for solving quartic elliptic equations by
generalizing the elliptic logarithm method. Another method to treat equations of this type
is to apply a reduction to the study of the squares of some binary linear recurrent sequence
or to a family of Thue equations. In that case, either the Baker or the Thue-Siegel method is
used. Also, there are elementary approaches, such as manipulations with Legendre symbol
and reduction mod p. Note that in all the previous equations the constant term is very small
(it belongs to the set {±1,±2}). In this paper we allow |B| to be smaller than

√
A.

We shall determine all possible solutions of a large family of equations of the form

y2 = Ax4 +B, (1)

where A ∈ {k2(k2l2 + 1), 4k2(k2(2l− 1)2 + 1)} (k, l ∈ Z>0) and |B| is a non-zero square-free
integer smaller than

√
A. In particular, for the cases where k ∈ {1, 2, 3, 6}, we give the set of

possible solutions without any hard computation. For the rest of the cases the computation
of a minimal unit in the ring of integers of a quadratic extension of Q is needed. The idea
is that in order to compute the solutions of equation (1) we need to study the squares that
occur to the denominators of the continued fraction of

√
A. Furthermore, A is chosen with

period 1 or 2. The case with period 1 (part 1(a) of Theorem 1) is very easy and was already
covered by the general result of Togbe et al. [22]. The case with period 2 gives two families
of quartic elliptic curves. We provide the exact solutions for all possible square-free B’s with
|B| <

√
A.

One can also apply well known methods (e.g., reducing to finite number of Thue equa-
tions) in order to solve the equations y2 = Ax4 + B for all the possible B’s but one, one by
one. In addition, we have the Magma [4] function, SIntegralLjunggrenPoints([1,A,0,B],
[]), which returns the integer solutions of (1), but this function makes sense if we let A,B
run in some (relatively) small intervals (the function uses linear forms of logarithms).

By K we denote the quadratic number field Q(
√
A). Furthermore, let OK be the ring

of integers of K, εd = y1 + x1

√
d ∈ Z[

√
A] is the minimal unit > 1, with norm 1 and

εtd = yt + xt

√
d. The main theorem that we prove is the following.

Theorem 1. Let k, l be positive integers, and (x, y) an integer solution of

y2 = Ax4 +B,
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where 0 6= |B| <
√
A and B is square-free.

1. Let A = k2(k2l2 + 1).

(a) If k = 1, then |x| ∈ {0, 1, 13,
√
2l}. Furthermore, |x| = 13 occurs only if A =

2, B = −1.

(b) If k ∈ {2, 3, 6}, then |x| ∈ {0, 1, 6, 68,
√
2l}. Furthermore, |x| = 6 occurs only if

A = 20, B = 1 and |x| = 68 occurs only if A = 1305, B = 1.

(c) If k ∈ N−{1, 2, 3, 6} then |x| ∈ {0, 1,
√
2l,

√
x1,

√
x2,

√
xp} where y1+x1

√
A > 1 is

the minimal unit of OK of norm 1 and p is prime ≡ 3 (mod 4) such that x1 = pu2

for some integer u.

2. Let A = 4k2(k2(2l − 1)2 + 1).

(a) If k ∈ {1, 3}, then |x| ∈ {0, 1,
√
2l − 1}.

(b) If k ∈ N−{1, 3} then |x| ∈ {0, 1,
√
2l − 1,

√
x1,

√
x2,

√
xp} where y1+x1

√

A/4 > 1
is the minimal unit of OK of norm 1 and p is prime ≡ 3 (mod 4) such that
x1 = pu2 for some integer u.

The previous result uses the following proposition.

Proposition 2. Let B be non-zero square-free integer, and let A be a non-square positive
integer. Assume that |B| <

√
A. Let (x, y) ∈ Z2, such that y2 = Ax2m + B. Then xm = qn,

for some positive integer n, where pn/qn is the n-th convergent of
√
A.

We shall prove the following proposition.

Proposition 3. 1. Let (x, y) be an integer solution to equation

y2 = k2(k2l2 + 1)x4 + B,

with B square-free, k > 1, and 0 6= |B| ≤ k2l. Then B = 1.

2. Let (x, y) be an integer solution to equation y2 = (l2 + 1)x4 + B, with B square-free,
and 0 6= |B| ≤ l. Then |B| = 1.

3. Let A = 4k2(k2(2l − 1)2 + 1). Then the equation y2 = Ax4 + B, with B square-free,
k > 3, and 0 6= |B| ≤ 2k2(2l − 1) has integers solutions only for B = 1.

Another way to write Proposition 3 is as follows:

1. For A = k2(k2l2 + 1), if y2, Ax4 are not consecutive integers and their difference is
square free, then |y2 − Ax4| >

√
A.

2. For A = 4k2(k2(2l − 1)2 + 1) (k > 3), if y2, Ax4 are not consecutive integers and the
difference is square free, then |y2 − Ax4| >

√
A.
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The previous proposition is not true for any value of A. For instance, the equation
y2 = 6x4 − 2 has the solutions |x| ∈ {1, 3}.

The paper is organized as follows: in Section 2 we give some auxiliary results, in Section 3
we obtain the proof of Proposition 2 and in Section 4 the proof of the theorem. In Section 5
we provide the proof of Proposition 3, and finally in Section 6 we provide some examples.

2 Auxiliary results

We denote by un(r, s) the Lucas sequence

u0 = 0, u1 = 1, un+2 = run+1 + sun,

and by vn(r, s) the companion Lucas sequence

v0 = 2, v1 = r, vn+2 = rvn+1 + svn,

where r, s are non-zero integers and n ≥ 0. A well-known and useful identity containing
both of the above sequences is

v2n − (r2 + 4s)u2
n = 4(−s)n. (2)

Lemma 4. The even-indexed terms of the form kx2 of a Lucas sequence are solutions of the
equation

y2 − dx4 = 1, (3)

where

1. d = k2(k2l2 + 1), if the Lucas sequence is
(

un(2kl, 1)
)

n≥0
.

2. d = k2(k2(2l − 1)2 + 1), if the Lucas sequence is
(

un(2k(2l − 1), 1)
)

n≥0
.

Proof. Starting with equation (2) and by substituting r with 2kl and s with 1 we get

v2n − (4k2l2 + 4)u2
n = 4.

Obviously vn is even and therefore we can substitute vn by 2y. Moreover, we are interested
in terms un of the form kx2, so by substituting un by kx2 we get y2 − k2(k2l2 + 1)x4 = 1.
The proof of part (2) is similar and it is omitted.

Lemma 5. For d ∈ {k2(k2l2+1), k2(k2(2l− 1)2+1)} the equation y2− dx4 = 1 has at most
two solutions such that y + x2

√
d ∈ {εd, ε2d, εpd}. Where, εd = y1 + x1

√
d is the minimal unit

greater than 1 of norm 1 in Z[
√
d] and p is a prime ≡ 3 (mod 4) such that x1 = pu2, for

some u ∈ Z.
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Proof. If we have exactly two solutions of y2 − dx4 = 1 then we get y + x2
√
d ∈ {εd, ε2d}

except if d = 1785 or 16 · 1785 [22, Thm. 1.1]. In that case we have y + x2
√
d ∈ {εd, ε4d}.

If we have exactly one solution, we get y + x2
√
d ∈ {εd, ε2d, εpd}, where p is prime such that

x1 = pu2 for some u ∈ Z, and p ≡ 3 (mod 4). Since d cannot be equal to 1785 or 16 · 1785,
the result follows.

Lemma 6. Let r ≥ 1, n ≥ 4, and let m ∈ {1, 2, 3, 6}. Assume that for some integer x we
get un(r, 1) = mx2. Then (n, r,m) = (4, 1, 3), (4, 2, 3), (4, 4, 2), (4, 24, 3), (6, 1, 2), (7, 2, 1)
or (12, 1, 1).

Proof. [16, Thm. 1].

Lemma 7. The doubling rate of the recurrence sequence un+2 = run+1 + sun is

un+4 = (r2 + 2s)un+2 − s2un.

Proof. By definition, we have that un+4 = run+3+sun+2. By substituting un+3 with run+2+
sun+1 we get

un+4 = r2un+2 + srun+1 + sun+2.

Notice that run+1 = un+2 − sun. So,

un+4 = r2un+2 + s(un+2 − sun) + sun+2.

The result follows.

Lemma 8. Let k, l ∈ Z>0. The continued fraction of
√
A is equal to:

1. [k2l; 2l, 2k2l] for A = k2(k2l2 + 1) and k 6= 1.

2. [4k2l − 2k2; 2l − 1, 8k2l − 4k2] for A = 4k2(k2(2l − 1)2 + 1).

3. [l; 2l] for A = l2 + 1.

Proof. Let [k2l; 2l, 2k2l] be the continued fraction of
√
A. Then

√
A = k2l +

1

2l + 1
2k2l+ 1

2l+···

.

So the quantity
√
A− k2l is a periodic fraction and by substituting it, in the initial fraction

we get √
A− k2l =

1

2l + 1
2k2l+(

√
A−k2l)

.

The result follows from the above equation.
The proof of part (2) is similar and it is omitted. The continued fraction in part (3) is a

specific case of the first continued fraction for k = 1. The only difference is that in this case
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the period of the continued fraction is 1. Following the same procedure as in the first proof
it turns out that the result follows from the equation

√
A− l =

1

2l + (
√
A− l)

.

Let θ be a quadratic irrational number and [a0, a1, a2, . . .] its simple continued fraction.
We denote by (pn) the sequence of the numerators, and by (qn) the sequence of the denom-
inators of the convergents to θ. By the theory of the continued fractions we have that

pn
qn

= [a0, a1, . . . , an],

while gcd(pn, qn) = 1. The convergents pn and qn can be computed from the recurrence
relations

p−2 = 0, p−1 = 1, pn = anpn−1 + pn−2, n ≥ 0,

q−2 = 1, q−1 = 0, qn = anqn−1 + qn−2, n ≥ 0 (4)

The continued fraction of a quadratic irrational θ has the form

[a0; a1, a2, . . . , a2, a1, 2a0],

where the central term might appear either once or twice, see Burger [5, Lemma 8.6, p. 51].

Proposition 9. Let θ be a quadratic irrational number, and let [a0; a1, a2, . . . , as] be its
simple continued fraction with period s. Then the terms of the sequence (qn) satisfy the
linear recurrence

qn+2s − tqn+s + (−1)sqn = 0, n ≥ 1

where t is the trace of the matrix

M =
∏

1≤j≤s

[

aj 1
1 0

]

.

Proof. [12, Thm. 1].

Lemma 10. Let (qn) be the sequence of the denominators of the convergents to
√
A.

1. Let
√
A = [k2l; 2l, 2k2l]. Then

qn =

{

un+1, n even;
un+1

k
, n odd.

Where un are the terms of the Lucas sequence un(2kl, 1).
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2. Let
√
A = [4k2l − 2k2; 2l − 1, 8k2l − 4k2]. Then

qn =

{

un+1, n even;
un+1

2k
, n odd.

Where un are the terms of the Lucas sequence un(2k(2l − 1), 1).

3. Let
√
A = [l; 2l]. Then qn = un+1, where un are the terms of the Lucas sequence

un(2l, 1).

Proof. From relation (4) we get q0 = 1, q1 = 2l, q2 = 4k2l2 + 1. According to Proposition 9
the denominators (qn)n≥0 of the convergents to

√
A satisfy the recurrence sequence

qn+2s − tqn+s + (−1)sqn = 0, n ≥ 1,

where s = 2, and

t = trace

([

2l 1
1 0

]

·
[

2k2l 1
1 0

])

= 4k2l2 + 2.

Thus, we get
qn+4 = (4k2l2 + 2)qn+2 − qn = 0, n ≥ 1. (5)

On the other hand, the first terms of the Lucas sequence un(2kl, 1) are u0 = 0, u1 = 1,
u2 = 2klu1 + u0 = 2kl, u3 = 2klu2 + u1 = 4k2l2 + 1. From Lemma 7 we have

un+4 = (4k2l2 + 2)un+2 − un = 0, n ≥ 1. (6)

Since u1 = q0 and u3 = q2, inductively using ((5) and (6)), we can easily conclude that
q2n = u2n+1, for all n ≥ 0.

Next, we will show that q2n−1 = u2n/k. Since
√
A = [k2l; 2l, 2k2l], we have that an = 2l

for n odd and an = 2k2l for n even, n > 1. Now, let r be a positive integer. From (4) we
have that q2r+2 = a2r+2q2r+1 + q2r which implies that

q2r+2 = 2k2lq2r+1 + q2r

and by substituting q2r+1 with

a2r+1q2r + q2r−1 = 2lq2r+1 + q2r,

we get
q2r+2 = (4k2l2 + 1)q2r + 2k2lq2r−1.

On the other hand, since (un)n≥0 is a Lucas sequence, we have

u2r+3 = 2klu2r+2 + u2r+1
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which implies that
u2r+3 = (4k2l2 + 1)u2r+1 + 2klu2r.

We have already proved that the q2r+2 = u2r+3 and q2r = u2r+1. Hence, q2r−1 = u2r/k. This
proves part (1). The proof of part (2) is similar and we omit it.

Now we shall prove part (3). By Proposition 9 the denominators (qn)n≥0 of the conver-
gents to

√
A satisfy the recurrence sequence

qn+2s − tqn+s + (−1)sqn = 0, n ≥ 1,

where s = 1 and t = 2l. Since q−1 = 0 and q−2 = 1 we get that q0 = 1, q1 = 2l, and so on.
On the other hand the terms of the Lucas sequence are u0 = 0, u1 = 1, u2 = 2l etc. The
result follows.

3 The proof of Proposition 2

Let A,B be non-zero integers. Assume that A > 0 non-square and B square-free with
|B| <

√
A. From Lagrange [19, p. 377-535] or from Matthews [11], we get that the fraction

y/x, where (x, y) is a positive solution of the Pell equation y2 − Ax2 = B, is equal to a

convergent pn/qn for some n, of the continued fraction of
√
A. So, in our case it is

y

xm
=

pn
qn

,

where
pn
qn

is the n-th convergent of
√
A. Let gcd(y, xm) = d > 1. Then

d2y′2 = d4Ax′2m +B,

so d2|B. But B is square-free, which leads us to a contradiction. We conclude that qn = xm.
The proposition follows.

Remark 11. A similar result holds for Ay2 = x2m +B, under the same constraints for B. So
we can have a similar result, as in Theorem 1, for equations of the form Ay2 = x4+B under
the same constraints for A,B.

4 The proof of Theorem 1

By pn/qn we denote the convergents of the continued fraction of
√
A, where A ∈ {k2(k2l2 +

1), 4k2(k2(2l − 1)2 + 1)} (k, l ∈ Z>0). Since 0 6= |B| <
√
A, by Proposition 2 for m = 2 we

have that x2 = qs for some positive integer s. That is, in order to compute the solutions
(x, y) of the equation y2 = Ax4+B it is enough to find the denominators of the convergents
of

√
A that are perfect squares.

Proof. Part 1. According to Lemma 10 (1), the even-indexed terms qs are equal to the
odd-indexed terms un of the Lucas sequence un(2kl, 1), while the odd-indexed terms qs are
equal to the even-indexed terms un of the Lucas sequence un(2kl, 1) divided by k. So, in
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order to compute qs that are perfect squares, we need to compute the odd-indexed terms of
un(2kl, 1) that are of the form x2 and the even-indexed terms of un(2kl, 1) that are of the
form kx2.

In order to prove the case (a) of part (1), we consider the case where k = 1, which
implies that A = l2 + 1. From Lemma 6 we conclude that the only possible case for n ≥ 4
is (n, 2l, 1) = (7, 2, 1). Thus l = 1, A = 2 and u7 = 169, which implies |x| = 13. For
l = k = 1 we get the sequence un(2, 1) which is A000129 in Sloane’s Online Encyclopedia
of Integer Sequences [21]. Now let n < 4. For n = 3 we have u3 = 4l2 + 1 which is not a
perfect square unless l = 0 which contradicts the fact that l is positive. For n = 2 we have
u2 = 2l and for n = 1 we have u1 = 1. Including the trivial solution x = 0, we conclude that
|x| ∈ {0, 1, 13,

√
2l}, while |x| = 13 occurs only if A = 2, B = 1.

In order to prove the case (b) we consider k ∈ {2, 3, 6}. We assume first that n is odd
≥ 4. Thus we have to solve un = x2 for some integer x and un = un(2kl, 1). According to
Lemma 6 (applying it for m = 1) we get (n, 2kl, 1) = (7, 2, 1), which implies that k = l = 1,
contradicting the fact that k > 1. Thus there are no possible terms un of the form x2.

For n even we need to compute the terms of the Lucas sequence un(2kl, 1) such that
un = kx2 for some integer x. For n even and ≥ 4 by Lemma 6 we get the triplets (n, 2kl, 2) =
(4, 4, 2) and (n, 2kl, 3) = (4, 2, 3), (4, 24, 3). If we have the triplet (4, 4, 2), we get u4(4, 1) =
72 = 2x2, which implies |x| = 6. The sequence u4(4, 1) appears in Sloane’s database [21]
as A001076. In this case we have to solve the equation y2 = A · 64 + B for A = 20 and
|B| ≤ 4. For this equation there is a unique solution, which is (x, y, B) = (6, 161, 1). For the
triplet (4, 2, 3) we have kl = 1, which is a contradiction. For the triplet (4, 24, 3) we have
u4(24, 1) = 13872 = 3x2 which implies that |x| = 68.

For x = 68, k = 3, l = 4, we get A = k2(k2l2 + 1) = 1305. For |B| ≤
√
1305 < 37 the

equation y2 = Ax4 +B has a unique solution (|x| = 68, |y| = 167041).
Now let n < 4. For n = 3 we have u3 = 4k2l2 + 1, which is not a perfect square, since

k, l are positive integers. For n = 2, u2 = 2kl must be of the form kx2, which implies that
|x| =

√
2l. For n = 1 we have that |x| = 1. Including the trivial solution x = 0, we conclude

that |x| ∈ {0, 1, 6,
√
2l}, where the solution |x| = 6 occurs only when A = 20, B = 1.

Finally, to prove the case (c) of part (1), we consider the case where k /∈ {1, 2, 3, 6}. As
in the previous case, we need to compute the square terms of the Lucas sequence un(2kl, 1)
with an odd index. By Lemma 6 we conclude that there are no possible solutions for n ≥ 4,
and the cases where n = 3 or n = 1 are the same with case (a).

For n even we need to compute the terms of the form kx2 of the Lucas sequence un(2kl, 1).
The integer x is a solution of the equation y2 − dx4 = 1, where d = k2(k2l2 + 1) (Lemma 4).
By Lemma 5 we get |x| ∈ {√x1,

√
x2,

√
xp}, where y1 + x1

√
d = εd is the minimal unit

(> 1) of the ring Z[
√
d] and εtd = yt + xt

√
d. The solutions for n < 4 and m 6= 1, 2, 3, 6 are

analogous to the previous cases, so |x| ∈ {0, 1,
√
2l,

√
x1,

√
x2,

√
xp}.

Part 2. According to Lemma 10 (2), the even-indexed terms qs are equal to the odd-
indexed terms un of the Lucas sequence un(2k(2l−1), 1), while the odd-indexed terms qs are
equal to the even-indexed terms un of the Lucas sequence un(2k(2l − 1), 1) divided by 2k.
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So, in order to compute qs that are perfect squares, we need to compute the odd-indexed
terms of un(2kl, 1) that are of the form x2, and the even-indexed terms of un(2k(2l − 1), 1)
that are of the form 2kx2.

Now consider the case (a) of part (2). Since k ∈ {1, 3}, by Lemma 6 for m = 1 we
get that the only possible case for n odd and n ≥ 4 is (n, 2k(2l − 1), 1) = (7, 2, 1). So
l = k = 1, A = 8 and u7 = 169 = x2. We easily conclude that there are no integral solutions
of y2 = 8x4 + B for x = 13 and |B| <

√
A. For n = 3 we have u3 = 4k2(2l − 1)2 + 1, which

is clearly not a perfect square since k 6= 0, and for n = 1, we have u1 = 1, which is obviously
a perfect square.

Now let n be even. We need to compute the terms of the Lucas sequence un(2k(2l−1), 1),
such that un = 2kx2 for some integer x. For n ≥ 4 according to Lemma 6 for m = 2k (since
k ∈ {1, 3} we get m ∈ {2, 6}) we can easily deduce that there is no possible triplet of the
form (n, 2k(2l − 1), 2k). For n = 2, we have u2 = 2k(2l − 1), which is of the form 2kx2 for
|x| =

√
2l − 1. Including the trivial solution x = 0, we conclude that |x| ∈ {0, 1,

√
2l − 1}.

Finally, consider the case where k /∈ {1, 3} (case (b)). As in the previous case (a),
according to Lemma 6 there are no possible solutions for n odd, n ≥ 4, and the cases
where n = 3 or n = 1 are also the same with the previous case. For n even we work
as in case (c) of part (1). Including the trivial solution x = 0, we conclude that |x| ∈
{0, 1,

√
2l − 1,

√
x1,

√
x2,

√
xp}.

5 The proof of Proposition 3

Initially, we recall Euler’s theorem about continued fractions as it is provided by Burger [5,
p. 52].

Theorem 12. (Euler’s theorem). Let α be a quadratic irrational, and let α0 = α, a0 = ⌊α0⌋.
Then α0 = (r0+

√
d)/s0, where d is not a perfect square and s0|d−r20. Let αn+1 = 1/(αn−an),

an+1 = ⌊αn+1⌋. Further, we consider two sequences sn, rn such that

rn+1 = ansn − rn, sn+1 =
d− r2n+1

sn
.

Then for all n ≥ 0 it follows that:

1. α = [a0, a1, a2, . . .].

2. rn, sn ∈ Z with sn 6= 0 and sn|d− r2n.

3. αn = (rn +
√
d)/sn and an = ⌊(rn +

√
d)/sn⌋.

4. If r0 = 0, s0 = 1 we set pn/qn to be the n-th convergent of
√
d. Then for all n ≥ 0 we

get
p2n − dq2n = (−1)n−1sn+1. (7)

Further, if the second part of equation (7) is ±1, then n = ts−1 for some t ≥ 0, where
s is the period of the continued fraction of

√
d.
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5. sn = 1 ⇔ s|n.

Proof. For part (1),(2) and (3) see [5, Euler’s theorem, Module 8]. For part (4) see [5, Thm.
8.11 and Cor. 8.12] and for part (5) see [5, Lemma 8.9 (iv)].

Let x, y be integers that satisfy equation (1), and let |B| <
√
A. Then y = pn and

x2 = qn. Thus p
2
n − Aq2n = y2 − Ax4 = B. Part 4 of the previous theorem, give us

p2n − Aq2n = (−1)n−1sn+1,

so
B = (−1)n−1sn+1. (8)

Therefore B is allowed to take specific discrete values. We shall prove that for the A’s we
have considered, B is finally equal to 1.

Lemma 13. Let A = k2(k2l2 + 1), and let n be a positive integer. Then we get αn = k2α1

for n even and αn = α1 for n odd.

Proof. From Lemma 8 (1) we get
√
A = [k2l; 2l, 2k2l]. According to the notation of Theo-

rem 12, α =
√
A = α0. So

a0 = k2l, a2n+1 = 2l, a2n = 2k2l.

It is easy to see that

α1 =
1

α0 − a0
=

√
A+ k2l

k2
, α2 =

1

α1 − a1
= k2α1 and α3 = α1.

By induction our result follows.

Lemma 14. For A = k2(k2l2 + 1), we get

sn =

{

1, n even;

k2, n odd.

Further, rn = k2l for every n ≥ 0.

Proof. From the previous lemma

αn =

{

k2α1, n even;

α1, n odd.

Also the equality αn = rn+
√
A

sn
holds. Since α1 =

k2l+
√
A

k2
, our result follows.
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In order to prove part (1) of Proposition 3, first we remark that

|B| ≤
√
A =

√

k2(k2l2 + 1) = k
√
k2l2 + 1.

Since |B| is an integer, the closest integer to the boundary of |B| is k
√
k2l2, so |B| ≤

k2l. From Lemma 14 and relation (8) we get B ∈ {1,−k2} and since B is square-free,
Proposition 3 part (1) follows. The second part is similarly proved.

For the third part, we repeat some arguments of the proof of part (2b) of Theorem 1.
First we consider the equation

p2n − Aq2n = (−1)n−1sn+1 (9)

with n even. So according to Lemma 10 part (2) we have to find the odd-indexed terms of
the Lucas sequence un(2k(2l− 1), 1) which are perfect squares. But, such terms do not exist
except when n = 1 (see the proof of part (2b) of Theorem 1). In the specific case where
n = 1, a straightforward computation gives s2 = 1, thus B = 1. For n odd, the index in
the sequence in the right part of relation (9) is even. In that case, since the period of the
continued fraction of

√
A is 2, Theorem 12 part (5) gives sn+1 = 1. So in any case, from

relation (8), we get B = 1.

6 Examples

Example 15. For k = 1, l = 301, and A = 4k2(k2(2l − 1)2 + 1) = 1444808. We consider
the family EB : y2 = Ax4 + B with B square-free, and |B| ≤ 1202. In this family there
are elliptic curves with large rank. For instance if B = 1 we get an elliptic curve of rank 5.
According to part 2 (a) of Theorem 1, we get |x| ∈ {0, 1} (since

√
2l − 1 is not an integer).

Solutions occur only for the trivial case where x = 0. So, the solutions (x, y, B) are (0, 1, 1)
and (0,−1, 1).

Example 16. Now let k = 12, l = 1, and A = k2(k2l2 + 1) = 20880. We consider the
family of the curves EB : y2 = Ax4 + B, where B is as usual square-free and |B| ≤ 144.
For B = −5 we get a curve of rank 3. According to part 1 (c) of Theorem 1, we get
|x| ∈ {0, 1,√x1,

√
x2,

√
xp}, and B = 1 from the first part of Proposition 3. The fundamental

solution of y2 − Ax2 = 1 is 289 + 2
√
20880 > 1. So y1 = 289 and x1 = 2. Since x1 is not

a perfect square and is not of the form pu2 where p ≡ 3 (mod 4), we only need to check
x2. Now, (289 + 2

√
20880)2 equals to 167041 + 1156

√
20880. Thus x2 = 1156 which is

the square of 34. Therefore, the solutions (x, y, B) of y2 = 20880x4 + B are (0,±1, 1) and
(±34,±167041, 1).

Example 17. Now we consider the equation y2 = (24r+2+1)x4+n, where−22r+1 ≤ n ≤ 22r+1

and n 6= 0 square-free. Then our main result for k = 1 and l = 22r+1 gives |x| ∈ {0, 1, 2r+1}.
Further, from the second part of Proposition 3 we get |n| = 1. Thus, after some simple
calculations we get (|x|, |y|, n) = (0, 1, 1), (1, 22r+1,−1),

(

2r+1, 24r+3 + 1, 1
)

.
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