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Abstract

The generalized Hosoya triangle is an arrangement of numbers where each entry

is a product of two generalized Fibonacci numbers. We define a discrete convolution
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C based on the entries of the generalized Hosoya triangle. We use C and generat-

ing functions to prove that the sum of every k-th entry in the n-th row or diagonal

of generalized Hosoya triangle, beginning on the left with the first entry, is a linear

combination of rational functions on Fibonacci numbers and Lucas numbers. A simple

formula is given for a particular case of this convolution. We also show that C sum-

marizes several sequences in the OEIS. As an application, we use our convolution to

enumerate many statistics in combinatorics.

1 Introduction

The Hosoya triangle [3, 4, 5, 7, 9] consists of a triangular array of numbers where each
entry is a product of two Fibonacci numbers (see Figure 3). If we use generalized Fibonacci
numbers instead of Fibonacci numbers, then we obtain the generalized Hosoya triangle.
Several authors have been interested in finite sums of products of Fibonacci numbers (see
for example, [6, 9, 10]). The generalized Hosoya triangle is a good visualizing tool for the
study of sums of products of generalized Fibonacci numbers, and in particular, for the study
of finite sums of products of Fibonacci numbers and Lucas numbers.

We define a discrete convolution C as a finite sum of products of generalized Fibonacci
numbers, and prove, using generating functions, that it is a linear combination of five rational
functions on Fibonacci and Lucas numbers. The convolution depends on three variables m,
l, and k, each of them having a geometric interpretation in terms of the generalized Hosoya
triangle. Moreover, particular cases for the variables m, l, and k give known results found
by several authors [6, 9, 10]. That is, our convolution generalizes the study of finite sums
of products of Fibonacci and Lucas numbers. We also provide several examples where C
enumerates statistics on Fibonacci words and non-decreasing Dyck paths. In addition, our
convolution summarizes 15 distinct numeric sequences from The On-Line Encyclopedia of
Integer Sequences.

The known results that are generalized by our convolution are as follows: in 2011 Griffiths
[6, Thm. 3.1], using generating functions, gave a closed formula for the sum of all elements
in the n-th diagonal of the Hosoya triangle. His result can be deduced from our first main
result, Theorem 5, by taking m = n, l = 2, and k = 0. Similarly, Moree [10, Thm. 4] proves
that

FnF1 + Fn−1F2 + · · ·+ F2Fn−1 + F1Fn = (nLn+1 + 2Fn)/5.

This identity is a particular case of our second main result, Theorem 6, by taking m = n,
l = 1, and k = 0.

Theorem 6 also relates the convolution C to several counting results. In particular, C can
be used to count the number of elements in all subsets of {1, 2, . . . , n} with no consecutive
integers, the number of binary sequences of length n with exactly one pair of consecutive
1’s, the total number of zeros in odd/even position for all Fibonacci binary words of length
n and the total pyramid weight for all non-decreasing Dyck paths of length n, (see Section
5).
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In addition to these enumerative applications, the convolution C “compactifies” a wide
variety of numeric sequences into a single definition. The advantage of this “compactifica-
tion” is that it provides a single closed formula (see Theorems 5 and 6) that might help in
the study of several sequences. The authors suspect (based on numerical computations) that
C summarizes more than the 15 sequences depicted in Table 1.

2 Preliminaries and examples

In this section we introduce notation and give some examples. We also give some definitions
that will be used throughout the paper, some of which are well known, but we prefer to
restate them here to avoid ambiguities.

2.1 The generalized Hosoya triangle

We let {Gn(a, b)}n∈N denote the generalized Fibonacci sequence with integers a and b. That
is,

G1(a, b) = a,G2(a, b) = b, and Gn(a, b) = Gn−1(a, b) +Gn−2(a, b) for all n ∈ N \ {1, 2}. (1)

If there is no ambiguity with a and b, then we let Gn denote the n-th term of the
generalized Fibonacci sequence, instead of Gn(a, b). It is easy to see that Gn(1, 1) = Fn.
The first eight terms of the generalized Fibonacci sequence with integers a and b are

a, b, a+ b, a+ 2b, 2a+ 3b, 3a+ 5b, 5a+ 8b, and 8a+ 13b.

Notice that every element in this sequence is a linear combination of the integers a and
b with Fibonacci coefficients. In general, we have that Gn = aFn−2 + b Fn−1 for all n ∈ N.
(See for example, [9, Thm. 7.1, p. 109].)

The generalized Hosoya sequence {Ha,b(r, k)}r≥k≥1 is defined by the double recursion

Ha,b(r, k) = Ha,b(r − 1, k) +Ha,b(r − 2, k)

and
Ha,b(r, k) = Ha,b(r − 1, k − 1) +Ha,b(r − 2, k − 2)

where r > 2 and 1 ≤ k ≤ r with initial conditions

Ha,b(1, 1) = a2; Ha,b(2, 1) = ab; Ha,b(2, 2) = ab; Ha,b(3, 2) = b2.

It is easy to see that if we let a = b = 1 in the generalized Hosoya sequence, then we obtain
the regular Hosoya sequence {H(r, k)}r≥k≥1 as Koshy defined it [9, p. 187–188]. It is known
that

H(r, k) = Fk Fr−k+1

for all natural numbers r, k such that k ≤ r; see [9, Ch. 15]. This and Proposition 1 show
that the definition of {Ha,b(r, k)}r≥k≥1 is the right generalization for {H(r, k)}r≥k≥1.
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Proposition 1 ([4]). If r and k are natural numbers such that k ≤ r, then

Ha,b(r, k) = Gk Gr−k+1,

for all integers a, b ∈ Z.

The generalized Hosoya sequence gives rise to the generalized Hosoya triangle that is
defined as a vertex-weighted grid graph in the first quadrant of R2 as follows: consider the
grid formed by all points in the first quadrant of the xy-plane with natural numbers as
coordinates. Every point/vertex (x, y) ∈ N × N has weight Ha,b(x + y − 1, y). Figure 1
depicts a finite portion of the generalized Hosoya triangle where the view of perspective is
rotated 135◦ clockwise.

H a ,b(1, 1)

H a ,b(2, 1) H a ,b(2, 2)

H a ,b(3, 1) H a ,b(3, 2) H a ,b(3, 3)

H a ,b(4, 1) H a ,b(4, 2) H a ,b(4, 3) H a ,b(4, 4)

H a ,b(5, 1) H a ,b(5, 2) H a ,b(5, 3) H a ,b(5, 4) H a ,b(5, 5)

H a ,b(6, 1) H a ,b(6, 2) H a ,b(6, 3) H a ,b(6, 4) H a ,b(6, 5) H a ,b(6, 6)

(0, 0)

x y

1

2

3

4

5

6

1

2

3

4

5

6

Figure 1: Generalized Hosoya triangle for weights Ha,b(r, k) with 1 ≤ k ≤ r ≤ 6.

We define the r-th row of the generalized Hosoya triangle as the collection of all the
weights

{Ha,b(r, 1), Ha,b(r, 2), . . . , Ha,b(r, r − 1), Ha,b(r, r)}
with their corresponding vertices.

Proposition 1 shows that every weight of the generalized Hosoya triangle is the product
of two generalized Fibonacci numbers. In particular, if we use Proposition 1 for all entries
of Figure 1, we obtain Figure 2.

Thorough the rest of the paper we ignore the axes in any generalized Hosoya triangle
figure.
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G 1 G 3 G 2 G 2 G 3 G 1

G 1 G 2 G 2 G 1

G 1 G 1

x y
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6

(0,0)

Figure 2: The first six rows of the generalized Hosoya triangle.

We now give some examples of generalized Hosoya triangles. We can construct different
triangles by fixing values for the integers a and b. Fixing a = b = 1 in (1) we obtain the
Fibonacci sequence

G1 = 1, G2 = 1, G3 = 2, G4 = 3, G5 = 5, G6 = 8, . . .

Substituting these values in Figure 2, we obtain the regular Hosoya triangle. (See [3, 4, 5, 7, 9]
and Figure 3.)

Fixing a = 7 and b = 2 in (1) we obtain the sequence

G1 = 7, G2 = 2, G3 = 9, G4 = 11, G5 = 20, G6 = 31, . . .

Substituting these values in Figure 2, we obtain a Hosoya triangle with a = 7 and b = 2.
(See Figure 4 part (a).) Similarly, fixing a = 5 and b = 8 in (1) we obtain another numerical
sequence

G1 = 5, G2 = 8, G3 = 13, G4 = 21, G5 = 34, G6 = 55, . . .

The Hosoya triangle generated by this new sequence is depicted in Figure 4 part (b).

2.2 Discrete convolution on the generalized Hosoya triangle

We let ⌈x⌉ denote the ceiling or least integer function of the real number x. We now define
an operator C that will be called convolution, that acts on the weights of the generalized
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88 5 6 6 5

5 3 4 3 5

3 2 2 3

2 1 2

1 1

1

Figure 3: The first six rows of the regular Hosoya triangle.

(a)  Hosoya Triangle with a =7 and b =2.  (b) Hosoya triangle wit  h a =5 and b=8. 

217217 40 99 99 40

140 22 81 22 140

77 18 18 77

63 4 63

14 14

49

275275 272 273 273 272

170 168 169 168 170

105 104 104 105

65 64 65

40 40

25

Figure 4: Two generalized Hosoya triangles.

Hosoya triangle as follows: if l,m > 0 and k ≥ 0 are integers, then

Ca,b(m, l, k) =

⌈ m

l(k+1)⌉−1
∑

i=0

G(k+1)i+1(a, b) ·Gm−l(k+1)i(a, b). (2)

If there is no ambiguity with the integers a and b, instead of (2), we write

C (m, l, k) =

⌈ m

l(k+1)⌉−1
∑

i=0

G(k+1)i+1 ·Gm−l(k+1)i.

The convolution Ca,b(m, l, k) summarizes several sums of products of Fibonacci numbers,
Lucas numbers, and has a geometric interpretation in terms of the vertices of the generalized
Hosoya triangle.
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We begin the study of the convolution C by discussing some examples. We first notice
that {C1,1(m, 1, 0)}m∈N is the sequence of Fibonacci numbers convolved with themselves.
(See Sloane A001629 and [10].) Indeed,

C1,1(m, 1, 0) =
m−1
∑

i=0

Fi+1 · Fm−i = F1 Fm + F2 Fm−1 + · · ·+ Fm F1.

Similarly, {C1,3(m, 1, 0)}m∈N is the sequence of Lucas numbers convolved with themselves;
see Sloane A004799. In general, {Ca,b(m, 1, 0)}m∈N is the sequence of generalized Fibonacci
numbers convolved with themselves. That is, Ca,b(m, 1, 0) is the sum of all entries in the
m-th row of the generalized Hosoya triangle. For instance, in (3) these are the entries of the
m-th row of the generalized Hosoya triangle.

G1Gm G2 Gm−1 G3 Gm−2 · · · Gm−2 G3 Gm−1 G2 Gm G1 (3)

We consider examples of Ca,b(m, 1, 0) for some values of a, b, and m. If we fix a = b = 1
and m = 6, then C1,1(6, 1, 0) is the sum of all the weights of the 6-th row of Figure 3. That
is,

C1,1(6, 1, 0) =
5
∑

i=0

Fi+1 · F6−i = 8 + 5 + 6 + 6 + 5 + 8 = 38.

If we fix a = 7, b = 2, and m = 5, then C7,2(5, 1, 0) is the sum of all the weights of the
5-th row of Figure 4 part (a). Therefore,

C7,2(5, 1, 0) =
4
∑

i=0

Gi+1(7, 2) ·G5−i(7, 2) = 140 + 22 + 81 + 22 + 140 = 405.

We now give an interpretation to the convolution Ca,b(m, 1, k) for k ≥ 1 and fixed numbers
a, b, and m. We first notice that

Ca,b(m, 1, 1) =

⌈m

2 ⌉−1
∑

i=0

G2i+1 ·Gm−2i.

That is, Ca,b(m, 1, 1) is the sum of all the weights in the m-th row of the generalized Hosoya
triangle starting at G1 Gm and “jumping” one vertex. (See (3) for the m-th row of the
generalized Hosoya triangle.) Similarly, it is easy to see that

Ca,b(m, 1, 2) =

⌈m

3 ⌉−1
∑

i=0

G3i+1 ·Gm−3i.

That is, Ca,b(m, 1, 2) is the sum of all the weights in the m-th row of the generalized
Hosoya triangle starting at G1 Gm and “jumping” two vertices. In general, the convolu-
tion Ca,b(m, 1, k) for k ≥ 1, is the sum of all the weights in the m-th row of the generalized
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Hosoya triangle starting at G1 Gm and “jumping” k vertices. For instance, C1,1(6, 1, 1) is the
sum of the weights in the 6-th row in Figure 3 starting at F1 F6 = 8 and jumping one vertex.
That is, the convolution C1,1(6, 1, 1) is the sum of 8, 6, and 5. So,

C1,1(6, 1, 1) =
2
∑

i=0

F2i+1 · F6−2i = 8 + 6 + 5 = 19.

Similarly, C5,8(6, 1, 2) is the sum of the weights in the 6-th row in Figure 4 part (b) starting
at G1 G6 = 275 and jumping two entries. Therefore,

C5,8(6, 1, 2) =
1
∑

i=0

G3i+1 ·G6−3i = 275 + 273 = 548.

Several sequences in Sloane [11] are summarized by the convolution Ca,b(m, 1, k). In
particular, the sequences

{C1,1(2n, 1, 1)}n∈N, {C1,3(2n, 1, 1)}n∈N, {C2,1(2n, 1, 1)}n∈N, and {C1,1(2n− 1, 1, 1)}n∈N

correspond to A001870, A061171, A203574, and A030267, respectively.
We now give an interpretation to the convolution Ca,b(m, l, 0) for l ≥ 1 and fixed numbers

a, b, and m. The convolution Ca,b(m, 1, 0) was already mentioned in page 7 and it is the sum
of all the weights in the m-th row of the generalized Hosoya triangle. We consider the
convolution Ca,b(m, 2, 0). It is easy to see that

Ca,b(m, 2, 0) =

⌈m

2 ⌉−1
∑

i=0

Gi+1 ·Gm−2i. (4)

We consider some particular values of m to visualize (4) in the generalized Hosoya trian-
gle. If we set m = 3, m = 7, and m = 10 in (4), then

Ca,b(3, 2, 0) =
1
∑

i=0

Gi+1 ·G3−2i = G1 G3 +G2G1, (5)

Ca,b(7, 2, 0) =
3
∑

i=0

Gi+1 ·G7−2i = G1 G7 +G2G5 +G3G3 +G4 G1, (6)

Ca,b(10, 2, 0) =
4
∑

i=0

Gi+1 ·G10−2i = G1 G10 +G2 G8 +G3 G6 +G4 G4 +G5 G2. (7)

The convolutions (5), (6), and (7) are depicted in Figure 5.
Notice that Ca,b(3, 2, 0),Ca,b(7, 2, 0), and Ca,b(10, 2, 0) are the sums of all the weights

over the main diagonals of the generalized Hosoya triangle that begin at G1 G3, G1 G7, and
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G 1 G   1

G 1G  2 G 2 G   1

G 1G  3 G 2G 2 G 3 G   1

G 1G  4 G 2G 3 G 3G 2 G 4 G   1

G 1G  5 G 2G 4 G 3G 3 G 4G 2 G 5 G   1

G 1G  6 G 2G 5 G 3G 4 G 4G 3 G 5G 2 G 6 G   1

G 1G  7 G 2G 6 G 3 G   5 G 4G 4 G 5G 3 G 6G 2 G  7 G   1

G 1G  8 G 2G  7 G 3G 6 G 4G 5 G 5G 4 G 6G 3 G  7 G   2 G 8 G   1

G  1 G   9 G 2G 8 G 3G  7 G 4G 6 G 5G 5 G 6G 4 G  7 G   3 G 8G 2 G 9 G   1

G 1G 10 G 2G 9 G 3G 8 G 4G  7 G 5G 6 G 6G 5 G  7 G   4 G 8G 3 G 9G 2 G   10 G    1

Ca,b(10,2,0)

Ca,b(7,2,0)

Ca,b(3,2,0)

Figure 5: The convolutions Ca,b(3, 2, 0),Ca,b(7, 2, 0), and Ca,b(10, 2, 0).

G1 G10, respectively. In general, the convolution Ca,b(m, 2, 0) for m ≥ 3 is the sum of all
the weights over the line of the generalized Hosoya triangle that passes through the vertices
with coordinates (m, 1) and (m− 2, 2). If m ∈ {1, 2}, then Ca,b(m, 2, 0) = G1 Gm.

Some sequences in Sloane [11] are summarized by the convolution Ca,b(m, 2, 0). In par-
ticular, the sequences {C1,1(2n, 2, 0)}n∈N and {C1,1(2n− 1, 2, 0)}n∈N correspond to A056014
and A094292, respectively. Griffiths [6] studied a particular case of Ca,b(m, 2, 0). Indeed, [6,
Thm. 3.1] provides a closed formula for C1,1(m, 2, 0). That is,

C1,1(m, 2, 0) =
1

2

(

Fm+3 − F2⌊m

2
⌋−⌊m−5

2
⌋

)

.

We prove a more general result in this article. We give a closed formula for Ca,b(m, l, k)
for all integers a, b,m, l, k with l,m > 0 and k ≥ 0 (see Theorems 5 and 6).

We now consider the convolution Ca,b(m, 3, 0) for fixed numbers a, b, and m. It is easy
to see that

Ca,b(m, 3, 0) =

⌈m

3 ⌉−1
∑

i=0

Gi+1 ·Gm−3i. (8)

We fix some particular values of m to visualize (8) in the generalized Hosoya triangle. If we
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set m = 3, m = 7, and m = 10 in (8), then

Ca,b(3, 3, 0) =
0
∑

i=0

Gi+1 ·G3−3i = G1 G3, (9)

Ca,b(7, 3, 0) =
2
∑

i=0

Gi+1 ·G7−3i = G1 G7 +G2 G4 +G3 G1, (10)

Ca,b(10, 3, 0) =
3
∑

i=0

Gi+1 ·G10−3i = G1 G10 +G2 G7 +G3 G4 +G4 G1. (11)

The convolutions (9), (10), and (11) are depicted in Figure 6.

G 1 G   1

G 1G 2 G 2G 1

G 1G 3 G 2G 2 G 3G 1

G 1G 4 G 2G 3 G 3G 2 G 4G 1

G 1G5 G 2G 4 G 3G 3 G 4G 2 G 5G 1

G 1G 6 G 2G 5 G 3G 4 G 4G 3 G 5G 2 G 6G 1

G 1G 7 G 2G 6 G 3G  5 G 4G 4 G 5 G   3 G 6G 2 G 7 G 1

G 1G  8 G 2G  7 G 3G 6 G 4G 5 G 5G 4 G 6G 3 G  7G 2 G 8G 1

G1 G 9 G 2G 8 G 3G 7 G 4G 6 G 5G 5 G 6G 4 G 7 G 3 G 8G 2 G 9G 1

G 1G        10 G 2G 9 G 3G 8 G 4G 7 G 5G 6 G 6G 5 G 7 G 4 G 8 G   3 G 9 G   2 G          10 G  1

Ca,b(10,3,0)

Ca,b(7,3,0) 

Ca,b(3,3,0)

Figure 6: The convolutions Ca,b(3, 3, 0),Ca,b(7, 3, 0), and Ca,b(10, 3, 0).

The convolutions Ca,b(7, 3, 0) and Ca,b(10, 3, 0) are the sums of all the weights over the
line of the generalized Hosoya triangle that is determined by the pair of points ((7, 1), (4, 2))
and ((10, 1), (7, 2)), respectively. In general, the convolution Ca,b(m, 3, 0) for m ≥ 4 is the
sum of all the weights over the line of the generalized Hosoya triangle that passes through
the points (m, 1) and (m− 3, 2). If m ∈ {1, 2, 3}, then Ca,b(m, 3, 0) = G1 Gm.

We recall that in this paper the generalized Hosoya triangle as a grid is viewed in per-
spective and it is rotated 135◦ clockwise (see page 4). Notice that all lines in Figure 5, when
l = 2, have slope −1/2 and all lines in Figure 5, when l = 3, have slope −1/3. Figure 7
depicts Ca,b(10, l, 0) for l ∈ {1, . . . , 4}.

We can now interpret Ca,b(m, l, 0) in terms of the generalized Hosoya triangle for every
l ≥ 1. The convolution Ca,b(m, l, 0) for m ≥ l + 1 is the sum of all the weights over the
line that passes through the points (m, 1) and (m− l, 2) in the generalized Hosoya triangle.
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G 1G 1

G 1G 2 G 2G 1

G 1G 3 G 2G 2 G 3G 1

G 1G 4 G 2G 3 G 3G 2 G 4G 1

G 1G 5 G 2G 4 G 3G 3 G 4G 2 G 5G 1

G 1G 6 G 2G 5 G 3G 4 G 4G 3 G 5G 2 G 6G 1

G 1G 7 G 2G 6 G 3G 5 G 4G 4 G 5G 3 G 6G 2 G 7G 1

G 1G 8 G 2G 7 G 3G 6 G 4G 5 G 5G 4 G 6G 3 G 7G 2 G 8G 1

G 1G 9 G 2G 8 G 3G 7 G 4G 6 G 5G 5 G 6G 4 G 7G 3 G 8G 2 G 9G 1

G 1G 10 G 2G 9 G 3G 8 G 4G 7 G 5G 6 G 6G 5 G 7G 4 G 8G 3 G 9G 2 G 10 G   1
Ca,b(10,1,0)

Ca,b(10,2,0)

Ca,b(10,3,0)

Ca,b(10,4,0)

Figure 7: The convolutions Ca,b(10, l, 0) for l ∈ {1, . . . , 4}.

If m ∈ {1, . . . , l}, then Ca,b(m, l, 0) = G1 Gm. In general, if L′ is the line passing through
the point (m, 1) with slope −1/l, then Ca,b(m, l, 0) =

∑

(x,y)∈L′∩(N×N)Gx ·Gy, (see Figure 7).

Notice that L′ ∩ (N × N) is a non-empty finite set of points (the point (m, 1) is always an
element of L′ ∩ (N× N)) and the points are pairs of natural numbers.

Since we already have a geometric interpretation of Ca,b(m, l, 0) for l ≥ 1, the geometric
interpretation of Ca,b(m, l, k) for k ≥ 1 follows easily. Indeed, Ca,b(m, l, k) =

∑

(x,y)∈L′

k

Gx ·Gy

where L′
k ⊆ L′ ∩ (N × N), (m, 1) ∈ L′

k, and L′
k is obtained from L′ ∩ (N × N) by jumping

k vertices starting at (m, 1). For instance, Ca,b(10, 2, 1) =
∑

(x,y)∈L′

1
Gx · Gy where L′

1 =

{(10, 1), (6, 3), (2, 5)} (see Figure 7). Thus,

Ca,b(10, 2, 1) = G1 G10 +G3 G6 +G5 G2.

Similarly, Ca,b(10, 1, 3) =
∑

(x,y)∈L′

3
Gx · Gy where L′

3 = {(10, 1), (6, 5), (2, 9)} (see Fig-

ure 7). Therefore,

Ca,b(10, 1, 3) = G1 G10 +G5 G6 +G9 G2.

3 A closed formula for C (m, l, k)

In this section, we give a closed formula to calculate the convolution C (m, l, k) for l > 1.
We recall that Ln represents the sequence of Lucas numbers. That is, L0 = 2, L1 = 1, and
Ln = Ln−1 + Ln−2, with n > 1. Some authors have found some useful results to determine
the sums of products of Fibonacci numbers. For example, Griffiths [6] prove that the sum
of the consecutive elements lying on the n-th main diagonal of the Hosoya triangle is a
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combination of Lucas and Fibonacci numbers (see Figure 5). In fact, his result can be
calculated by C1,1(m, 2, 0). Using ordinary generating functions, he proved that

C1,1(m, 2, 0) =

⌈m

2
⌉−1
∑

i=0

Fi+1Fm−2i =
1

2

(

Fm+3 − F2⌊m/2⌋−⌊(m−5)/2⌋

)

. (12)

Moree [10] gives another example. He proved that the sum of the consecutive elements
lying on the n-th row of the Hosoya triangle is a combination of Lucas and Fibonacci numbers.
Thus,

C1,1(m, 1, 0) =
m−1
∑

i=0

Fi+1Fm−i =
mLm+1 + 2Fm

5
. (13)

Notice that equations (12) and (13) use regular Fibonacci numbers, and their deduction
follows from algebraic manipulations of basic generating functions. In contrast, the deduc-
tion of the closed formula for Ca,b(m, l, k) requires extensive calculations using generalized
Fibonacci numbers. We use generating functions to prove that the convolution is an average
of five terms. Each of those terms is a rational function on Lucas numbers.

We remind the reader of the following notation: let α and β be the positive and negative
roots, respectively, of the quadratic equation x2 − x − 1 = 0. That is, α = (1 +

√
5)/2,

and β = (1 −
√
5)/2. Note that αβ = −1. It is well known that Fn = (αn − βn)/

√
5 and

Ln = αn + βn for all n ∈ Z. (See for example, [9, Thms. 5.6 and 5.8].)

Theorem 2 ([9]). If c = a+ (a− b)β, d = a+ (a− b)α, and n ∈ Z, then

Gn =
cαn − dβn

√
5

.

Proposition 3. If k, r, and n are non-negative integers and c = a+(a−b)β, d = a+(a−b)α,
then

(i) c2αn + d2βn = a2Ln−4 + 2abLn−3 + b2Ln−2,

(ii)
∞
∑

n=0

Gkn+r x
n =

1√
5

[

cαr

1− αk x
− dβr

1− βk x

]

,

(iii)
∞
∑

n=0

Gkn+r x
n =

Gr + (−1)k+1Gr−k x

1− Lk x+ (−1)k x2
,

(iv) If k > 0, then
∞
∑

n=0

Fk(n+1)

Fk

xn =
1

1− Lk x+ (−1)k x2
.

12



Proof. We prove part (i) by induction on n. Let S(n) be the statement

a2Ln−4 + 2abLn−3 + b2Ln−2 = c2αn + d2βn

for a non-negative integer n. It is easy to see that S(0) and S(1) are true. We suppose that
S(n − 1) and S(n) are true for a fixed integer n ≥ 2 and prove that S(n + 1) is true. It
is easy to see that using the recursive definition of Lucas numbers, S(n − 1), and S(n) we
obtain

a2Ln−3 + 2abLn−2 + b2Ln−1 = (c2αn + d2βn) + (c2αn−1 + d2βn−1)

= c2αn−1(α + 1) + d2βn−1(β + 1)

= c2αn+1 + d2βn+1.

Thus, S(n+ 1) is true.
We now prove part (ii). Using Theorem 2, we can see that

∞
∑

n=0

Gkn+r x
n =

∞
∑

n=0

cαkn+r − dβkn+r

√
5

xn =
1√
5

[

cαr

∞
∑

n=0

(αkx)n − dβr

∞
∑

n=0

(βkx)n

]

.

The proof now follows by noticing that
∑∞

n=0 y
n =

1

1− y
.

We prove part (iii). Using part (ii), we can write

∞
∑

n=0

Gkn+r x
n =

1√
5

[

cαr

1− αkx
− dβr

1− βkx

]

=
1√
5

[

cαr − dβr + (dβrαk − cαrβk) x

1− (αk + βk)x+ (αβ)k x2

]

.

Since Lk = αk + βk and αβ = −1, we obtain that

∞
∑

n=0

Gkn+r x
n =

1√
5

[

cαr − dβr + (dβrαk − cαrβk) x

1− Lkx+ (−1)k x2

]

=
1√
5

[

cαr − dβr − (αβ)k(cαr−k − dβr−k) x

1− Lkx+ (−1)k x2

]

.

The proof now follows by Theorem 2.
We now prove part (iv). Using part (iii) with a = b = 1 and r = 0 we can easily see that

∞
∑

n=0

Fkn x
n =

F0 + (−1)k+1F−k x

1− Lk x+ (−1)k x2
=

Fk x

1− Lk x+ (−1)k x2
.

Dividing on both sides of this equality by Fk x, part (iv) follows.

Lemma 4. If k ≥ 0 and l > 0 are integers, then every natural number m can be written in
the form m = l(k + 1)n+ r where n ∈ Z≥0 and 0 < r ≤ l(k + 1). Moreover,

n =

⌈

m

l(k + 1)
− 1

⌉

and r = m−
⌈

m

l(k + 1)
− 1

⌉

l(k + 1).

13



Proof. Using the division algorithm with m and l(k+1), there are n′ ∈ N and r′ ∈ Z≥0 such
that m = l(k + 1)n′ + r′ where 0 ≤ r′ < l(k + 1). If r′ > 0, then we can take n = n′ and
r = r′. Thus, it is clear that m = l(k + 1)n+ r and 0 < r < l(k + 1).

If r′ = 0, then m = l(k + 1)n′ = l(k + 1)(n′ − 1) + l(k + 1). Taking n = n′ − 1 and
r = l(k + 1) we obtain that m = l(k + 1)n+ r with 0 < r ≤ l(k + 1).

For the moreover part, we assume that m = l(k + 1)n + r where n ∈ Z≥0 and 0 < r ≤
l(k + 1). Therefore,

r = m− l(k + 1)n. (14)

Thus, 0 < m− l(k+1)n ≤ l(k+1). This shows that
m

l(k + 1)
−1 ≤ n <

m

l(k + 1)
. Therefore,

n =
⌈

m
l(k+1)

− 1
⌉

. This and (14) prove the Lemma.

We now introduce some notation and definitions needed for Theorem 5. Suppose that
m > 0, k ≥ 0, and l > 1 are integers. If

n =

⌈

m

l(k + 1)
− 1

⌉

; r = m− l(k + 1)n;

w1 = (k + 1)(n− l + 1) + (r + 1); w2 = m+ 1;
w3 = (k + 1)n+ (r + 1); w4 = m+ l(k + 1)− k;
w5 = (k + 1)(n+ 1)− (k + r); w6 = m+ l(k + 1) + k;
w7 = (k + 1)(n+ l + 1)− (r − 1); w8 = m− 1,

then we define

S1 = cd

[

(−1)k+rLw5 − Lw6 + (−1)rLw7 + (−1)l(k+1)Lw8

(−1)k+1 + (−1)l(k+1) − L(l+1)(k+1)

]

,

S2 =
a2Lw3−4 + 2abLw3−3 + b2Lw3−2

(−1)(l+1)(k+1) − L(l−1)(k+1) + 1
,

S3 =
a2Lw1−4 + 2abLw1−3 + b2Lw1−2

−1 + (−1)(l+1)(k+1)
(

L(l−1)(k+1) − 1
) ,

S4 =
a2Lw4−4 + 2abLw4−3 + b2Lw4−2

(−1)l(k+1)+k + L(l−1)(k+1) − 1
,

S5 =
a2Lw2−4 + 2abLw2−3 + b2Lw2−2

(−1)(l+1)(k+1) + (−1)l(k+1)+kL(l−1)(k+1) + 1
.

Theorem 5. If S1, S2, S3, S4, and S5 are as above, then

C (m, l, k) =
S1 + S2 + S3 + S4 + S5

5
.

14



Proof. We prove the theorem by finding the generating function of the sequence C (m, l, k)
with fixed positive integers k and l. We use Lemma 4 to simplify computations. That is, we
let m = l(k + 1)n+ r where n ∈ Z≥0 and 0 < r ≤ l(k + 1).

We consider the generating function of the sequence {C (l(k + 1)n+ r, l, k)}∞n=0 for fixed
numbers r, l, and k. Using the definition of C (m, l, k) one can see that

C (l(k + 1)n+ r, l, k) =
n
∑

i=0

G(k+1)i+1 ·Gl(k+1)(n−i)+r.

Therefore,

∞
∑

n=0

C (l(k + 1)n+ r, l, k) xn =

(

∞
∑

n=0

G(k+1)n+1 x
n

)

·
(

∞
∑

n=0

Gl(k+1)n+r x
n

)

.

This and Proposition 3 part (ii) imply that the formal power series

∞
∑

n=0

C (l(k + 1)n+ r, l, k) xn

is equal to

(15)

1

5

[

c2αr+1

(1− αk+1x) (1− αl(k+1)x)
+

d2βr+1

(1− βk+1x) (1− βl(k+1)x)

+ cd

(

βr−1

(1− αk+1x) (1− βl(k+1)x)
+

αr−1

(1− βk+1x) (1− αl(k+1)x)

)]

.

We consider the term
βr−1

(1− αk+1x)(1− βl(k+1)x)
of (15). Using partial fractions and

∑∞
n=0 x

n =

1/(1− x), one can easily see that

βr−1

(1− αk+1x) (1− βl(k+1)x)
=

βr−1

αk+1 − βl(k+1)

[

αk+1

1− αk+1x
− βl(k+1)

1− βl(k+1)x

]

=
βr−1

αk+1 − βl(k+1)

[

αk+1

∞
∑

n=0

αn(k+1)xn − βl(k+1)

∞
∑

n=0

βl(k+1)nxn

]

=
∞
∑

n=0

βr−1

(

α(k+1)(n+1) − βl(k+1)(n+1)

αk+1 − βl(k+1)

)

xn.

That is,

βr−1

(1− αk+1x) (1− βl(k+1)x)
=

∞
∑

n=0

βr−1

(

α(k+1)(n+1) − βl(k+1)(n+1)

αk+1 − βl(k+1)

)

xn. (16)
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Similarly, we get that

αr−1

(1− βk+1x) (1− αl(k+1)x)
=

∞
∑

n=0

αr−1

(

β(k+1)(n+1) − αl(k+1)(n+1)

βk+1 − αl(k+1)

)

xn. (17)

To simplify notation, we use u = k + 1, t = n + 1, v = k + r, s = t + l, and z = r − 1.
Now, from (16) and (17) we have that

βr−1

(1− αux) (1− βlux)
+

αr−1

(1− βux) (1− αlux)

is equal to

∞
∑

n=0

[

βz

(

αut − βlut

αu − βlu

)

+ αz

(

βut − αlut

βu − αlu

)]

xn

=
∞
∑

n=0

[

βz
(

αut − βlut
) (

βu − αlu
)

+ αz
(

βut − αlut
) (

αu − βlu
)

(αu − βlu) (βu − αlu)

]

xn

=
∞
∑

n=0

(βvαut + αvβut)−
(

βlut+v + αlut+v
)

− (βzαus + αzβus) +
(

βlut+zαlu + αlut+zβlu
)

(−1)u − (α(l+1)u + β(l+1)u) + (−1)lu
xn

=
∞
∑

n=0

(αβ)v (αut−v + βut−v)− Llut+v − (αβ)z (αus−z + βus−z) + (αβ)lu
(

αlun+z + βlun+z
)

(−1)u + (−1)lu − L(l+1)u

xn

=
∞
∑

n=0

(−1)vLut−v − Llut+v − (−1)zLus−z + (−1)luLlun+z

(−1)u + (−1)lu − L(l+1)u

xn

=
∞
∑

n=0

S1

cd
xn.

Thus,
∞
∑

n=0

S1

cd
xn =

βr−1

(1− αk+1x) (1− βl(k+1)x)
+

αr−1

(1− βk+1x) (1− αl(k+1)x)
. (18)

We now consider the terms

c2αr+1

(1− αk+1x)(1− αl(k+1)x)
and

d2βr+1

(1− βk+1x) (1− βl(k+1)x)

of (15). Using partial fractions and
∑∞

n=0 x
n = 1/(1− x), one can easily write

c2αr+1

(1− αk+1x) (1− αl(k+1)x)
=

∞
∑

n=0

c2
αut+r+1 − αlut+r+1

αu − αlu
xn and (19)

d2βr+1

(1− βk+1x)(1− βl(k+1)x)
=

∞
∑

n=0

d2
βut+r+1 − βlut+r+1

βu − βlu
xn. (20)
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To simplify notation, we use y = r + 1. From (19) and (20) we have that

c2αr+1

(1− αk+1x)(1− αl(k+1)x)
+

d2βr+1

(1− βk+1x)(1− βl(k+1)x)

is equal to

∞
∑

n=0

c2
(

αut+y − αlut+y
) (

βu − βlu
)

+ d2
(

βut+y − βlut+y
) (

αu − αlu
)

(αu − αlu) (βu − βlu)
xn

=
∞
∑

n=0

[

(c2αut+yβu + d2βut+yαu)−
(

c2αlut+yβu + d2βlut+yαu
)

(αβ)u + (αβ)lu − (αuβlu + αluβu)
+

−
(

c2αut+yβlu + d2βut+yαlu
)

+
(

c2αlut+yβlu + d2βlut+yαlu
)

(αβ)u + (αβ)lu − (αuβlu + αluβu)

]

xn

=
∞
∑

n=0

[

(αβ)u
(

c2αu(t−1)+y + d2βu(t−1)+y
)

− (αβ)u
(

c2αu(lt−1)+y + d2βu(lt−1)+y
)

(αβ)u + (αβ)lu − (αβ)u (β(l−1)u + α(l−1)u)
+

− (αβ)lu
(

c2αu(t−l)+y + d2βu(t−l)+y
)

+ (αβ)lu
(

c2αlu(t−1)+y + d2βlu(t−1)+y
)

(αβ)u + (αβ)lu − (αβ)u (β(l−1)u + α(l−1)u)

]

xn

=
∞
∑

n=0

[

(−1)u
(

c2αu(t−1)+y + d2βu(t−1)+y
)

− (−1)u
(

c2αu(lt−1)+y + d2βu(lt−1)+y
)

(−1)u + (−1)lu − (−1)u (β(l−1)u + α(l−1)u)
+

− (−1)lu
(

c2αu(t−l)+y + d2βu(t−l)+y
)

+ (−1)lu
(

c2αlu(t−1)+y + d2βlu(t−1)+y
)

(−1)u + (−1)lu − (−1)u (β(l−1)u + α(l−1)u)

]

xn.

This and Proposition (3) part (i) imply that

c2αr+1

(1− αk+1x)(1− αl(k+1)x)
+

d2βr+1

(1− βk+1x)(1− βl(k+1)x)
=

∞
∑

n=0

(S2 + S3 + S4 + S5) x
n. (21)

Thus, (15), (18), and (21) imply that

∞
∑

n=0

C (l(k + 1)n+ r, l, k) xn =
∞
∑

n=0

(

S1 + S2 + S3 + S4 + S5

5

)

xn.

This proves the theorem.

Notice that the conclusion of Theorem 5 does not work when l = 1. The denominators
of S2, S3, S4, and S5, are always zero when l = 1.
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4 The special case Ca,b(m, 1, k)

In the previous section we gave a closed formula for Ca,b(m, l, k) where l > 1 is an integer.
However, the formula cannot be applied when l = 1. The purpose of this section is to obtain
a simple formula for the special case Ca,b(m, 1, k).

The convolution C1,1(m, 1, k) can be use to enumerate several combinatorial objects. In
particular, this convolution counts some types of Fibonacci words and pyramid weights of
all non-decreasing Dyck paths of a given length; see [1, 2]. Section 5 gives detailed examples
on how to apply the convolution in counting problems.

To simplify notation, we use Ca,b(m, k) to mean Ca,b(m, 1, k) or we use C (m, k) instead
of Ca,b(m, 1, k), if there is no ambiguity with a and b.

Theorem 6 generalizes Moree’s result [10, Thm. 4] from the regular Hosoya triangle to
the generalized Hosoya triangle. Moreover, our generalization also considers the sum (13) in
the generalized Hosoya triangle “jumping” k vertices, for any k ≥ 0.

Theorem 6. Let k ≥ 0 and m > 0 be integers and let q =

⌈

m

k + 1

⌉

. If r = m−(q−1)(k+1),

then

C (m, k) =
q

5

(

a2Lm−3 + 2abLm−2 + b2Lm−1

)

+ cd
Fq(k+1)

5F(k+1)

Lr−1 .

Proof. We prove this theorem using the same technique as in Theorem 5. That is, we find
the generating function of the sequence C (m, k) with k fixed and use Lemma 4 to simplify
computations.

Let m = (k + 1)n + r where n ∈ Z≥0 and 0 < r ≤ k + 1. We consider the generating
function of the sequence {C ((k + 1)n+ r, k)}∞n=0 for fixed numbers r and k. Using the
definition of C (m, k), one can see that

C ((k + 1)n+ r, k) =
n
∑

i=0

G(k+1)i+1 ·G(k+1)(n−i)+r .

Therefore,

∞
∑

n=0

C ((k + 1)n+ r, k) xn =

(

∞
∑

n=0

G(k+1)n+1 x
n

)

·
(

∞
∑

n=0

G(k+1)n+r x
n

)

.

This last equality and Proposition 3 part (ii) imply that

∞
∑

n=0

C ((k + 1)n+ r, k) xn =
1√
5

[

cα

1− αk+1x
− dβ

1− βk+1x

]

1√
5

[

cαr

1− αk+1x
− dβr

1− βk+1x

]

=
1

5

[

c2αr+1

(1− αk+1x)2
+

d2βr+1

(1− βk+1x)2
− cdαβ(αr−1 + βr−1)

1− Lk+1x+ (−1)k+1x2

]

.
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Since αβ = −1 and Lr−1 = αr−1 + βr−1, we obtain

∞
∑

n=0

C ((k + 1)n+ r, k) xn =
1

5

[

c2αr+1

(1− αk+1x)2
+

d2βr+1

(1− βk+1x)2
+

cdLr−1

1− Lk+1x+ (−1)k+1x2

]

.

This last equality, the Taylor series
1

(1− ax)2
=
∑∞

n=0(n + 1)anxn, and Proposition 3 part

(iv) imply that 5
∑∞

n=0 C ((k + 1)n+ r, k) xn is equal to

c2αr+1

∞
∑

n=0

(n+ 1)α(k+1)nxn + d2βr+1

∞
∑

n=0

(n+ 1)β(k+1)nxn + cdLr−1

∞
∑

n=0

F(k+1)(n+1)

Fk+1

xn

=
∞
∑

n=0

[

(n+ 1)c2α(k+1)n+r+1 + (n+ 1)d2β(k+1)n+r+1 + cdLr−1

F(k+1)(n+1)

F(k+1)

]

xn.

Thus,

5C ((k + 1)n+ r, k) = (n+ 1)
(

c2α(k+1)n+r+1 + d2β(k+1)n+r+1
)

+ cdLr−1

F(k+1)(n+1)

F(k+1)

.

This and Proposition 3 part (i) imply that 5C ((k + 1)n+ r, k) is equal to

(n+ 1)
(

a2L(k+1)n+r−3 + 2abL(k+1)n+r−2 + b2L(k+1)n+r−1

)

+ cdLr−1

F(k+1)(n+1)

F(k+1)

.

Since m = (k + 1)n+ r, Lemma 4 implies that

C (m, k) =
q

5

(

a2Lm−3 + 2abLm−2 + b2Lm−1

)

+ cd
Fq(k+1)

5F(k+1)

Lr−1 .

This proves the theorem.

5 Enumerative applications of Ca,b(m, l, k)

The convolution Ca,b(m, l, k) summarizes several sequences in [11], see for example, Table 1.
Moreover, particular cases of our convolution can be use to enumerate many statistics in
combinatorics. For instance, C1,1(n, 0) is the number of elements in all subsets of {1, 2, . . . , n}
with no consecutive integers. If we take n = 5, then we can easily see that all the subsets of
{1, 2, 3, 4, 5} that have no consecutive elements are:

{}, {1}, {2}, {3}, {4}, {5}, {1, 3}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 5}, {1, 3, 5},

and the total number of elements in all these subsets (counting repetitions) is 20 = C(5, 0).
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The convolution C1,1(n − 1, 0) counts also binary words. Indeed, if n ≥ 2 is a natural
number, then C1,1(n− 1, 0) is the number of binary sequences of length n with exactly one
pair of consecutive 1’s. For instance, if n = 5, then all the binary sequences of length 5 with
exactly one pair of consecutive 1’s are

11010; 11001; 11000; 10110; 10011;
01101; 01100; 01011; 00110; 00011.

The number of these binary sequences is 10 = C1,1(4, 0). For more enumerative applications
of C1,1(n, 0) see Sloane A001629.

Another familiar presentation of C1,1(n, 0) is given in [9, p. 222] by

C1,1(n, 0) =
∑

2j≤n

j

(

n− j

j

)

.

Whoever is familiar with non-decreasing Dyck paths, should be interested in the following
enumerative application of C1,1(n, 1); see Proposition 7. For a reference and notation, see
[1]. Proposition 7 can be proved easily using Theorem 6 and [1, Thm. 4.2].

Proposition 7. If n ∈ N, then the sum of the weights of all pyramids in all non-decreasing
Dyck paths of length 2n is C1,1(2n− 1, 1) = (2nF2n+1 + (2− n)F2n)/5.

We now discuss some enumerative applications of C1,1(n, 1). A Fibonacci binary word
consists of a strings of zeros and ones having no two zeros sub-words [8, 11]. In the example
below, we can see that the total number of zeros in odd position for all Fibonacci binary
words of length 4 is 5 = C1,1(4, 1).

0110, 1101, 0111, 0101, 1111, 1110, 1011, 1010.

In general, the total number of zeros in odd position for all Fibonacci binary words of length
n is C1,1(n, 1); see Sloane A129720. Similarly, the total number of zeros in even position for
all Fibonacci binary words of length 4 is 5 = C1,1(4, 1):

0110, 1101, 0111, 0101, 1111, 1110, 1011, 1010.

In general, the total number of zeros in even position for all Fibonacci binary words of length
2n is C1,1(2n, 1); see Sloane A129722.

The Fibonacci cube is a graph that has Fibonacci binary words as vertices, two vertices
being adjacent whenever they differ in exactly one coordinate. Klavžar and Peterin [8] use
C1,1(n− 1, 0) to count the number of edges of the Fibonacci cube.
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Convolution Sloane Convolution Sloane
C1,1(n, 0) A001629 C1,1(2n− 1, 1) A030267
C1,1(2n, 1) A001870 C1,1(2n+ 1, 0) A054444
C1,2(n, 0) A004798 C2,1(2n− 1, 0) A203573
C2,1(n, 0) A099924 C1,3(2n− 1, 0) A060934
C1,3(n, 0) A004799 C1,1(2n, 2, 0) A056014
C1,3(2n, 1) A061171 C1,1(2n− 1, 2, 0) A094292
C2,1(2n, 1) A203574 C1,1(2n, 1) A129722
C1,1(n, 1) A129720

Table 1: Some sequences in [11] summarized by the convolution Ca,b(m, l, k).
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