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Abstract

The generalized Hosoya triangle is an arrangement of numbers where each entry
is a product of two generalized Fibonacci numbers. We define a discrete convolution
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C based on the entries of the generalized Hosoya triangle. We use C and generat-
ing functions to prove that the sum of every k-th entry in the n-th row or diagonal
of generalized Hosoya triangle, beginning on the left with the first entry, is a linear
combination of rational functions on Fibonacci numbers and Lucas numbers. A simple
formula is given for a particular case of this convolution. We also show that C sum-
marizes several sequences in the OEIS. As an application, we use our convolution to
enumerate many statistics in combinatorics.

1 Introduction

The Hosoya triangle [3, 4, 5, 7, 9] consists of a triangular array of numbers where each
entry is a product of two Fibonacci numbers (see Figure 3). If we use generalized Fibonacci
numbers instead of Fibonacci numbers, then we obtain the generalized Hosoya triangle.
Several authors have been interested in finite sums of products of Fibonacci numbers (see
for example, [6, 9, 10]). The generalized Hosoya triangle is a good visualizing tool for the
study of sums of products of generalized Fibonacci numbers, and in particular, for the study
of finite sums of products of Fibonacci numbers and Lucas numbers.

We define a discrete convolution C' as a finite sum of products of generalized Fibonacci
numbers, and prove, using generating functions, that it is a linear combination of five rational
functions on Fibonacci and Lucas numbers. The convolution depends on three variables m,
[, and k, each of them having a geometric interpretation in terms of the generalized Hosoya
triangle. Moreover, particular cases for the variables m, [, and k give known results found
by several authors [6, 9, 10]. That is, our convolution generalizes the study of finite sums
of products of Fibonacci and Lucas numbers. We also provide several examples where C'
enumerates statistics on Fibonacci words and non-decreasing Dyck paths. In addition, our
convolution summarizes 15 distinct numeric sequences from The On-Line Encyclopedia of
Integer Sequences.

The known results that are generalized by our convolution are as follows: in 2011 Griffiths
(6, Thm. 3.1], using generating functions, gave a closed formula for the sum of all elements
in the n-th diagonal of the Hosoya triangle. His result can be deduced from our first main
result, Theorem 5, by taking m = n, [ = 2, and k = 0. Similarly, Moree [10, Thm. 4] proves
that

FnFl + Fn_lFQ + -+ FQFn_l + Fan == (TLLn_H + 2Fn>/5

This identity is a particular case of our second main result, Theorem 6, by taking m = n,
=1, and k= 0.

Theorem 6 also relates the convolution C' to several counting results. In particular, C' can
be used to count the number of elements in all subsets of {1,2,...,n} with no consecutive
integers, the number of binary sequences of length n with exactly one pair of consecutive
1’s, the total number of zeros in odd/even position for all Fibonacci binary words of length
n and the total pyramid weight for all non-decreasing Dyck paths of length n, (see Section
5).



In addition to these enumerative applications, the convolution C' “compactifies” a wide
variety of numeric sequences into a single definition. The advantage of this “compactifica-
tion” is that it provides a single closed formula (see Theorems 5 and 6) that might help in
the study of several sequences. The authors suspect (based on numerical computations) that
C' summarizes more than the 15 sequences depicted in Table 1.

2 Preliminaries and examples

In this section we introduce notation and give some examples. We also give some definitions
that will be used throughout the paper, some of which are well known, but we prefer to
restate them here to avoid ambiguities.

2.1 The generalized Hosoya triangle

We let {G,,(a,b)}nen denote the generalized Fibonacci sequence with integers a and b. That
is,

G1(a,b) = a,Gs(a,b) = b, and G,(a,b) = Gp_1(a,b) + G,_2(a,b) for all n € N\ {1,2}. (1)

If there is no ambiguity with a and b, then we let G, denote the n-th term of the
generalized Fibonacci sequence, instead of G, (a,b). It is easy to see that G, (1,1) = F,.
The first eight terms of the generalized Fibonacci sequence with integers a and b are

a,b,a+b,a+ 2b,2a + 3b,3a + 5b, 5a + 8b, and 8a + 13b.

Notice that every element in this sequence is a linear combination of the integers a and
b with Fibonacci coefficients. In general, we have that G,, = a F,,_o + b F,_; for all n € N.
(See for example, [9, Thm. 7.1, p. 109].)

The generalized Hosoya sequence {H, (7, k)}, <,~, is defined by the double recursion

Ha,b(/r, k) = Ha,b<T — 1, k') + Ha,b(r — 2, k)

and
Ha,b(r, ]{Z) = Ha,b(r —1,k— 1) -+ Hayb(r -2,k — 2)

where r > 2 and 1 < k < r with initial conditions
Ho,p(1,1) = a* H,p(2,1) = ab; Hap(2,2) = ab;  Hap(3,2) = b*.

It is easy to see that if we let a = b = 1 in the generalized Hosoya sequence, then we obtain
the regular Hosoya sequence {H (7, k)},~,~, as Koshy defined it [9, p. 187-188]. It is known
that o

H(?”, k) = Fk Fr,kJrl

for all natural numbers r, k such that k& < r; see [9, Ch. 15]. This and Proposition 1 show
that the definition of {Hq (7, k)}, 5, 1s the right generalization for {H(r, k)}, 545
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Proposition 1 ([4]). If r and k are natural numbers such that k < r, then
Heop(r, k) = G Gropta,
for all integers a,b € 7Z.

The generalized Hosoya sequence gives rise to the generalized Hosoya triangle that is
defined as a vertex-weighted grid graph in the first quadrant of R? as follows: consider the
grid formed by all points in the first quadrant of the xy-plane with natural numbers as
coordinates. Every point/vertex (z,y) € N x N has weight H,;(x +y — 1,y). Figure 1
depicts a finite portion of the generalized Hosoya triangle where the view of perspective is
rotated 135° clockwise.

(0,0)

Hap(1, 1)

Hap(2,1) Ha5(2,2)

Ha (3, 1) Hg 5(3,2) Hg,5(3,3)

Hq (4, 1) Hq p(4,2) Hg,p(4,3) Hgp(4:4)

Ha (5, 1) Ha,5(5,2) Ha,5(5,3) Ha (5,4 Ha5(5,5)

Ha’b£6, 1) Ha,b£6,2) Ha,b£6,3) Ha,b£6,4) Ha’b£6,5) Ha,b£6, 6)

Figure 1: Generalized Hosoya triangle for weights H, (7, k) with 1 <k <r <6.

We define the r-th row of the generalized Hosoya triangle as the collection of all the
weights
{Hop(r, 1), Hop(r,2), ..., Hop(r,r — 1), Hop(r,7) }

with their corresponding vertices.

Proposition 1 shows that every weight of the generalized Hosoya triangle is the product
of two generalized Fibonacci numbers. In particular, if we use Proposition 1 for all entries
of Figure 1, we obtain Figure 2.

Thorough the rest of the paper we ignore the axes in any generalized Hosoya triangle
figure.



(0,0)

Figure 2: The first six rows of the generalized Hosoya triangle.

We now give some examples of generalized Hosoya triangles. We can construct different
triangles by fixing values for the integers a and b. Fixing a = b = 1 in (1) we obtain the
Fibonacci sequence

Gi=1, Gy=1, G3=2, G4=3, G5=5, Gg=8§,...

Substituting these values in Figure 2, we obtain the regular Hosoya triangle. (See [3, 4, 5,7, 9]
and Figure 3.)
Fixing a = 7 and b = 2 in (1) we obtain the sequence

G1:7, 02:2, G3:9, G4:11, G5:20, G6:31,

Substituting these values in Figure 2, we obtain a Hosoya triangle with a = 7 and b = 2.
(See Figure 4 part (a).) Similarly, fixing a =5 and b = 8 in (1) we obtain another numerical
sequence

Gy =5, G2=8, G3=13, Gy=21, G5=34, Gg=>55,...
The Hosoya triangle generated by this new sequence is depicted in Figure 4 part (b).

2.2 Discrete convolution on the generalized Hosoya triangle

We let [x] denote the ceiling or least integer function of the real number . We now define
an operator C that will be called convolution, that acts on the weights of the generalized
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2 1 2
. ° .
3 2 2
. o . .
5 3 4 3 5
° o o . .
8 5 6 5 8
L4 . ° . . .

Figure 3: The first six rows of the regular Hosoya triangle.

49 25
14 | 14 40 ) 40
63 | 4 | 63 65 ) 4 ) 65
77 ) 18 | 18 ) 77 105 ) 104 ) 104 ) 105
140 ) 2 | 81 | 2 ) 140 170 . 168 ) 169 ) 168 ) 170
217 . 40 ) 9 | 9 | 40 | 217 275 . 272 . 273 ' 273 ) 272 ) 275
(a) Hosoya Triangle with @ =7 and b =2. (b) Hosoya triangle with a =5 and b=8.

Figure 4: Two generalized Hosoya triangles.

Hosoya triangle as follows: if [,m > 0 and k& > 0 are integers, then

[ |-
Oa,b(ma l: k) = Z G(k—l—l)i—H (CL, b) ’ Gm—l(k—l—l)i(aa b) (2>

=0

If there is no ambiguity with the integers a and b, instead of (2), we write

[ 11
C(m,l k)= Z Gr+1)i+1 * Gmi(k+1)i-
1=0

The convolution C,(m, [, k) summarizes several sums of products of Fibonacci numbers,
Lucas numbers, and has a geometric interpretation in terms of the vertices of the generalized
Hosoya triangle.



We begin the study of the convolution C' by discussing some examples. We first notice
that {C)1(m,1,0)}en is the sequence of Fibonacci numbers convolved with themselves.
(See Sloane A001629 and [10].) Indeed,

Ci1(m,1,0) = ZFZ“ = F,+ B, 4+ By B

Similarly, {C}3(m,1,0)}men is the sequence of Lucas numbers convolved with themselves;
see Sloane A004799. In general, {C,4(m,1,0)}men is the sequence of generalized Fibonacci
numbers convolved with themselves. That is, C,(m,1,0) is the sum of all entries in the
m-th row of the generalized Hosoya triangle. For instance, in (3) these are the entries of the
m-th row of the generalized Hosoya triangle.

Gi1Gn GG G3Grpa -+ GGy Gpo1 Gy GGy (3)

We consider examples of C(m, 1,0) for some values of a,b, and m. If we fix a =b=1
and m = 6, then C;1(6,1,0) is the sum of all the weights of the 6-th row of Figure 3. That
is,

5
C11(6,1,0) =Y Fip1-Foi =8+5+6+6+5+8 =38
i=0

If we fix a = 7,b =2, and m = 5, then C74(5,1,0) is the sum of all the weights of the
5-th row of Figure 4 part (a). Therefore,

4
Cr2(5,1,0) = > Gis1(7,2) - G5_i(7,2) = 140 + 22 + 81 + 22 + 140 = 405.
=0

We now give an interpretation to the convolution Cy ,(m, 1, k) for & > 1 and fixed numbers
a,b, and m. We first notice that

Ca,b(ma L, 1) = Z Goit1 - Gm—2i-

That is, C,p(m, 1,1) is the sum of all the weights in the m-th row of the generalized Hosoya
triangle starting at Gy G, and “jumping” one vertex. (See (3) for the m-th row of the
generalized Hosoya triangle.) Similarly, it is easy to see that

[5]-1
Oab m,1,2 Z G32+1 m—3i-

That is, C,p(m,1,2) is the sum of all the weights in the m-th row of the generalized
Hosoya triangle starting at G; G,, and “jumping” two vertices. In general, the convolu-
tion C,4(m,1,k) for k > 1, is the sum of all the weights in the m-th row of the generalized

7


http://oeis.org/A001629
http://oeis.org/A004799

Hosoya triangle starting at G1 G,,, and “jumping” k vertices. For instance, C1(6,1,1) is the
sum of the weights in the 6-th row in Figure 3 starting at F| Fy = 8 and jumping one vertex.
That is, the convolution Cy;(6,1,1) is the sum of 8, 6, and 5. So,

2
Cia(6,1,1) = Foipr - Fogi =8+ 6+5=19.
=0

Similarly, Cs5g(6,1,2) is the sum of the weights in the 6-th row in Figure 4 part (b) starting
at G'1 Gg = 275 and jumping two entries. Therefore,

1
C55(6,1,2) =) Gy - Gogi = 275 + 273 = 548,

=0

Several sequences in Sloane [11] are summarized by the convolution C,;(m,1,k). In
particular, the sequences

{Cl,l (2n7 17 1>}n€N7 {0173(271, 17 1)}7LEN7 {02’1(2717 17 1)}n€N7 and {01’1(27?/ - 17 17 1)}n€N

correspond to A001870, A061171, A203574, and A030267, respectively.

We now give an interpretation to the convolution C,;(m,(,0) for [ > 1 and fixed numbers
a,b, and m. The convolution C,;(m,1,0) was already mentioned in page 7 and it is the sum
of all the weights in the m-th row of the generalized Hosoya triangle. We consider the
convolution C,,(m,2,0). It is easy to see that

(%]
Cap(m,2,0) Z Git1 - Gm—2i. (4)

We consider some particular values of m to visualize (4) in the generalized Hosoya trian-
gle. If we set m =3, m =7, and m = 10 in (4), then

1
0) = Z Giy1 - Gagi = G1G3+ Gy G, (5)
Cap(7,2,0) = ZGM G721 = G1Gr+ Gy G5 + G3 Gs + G4 G, (6)

Cp(10,2,0) = ZGM Gio-2i = G1G1o + Go G + G3Gg + G4 Gy + G5 G (T7)

The convolutions (5), (6), and (7) are depicted in Figure 5.
Notice that C,4(3,2,0), Cop(7,2,0), and C,;(10,2,0) are the sums of all the weights
over the main diagonals of the generalized Hosoya triangle that begin at G G5, Gy G7, and
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Gl. G, G.x(32,0)
G1. G

GG Gz.Gz G3. G

G.x(7,20)

GG: GG GG Gy

Gl.Gs GZ.GA (€16 Gs. G G.5(1020)

GGs GG feXe

G G

GG ) Gy Gs GiGs GG G1G:

GGs GGy GiGs GsGi GGs G1G: GG

G,Go GGr GG GiGs GyGi G;Gs GG Gy G

GG G,Go GyGs GGr  GGs GyGs G1Gs GG GG, GuG

Figure 5: The convolutions C,;(3,2,0), Cop(7,2,0), and C,4(10,2,0).

G1 Gy, respectively. In general, the convolution C,,(m,2,0) for m > 3 is the sum of all
the weights over the line of the generalized Hosoya triangle that passes through the vertices
with coordinates (m, 1) and (m —2,2). If m € {1,2}, then C,,(m,2,0) = G; Gy,.

Some sequences in Sloane [11] are summarized by the convolution C,;(m,2,0). In par-
ticular, the sequences {C 1(2n,2,0)}neny and {C11(2n — 1,2,0) },en correspond to A056014
and A094292, respectively. Griffiths [6] studied a particular case of C,(m,2,0). Indeed, [6,
Thm. 3.1] provides a closed formula for Cj1(m,2,0). That is,

1
Cia(m.2,0) = 5 (Fuuss = Fopg) s )

We prove a more general result in this article. We give a closed formula for C,,(m, [, k)
for all integers a,b,m, [, k with {,m > 0 and k& > 0 (see Theorems 5 and 6).
We now consider the convolution C,;(m,3,0) for fixed numbers a,b, and m. It is easy
to see that
[5]-1

Cap(m,3,0) Z Gis1 - G (8)

We fix some particular values of m to visualize (8) in the generalized Hosoya triangle. If we
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set m =3, m =7, and m = 10 in (8), then

Cap(3,3,0) ZGH—l Gs_3 = G1 G, (9)
Cas(7.3,0) ZGM Grogi = G1Gr + G2 Gy + G G, (10)
Cap(10,3,0) ZGH—l Gio-3i = G1 G0+ GG+ G3Gs + Ga G (11)

The convolutions (9), (10), and (11) are depicted in Figure 6.

G6330)

Gu(730)

G.x(103,0)

12

G5‘G1
G4G3 GsGo GeG

Gs GG GG GG GG

G%Ge GzﬁGs G5.G4 G6.G3 Gle G§G1
Gl.Gg 2 3 GziGe Gs.Gs G§G4 G7. Gs Gs.Gz G%G 1

GG GyGs GyGs GiG; GsGs GyGs G,Gs Gy Gs GeG: GG

Figure 6: The convolutions C,4(3,3,0), C,5(7,3,0), and C,,(10,3,0).

The convolutions C,4(7,3,0) and C,;(10,3,0) are the sums of all the weights over the
line of the generalized Hosoya triangle that is determined by the pair of points ((7,1), (4, 2))
and ((10,1),(7,2)), respectively. In general, the convolution C,4(m,3,0) for m > 4 is the
sum of all the weights over the line of the generalized Hosoya triangle that passes through
the points (m, 1) and (m — 3,2). If m € {1,2,3}, then C,,(m,3,0) = G| G,,.

We recall that in this paper the generalized Hosoya triangle as a grid is viewed in per-
spective and it is rotated 135° clockwise (see page 4). Notice that all lines in Figure 5, when
[ = 2, have slope —1/2 and all lines in Figure 5, when | = 3, have slope —1/3. Figure 7
depicts C,4(10,1,0) for [ € {1,...,4}.

We can now interpret C,p(m,[,0) in terms of the generalized Hosoya triangle for every
[ > 1. The convolution Cg4(m,1,0) for m > [+ 1 is the sum of all the weights over the
line that passes through the points (m, 1) and (m — [,2) in the generalized Hosoya triangle.
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GG G.H1040)
G.A1030)

G(1020)

GuGs
GzﬁG{, Gs.Gs G(:G4 G7.Gz G§G2 Go.Gl

GG GGy GsGs GsGs GGy GGs GoGa Gio Gi

>  Gu(1010)

Figure 7: The convolutions C,;(10,1,0) for [ € {1,...,4}.

If m e {1,...,1}, then C,p(m,[,0) = G; G,,. In general, if L' is the line passing through
the point (m, 1) with slope —1/1, then Cqp(m,1,0) = >2, e pinmxn Gz Gy, (see Figure 7).
Notice that L' N (N x N) is a non-empty finite set of points (the point (m, 1) is always an
element of L' N (N x N)) and the points are pairs of natural numbers.

Since we already have a geometric interpretation of C,,(m,1,0) for [ > 1, the geometric
interpretation of C,;(m, (1, k) for k > 1 follows easily. Indeed, C,,(m, [, k) = Z(x’y)e% G. Gy
where L), € L' N (N x N), (m,1) € L}, and Lj is obtained from L' N (N x N) by jumping
k vertices starting at (m,1). For instance, C,;(10,2,1) = Z(z,y)EL’l G, - Gy where L] =
{(10,1),(6,3),(2,5)} (see Figure 7). Thus,

Cap(10,2,1) = G1 Gy + G3 G + G5 Go.

Similarly, C,;(10,1,3) = Z(z,y)eLg G, - Gy where L = {(10,1),(6,5),(2,9)} (see Fig-
ure 7). Therefore,

Cap(10,1,3) = G1 G1o + G5 G + Go Go.

3 A closed formula for C(m,I, k)

In this section, we give a closed formula to calculate the convolution C(m,l, k) for I > 1.
We recall that L, represents the sequence of Lucas numbers. That is, Ly = 2, L; = 1, and
L,=L,_1+ L,_5, withn > 1. Some authors have found some useful results to determine
the sums of products of Fibonacci numbers. For example, Griffiths [6] prove that the sum
of the consecutive elements lying on the n-th main diagonal of the Hosoya triangle is a
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combination of Lucas and Fibonacci numbers (see Figure 5). In fact, his result can be
calculated by Cy1(m,2,0). Using ordinary generating functions, he proved that

01,1(77%2;0) = Fi1 b0 =
i=0

(Fints = Fapmy2)—(m-5)/2)) - (12)

N | —

Moree [10] gives another example. He proved that the sum of the consecutive elements

lying on the n-th row of the Hosoya triangle is a combination of Lucas and Fibonacci numbers.
Thus,

Ly, 2F,,
Cia(m,1,0) = ZEHlezm o (13)

Notice that equations (12) and (13) use regular Fibonacci numbers, and their deduction
follows from algebraic manipulations of basic generating functions. In contrast, the deduc-
tion of the closed formula for C,(m,[, k) requires extensive calculations using generalized
Fibonacci numbers. We use generating functions to prove that the convolution is an average
of five terms. Each of those terms is a rational function on Lucas numbers.

We remind the reader of the following notation: let a and [ be the positive and negative
roots, respectively, of the quadratic equation 2 —z — 1 = 0. That is, a = (1 + \/5)/2,
and B = (1 —/5)/2. Note that a8 = —1. It is well known that F, = (a" — 8")/v/5 and
L, =a"+ p" for all n € Z. (See for example, [9, Thms. 5.6 and 5.8].)

Theorem 2 ([9)). Ifc=a+ (a—0)3, d=a+ (a —b)a, and n € Z, then

ca — dp"
7

Proposition 3. Ifk, r, and n are non-negative integers and ¢ = a+(a—b)3, d = a+(a—b)a,
then

G, =

(i) ;o™ + d*B" = a*L,,_4 + 2ab L, 3+ b*L,, o,

R L[ car dp"
(“’) TLZ:OG]CTZJF’I‘LE _ﬁ{l—akm_l—ﬁkl'

Gr + (—1)k+1Gr,kl’
1— Lkl'—l— (—1)k$2’

o0
(iii) > Grppr 2" =
n=0

1
1—Lyx+ (—1)kaz2

() If k>0, thenz Botl) gn —
n=0

12



Proof. We prove part (i) by induction on n. Let S(n) be the statement
a’Ly_y +2ab Ly, 3+ b°L, o = c*a" + d*B"

for a non-negative integer n. It is easy to see that S(0) and S(1) are true. We suppose that
S(n — 1) and S(n) are true for a fixed integer n > 2 and prove that S(n + 1) is true. It
is easy to see that using the recursive definition of Lucas numbers, S(n — 1), and S(n) we
obtain

a®Ly_3+2abLy_o + 02 L,y = (o™ +d*B") + (o™ + a5
_ CQOzn_l(O./—'—l)—f-dQﬂn_l(ﬁ—’—l)
C2an+1 + d2ﬁn+1.
Thus, S(n+ 1) is true.
We now prove part (ii). Using Theorem 2, we can see that

d i kn+r __ kn+r 00 0
nz:; Grnir 2" = Z «“ \/gdﬁ " = % [co/" Z(akx)" —dp" Z(ﬁkx)”] :

n=0 n=0 n=0

1
The proof now follows by noticing that > 7 y" = T
-y
We prove part (iii). Using part (ii), we can write

- a a1 ca” dg” 1 [ea" —dB" + (dB"ak — ca”B*) x
;%k“”j‘VEL—a%‘l—ﬁ%]‘Vﬁ{1—«w+mn+@wwﬂ |

Since L = o + ¥ and a3 = —1, we obtain that

> " 1 [ca™ —dB" + (dB"a* — ca” %) x
Z Gkn—l—r r = —
ot V5 1 — Lyx + (—1)ka?
L [e0” —d — (ap)(car — dgH)
V5 1— Lyx+ (—1)k 22 '
The proof now follows by Theorem 2.
We now prove part (iv). Using part (iii) with @ = b =1 and r = 0 we can easily see that

S l—Lyx+ (=1)Fa2 1 —Lyx+ (=1)ka2’

= Fo+ (=11 F F
S Bt = 20 + (-1 BT KT
n=0

Dividing on both sides of this equality by Fj z, part (iv) follows. O

Lemma 4. If k > 0 and | > 0 are integers, then every natural number m can be written in
the form m = l(k + 1)n +r where n € Z>o and 0 < r < [(k+1). Moreover,

n = L(k”il) —11 and v =m— L(k”il) —11 I(k +1).
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Proof. Using the division algorithm with m and [(k + 1), there are n’ € N and ' € Z>( such
that m = [(k + 1)n’ + v’ where 0 < ¢’ < [(k+1). If 7/ > 0, then we can take n = n’ and
r =1'. Thus, it is clear that m = l(k+ 1)n+r and 0 <r < [(k + 1).

If ¥ =0, then m = l(k+ 1)n" = l(k+1)(n" = 1)+ l(k+1). Taking n =n’ — 1 and
r = [l(k+ 1) we obtain that m = I(k + 1)n+r with 0 <r <I(k + 1).

For the moreover part, we assume that m = I(k + 1)n + r where n € Zsg and 0 < r <
[(k +1). Therefore,

r=m—Ik+1)n. (14)
Thus, 0 < m—1I(k+1)n <I(k+1). This shows that ﬁ —1<n< l(knj— 0 Therefore,
n= {ﬁ - 1-‘. This and (14) prove the Lemma. O

We now introduce some notation and definitions needed for Theorem 5. Suppose that
m >0, k>0, and [ > 1 are integers. If

n= L(lf‘k) 1—‘, r=m—Il(k+1)n;
wy=(k+1)(n—1+1)+ (r+1); wy =m + 1;

wy = (k+1)n+(r+1); wy=m+Uk+1)—k;
ws=(k+1)(n+1)—(k+r); we=m+U(k+1)+k;
wr=(k+1)(n+1+1)—(r—1) wg =m — 1,

then we define

S =cd [<—1>‘”’+’"Lw5 = Lug + (=1) Ly + (=)™ Ly
(=11 4 (= 1)UR+D — Lty ern) '
S, — (1,2Lw3_4 + 2awa3_3 + b2Lw3_2
2 — (_1)(l+1)(k+1) _ L(lfl)(kJrl) + 17
IS . (IZLwl_4 + QGwal 3+ szw1—2
3

= n (_1)(l+1)(k+1) (L(l—l)(kﬂ) _ 1)7

B G2Lw4_4 + 2awa4_3 + bZLw4_2

S
4 (_1)l(k’+1)+k + L(l*l)(kqtl) 1 )

G2Lw2_4 + 2awa2_3 + bZLw2_2
(_1>(l+1)(k+1) + (_1)l(k+1)+kL(l_1)(k+1) 1 .

Theorem 5. If S, 55, 53,54, and S5 are as above, then

55:

S1+4 Sy + 53+ Sy + S5

C(m,l k) = -
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Proof. We prove the theorem by finding the generating function of the sequence C'(m,I, k)
with fixed positive integers k and [. We use Lemma 4 to simplify computations. That is, we
let m =1(k+ 1)n+r where n € Z>o and 0 < r < I(k+1).

We consider the generating function of the sequence {C' (I(k + 1)n +r, 1, k)} <, for fixed
numbers r, [, and k. Using the definition of C'(m, [, k) one can see that

CUk+n+rl k)= Z Grryitt - Gikr1)(n—iy+r

i=0
Therefore,
Z Ck+1)n+rl k)" = (ZG k+1)n+1 T ) : (Z Gkt 1yntr 96”) .
n=0 n=0 n=0

This and Proposition 3 part (ii) imply that the formal power series

iC(l(kle)n—i-r,l,k)x

n=0

is equal to

1 C2ar+1 d25T+1
5 {(1 — b1z (1 — alF+Dyg) - (1 — Br+ig) (1 — pilk+Dy) (15)

N od < Br 1 N a’ 1 ):|
(1 _ ak—i—lm) (1 _ 5l(k+1)x) (1 _ ﬂk"‘lx) (1 _ al(k—&-l)x) ’

ﬁr—l
(1 _ Ozk+1$)(1 _ Bl(k+1)$)
1/(1 — x), one can easily see that

Br—l Br—l |: okt ﬁl(k—%l) :|

(1 — ak+1g) (1 — B+ g) — b+l — gI+T) |1 — ohtly 1 — Bilk+Dg

gt hr1 n(k+1),.n _ al(k+1) - I(k+1)n,.n
= ok — gty | @ P =" —f > 8 v
n=0 n=0

X Q) gy
- Zﬁ ( aF T — gilktD) ) L

n=0

We consider the term of (15). Using partial fractions and ) 2™ =

That is,

gr1 | {aWEDeED gt
(1 — ki) (1 — pitktg) — Zﬁ Qb+l — pik+1) L (16)

n=0

15



Similarly, we get that

r—1

(k1) (n41) _ - U(k+1)(n+1)
P a ) ", (17)

o - r—1
— Bhtl — (k1 :Za ( k1 _ o d(k+1
(1—pMlz) (1 — oltthz) £ [+l — qlk+1)
To simplify notation, we use u = k+ 1, t=n+1,v=k+r,s=t+1[, and z =r — 1.
Now, from (16) and (17) we have that

ﬁr—l ar—l
(0 — ) (L= f2) | (1= Bua) (1 — alva)

is equal to

> ut _ Qlut ut . lut

> | (=) (=)l
n=0

2

[Bz (aut . ﬁlut) (5u o alu) +a? (ﬁut o alut) (au o ﬂlu) o

(au _ Blu) (ﬁu _ alu)

B 00 (Bvaut + Odvﬁut) o (ﬁlut—i—v + alut+v) _ (5zaus + azﬁus) + (ﬁlut—i—zalu 4 alut—l—zﬁlu) .

- Z (—1)* — (a+Du + gU+Du) 4 (—1) €

i (aﬁ)v (aut—v + But—v) o Llut+v - (aﬁ)z (aus—z + Bus—z) + (Oéﬁ)lu (alun—i-z + Blun-i—z) xn
(1) + (=1)" = Liy1yu

_ f: (_1)ULut7'v - Llut+’v - <_1)zLusfz + (_1)luLlun+z "
(=D + (=)™ = Lagayu

n=0
NS
B cd
n=0
Thus,
& S r—1 r—1
Z_lxn: klﬁ ) T kla 1+1) ) (18)
“— cd (1 —aktlz) (1 — gik+tlg) (1 — Bhtlz) (1 — ollty)
We now consider the terms
62ar+1 d2ﬁr+1
and
(1= ia)(1 — altg) (1= 1) (1 — 0 z)
of (15). Using partial fractions and )~ 2™ = 1/(1 — ), one can easily write
02ar+1 0 2aut+7’+1 o alut-‘,—r—l—l .
(1 — aF+1ig) (1 — dltDy) = Z c p—— 2" and (19)
n=0
d2pr+1 > ut+r+1 _ plut+r+1
b = Y 25 b " (20)

(1= F1a)(1 - p+7) B =

n=0
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To simplify notation, we use y = r + 1. From (19) and (20) we have that
02ar+1

d2 r+1
. 8
(1 _ Ozk"'lx)(l _ al(k'f‘l);(;)

(1 _ 6k+1$)(1 _ ﬁl(k—i—l)x)

is equal to

© 2 (aut+y _ alut+y) (ﬁu _ 5lu) + 2 (5ut+y _ 61ut+y> (a“ _ alu) .
2 (av = al) (5" — ™) '
< [(2aut+vge 4 g2 gut+vgn) — ( ottty ge g g2 glutty au)
0 [ (@B)" + (af)™ = (afl + alupe)
. ( 2oty 5lu + 2 But+y alu) + ( 2olut+y Blu + 2 5lut+yalu) ] o

3

n=

(aﬁ)“ (aﬁ)l“ _ (auﬂlu +&luﬁu)
w(t—1)+y 2 Qu(t—1)+y w(lt—1)+y 2 Ru(lt—1)+y
[(o«/i)( P lu*) (a )( g
(@B)" + (aB)™ = (ap)” (BU=Du + ali=Dv)
. (aﬁ)l“ (Czau(t—1)+y + d26u(t—l +y) (aﬁ)lu (

WK

n

I
o

lut=1)+y +d2ﬁlu(t—1)+y)] .
(@B)" + (@B)" — (aB)" (B + al-Dw) ’

o0 2ott=1)+y 4 d?ﬁu(t—l) v) — (—1 att=1)+y 4 d?ﬂu(lt—l)—i—y

Z 1) _ 1) ) : )1(1 (I-1)u ) +

=0 (=D)" + (=1 = (=1)" (Bt + ali=u)

o (_1)lu (02au(t Dty 4 d2ﬁu t—l)+y) + (_1)lu ( Qlut=1+y 4 d2ﬁlu(t71)+y)
x".
(=1)" + (=)™ = (=1)" (80D + ali-Du)
This and Proposition (3) part (i) imply that

CQar—i-l d?ﬁr—i—l

(1 — abtlz)(1 — allk+Dy) + (1 — BFHig) (1 — Bilkily) = Z (S2 4+ S3+ 84+ 55) 2. (21)

n=0

Thus, (15), (18), and (21) imply that

5

ZC (k+Dn+rl k)" —Z(Sl+S2+S3+S4+SS) "
n=0 n=0

This proves the theorem.

]

Notice that the conclusion of Theorem 5 does not work when [ = 1. The denominators
of S5, 53,54, and S5, are always zero when [ = 1
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4 The special case C,;(m, 1, k)

In the previous section we gave a closed formula for C,;(m, [, k) where [ > 1 is an integer.
However, the formula cannot be applied when [ = 1. The purpose of this section is to obtain
a simple formula for the special case C,,(m, 1, k).

The convolution Cj(m, 1, k) can be use to enumerate several combinatorial objects. In
particular, this convolution counts some types of Fibonacci words and pyramid weights of
all non-decreasing Dyck paths of a given length; see [1, 2]. Section 5 gives detailed examples
on how to apply the convolution in counting problems.

To simplify notation, we use Cyp(m, k) to mean C,,(m, 1, k) or we use C(m, k) instead
of Cyp(m, 1, k), if there is no ambiguity with a and b.

Theorem 6 generalizes Moree’s result [10, Thm. 4] from the regular Hosoya triangle to
the generalized Hosoya triangle. Moreover, our generalization also considers the sum (13) in
the generalized Hosoya triangle “jumping” k vertices, for any k > 0.

Theorem 6. Let k > 0 and m > 0 be integers and let ¢ = [k’i‘*‘l—‘ Afr=m—(qg—1)(k+1),
then

C’(m,k):%( 2Ly 5+ 2ab Ly o+ 0Ly 1) + ¢ d5;$(k+1))Lr_1.
k+1

Proof. We prove this theorem using the same technique as in Theorem 5. That is, we find
the generating function of the sequence C(m, k) with k fixed and use Lemma 4 to simplify
computations.

Let m = (k+ 1)n+r where n € Zso and 0 < r < k + 1. We consider the generating
function of the sequence {C ((k+ 1)n+r k)} , for fixed numbers r and k. Using the
definition of C'(m, k), one can see that

C((k+1Dn+rk) Z Ger1)it1 * Glet1) (n—i)+r

Therefore,

Z C((k+n+rk) (Z Gt 1yni1 @ ) : (Z G lrtiynsr xn) .
n=0

n=

This last equality and Proposition 3 part (ii) imply that

- n c dﬁ 1 ca’ dﬁT

; C(k+1n+nrk)x :E [ iy 1= 6k+lx:| NG L okt 11— ﬁk-ﬁ-lx]
B O N T U A
B R E I e R Iy A G D
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Since a8 = —1 and L,_; = o" ! + 87!, we obtain

i Cl(k+1)n+rk)a" =

n=0

1 C2ar+1 N d2ﬂr+1 CdL,«_l
5 (1 —aktiz)2 (1 —pk1z)2 1 — Lo+ (—1)k1g2

This last equality, the Taylor series = > o(n+1)a"z™, and Proposition 3 part

—az)?
(iv) imply that 5% >, C((k+ 1)n +r, k) 2™ is equal to

oo oo >~ .
2ot Z(n+ 1)a(k+1)nxn + dQﬁT_H Z(n+ 1)6(k+1)nxn +edL, Z (k;;l)( +1) "
k+1

n=0 n=0 n=0

o F i
:Z [(n 1) Bl ()@ gU L g (l;l)( +1)] o
n=0 (k+1)

Thus,

Fletnms)

5C ((k+ )n+rk) = (n+ 1) (FaFthnirtt g g2gktntrtly 4 eqr,
Flrq)
This and Proposition 3 part (i) imply that 5C ((k + 1)n + r, k) is equal to

Flres1)(nr1)

(n + 1) (a2L(k+l)n+7‘—3 + 2ab L(k+l)n+7‘—2 =+ b2L(k+1)n+r—1) +cdL, 1 F(k )
+1

Since m = (k + 1)n + r, Lemma 4 implies that

F,
C(m, k) = % (0% L3+ 2ab L5 + b*Ln 1) + cdﬁg_l .

This proves the theorem. O

5 Enumerative applications of C,;(m,[, k)

The convolution C,;(m, [, k) summarizes several sequences in [11], see for example, Table 1.
Moreover, particular cases of our convolution can be use to enumerate many statistics in
combinatorics. For instance, C1(n,0) is the number of elements in all subsets of {1,2,...,n}
with no consecutive integers. If we take n = 5, then we can easily see that all the subsets of
{1,2,3,4,5} that have no consecutive elements are:

{h {1 {23, {35, {4, {5}, {1, 3}, {1, 4}, {1, 5}, {2,4},{2,5},{3,5}, {1, 3,5},

and the total number of elements in all these subsets (counting repetitions) is 20 = C'(5,0).
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The convolution Cj;(n — 1,0) counts also binary words. Indeed, if n > 2 is a natural
number, then C);(n — 1,0) is the number of binary sequences of length n with exactly one
pair of consecutive 1’s. For instance, if n = 5, then all the binary sequences of length 5 with
exactly one pair of consecutive 1’s are

11010;  11001;  11000;  10110;  10011;
01101;  01100;  01011;  00110; 00011l

The number of these binary sequences is 10 = Cj1(4,0). For more enumerative applications
of C11(n,0) see Sloane A001629.
Another familiar presentation of C ;(n,0) is given in [9, p. 222] by

Cia(n,0) = Z]’("—.j).

2j<n J

Whoever is familiar with non-decreasing Dyck paths, should be interested in the following
enumerative application of C;(n,1); see Proposition 7. For a reference and notation, see
[1]. Proposition 7 can be proved easily using Theorem 6 and [1, Thm. 4.2].

Proposition 7. If n € N, then the sum of the weights of all pyramids in all non-decreasing
Dyck paths of length 2n is Cy1(2n — 1,1) = (2nFh1 + (2 — n) Fy,) /5.

We now discuss some enumerative applications of Cj1(n,1). A Fibonacci binary word
consists of a strings of zeros and ones having no two zeros sub-words [8, 11]. In the example
below, we can see that the total number of zeros in odd position for all Fibonacci binary
words of length 4 is 5 = Cy (4, 1).

0110, 1101, 0111, 0101, 1111, 1110, 1011, 1010.

In general, the total number of zeros in odd position for all Fibonacci binary words of length
nis Cy1(n,1); see Sloane A129720. Similarly, the total number of zeros in even position for
all Fibonacci binary words of length 4 is 5 = €} 1(4, 1):

0110, 1101, 0111, 0101, 1111, 1110, 1011, 1010.

In general, the total number of zeros in even position for all Fibonacci binary words of length
2n is Cy1(2n,1); see Sloane A129722.

The Fibonacci cube is a graph that has Fibonacci binary words as vertices, two vertices
being adjacent whenever they differ in exactly one coordinate. Klavzar and Peterin [8] use
Ci1(n —1,0) to count the number of edges of the Fibonacci cube.
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Convolution | Sloane Convolution Sloane
Ci1(n,0) A001629 || C11(2n—1,1) A030267
Ci11(2n,1) A001870 || Ci1(2n+1,0) A054444
C12(n,0) A004798 || C21(2n —1,0) A203573
Cy1(n,0) A099924 || C13(2n —1,0) A060934
C13(n,0) A004799 || C11(2n,2,0) A056014
Ci3(2n,1) A061171 || Cy11(2n —1,2,0) | A094292
Cr1(2n,1) A203574 || C11(2n,1) A129722
0171(71, 1) A129720

Table 1: Some sequences in [11] summarized by the convolution C, ,(m, 1, k).
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