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Abstract

The anti-Waring problem considers the smallest positive integer such that it and
every subsequent integer can be expressed as the sum of the kth powers of r or more
distinct natural numbers. We give a generalization that allows elements from any
nondecreasing sequence, rather than only the natural numbers. This generalization is
an extension of the anti-Waring problem, as well as the idea of complete sequences.
We present new anti-Waring and generalized anti-Waring numbers, as well as a result
to verify computationally when a generalized anti-Waring number has been found.

1 Introduction

For positive integers k and r, the anti-Waring number N(k, r) is defined to be the smallest
positive integer such that N(k, r) and every subsequent positive integer can be expressed as
the sum of the kth powers of r or more distinct positive integers. Several authors [3, 5, 7, 11]
recently reported results on anti-Waring numbers.

Early results considered only r = 1. As early as 1948, Sprague found that N(2, 1) =
129 [15] and proved that N(k, 1) exists for all k ≥ 2 [16]. In 1964, Graham [6] reported
that N(3, 1) = 12759 (Graham [6] references another Graham paper “On the Threshold of
completeness for certain sequences of polynomial values” said to appear circa 1964). Dressler
and Parker [4] also computed N(3, 1) in 1974. Lin [10] used Graham’s method to find that
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N(4, 1) = 5134241 with a computer in 1970. In 1992, Patterson [12, pp. 18–23] found that
N(5, 1) = 67898772. In this paper, we independently verify each of these numbers and show
that N(6, 1) = 11146309948.

More recently, Looper and Saritzky [11] proved that N(k, r) exists for all positive integers
k and r. Deering and Jamieson [3] found specific values of N(2, r) for 1 ≤ r ≤ 10 and N(3, r)
for 1 ≤ r ≤ 5. Shortly afterwards, Fuller et al. [5] computed values of N(2, r) for 1 ≤ r ≤ 50
and N(3, r) for 1 ≤ r ≤ 30. We also verify these numbers and present N(k, r) for more values
of k and r. One can verify a suspected value of N(k, r) using different sets of conditions
[3, 5].

In an effort to generalize the anti-Waring results we consider a nondecreasing sequence
of positive integers A = (ai)i∈N. Here and throughout we use N = {1, 2, 3, . . . }. For positive
integers k, n, and r we define the generalized anti-Waring number N(k, n, r, A) to be the
smallest positive integer, if it exists, such that it and every subsequent positive integer can
be expressed as the sum of the kth powers of the ai with i ≥ n ranging over r or more
distinct values. If the sequence A has all distinct elements, we may use set notation for the
last argument of the generalized anti-Waring number. The generalized anti-Waring number
N(k, n, r, A) does not exist for all sequences A (see Theorems 1 and 2 in Section 2). Looper
and Saritzky [11] proved that both the anti-Waring number N(k, r) and the generalized
anti-Waring number N(k, n, r,N) exist for all positive integers k, n, and r.

Early results of these generalized anti-Waring numbers when restricting r to 1 used
different terminology. A nondecreasing sequence S of positive integers is complete if all
sufficiently large positive integers can be written as a sum of distinct elements of S. If S is a
complete sequence, the threshold of completeness, θ(S), is the largest positive integer that is
not expressible as a sum of distinct elements of S. Therefore, the threshold of completeness,
θ(S), is one less than the generalized anti-Waring number N(1, 1, 1, S). Also, if S = (si)i∈N is
a nondecreasing sequence of positive integers such that the sequence (ski )i≥n is complete, then
the generalized anti-Waring number N(k, n, 1, S) exists and N(k, n, 1, S) − 1 = θ

(

(ski )i≥n

)

.
Brown [1] defined a sequence to be complete only when the threshold of completeness is zero;
we use the more general definition.

In the literature on complete sequences, some authors only report that a sequence is
complete and hence the generalized anti-Waring number exists; some authors actually find
the threshold of completeness. In 1952, Lekkerkerker [9] reported an account of the Zeck-
endorf representation (circa 1939 [17]), i.e., that every natural number is either a Fibonacci
number or can be expressed as the sum of nonconsecutive Fibonacci numbers. Hence the
generalized anti-Waring number for the Fibonacci sequence F is N(1, 1, 1, F ) = 1. In 1975,
Kløve [8] found thresholds of completeness for sequences of the form (⌊iα⌋)i∈N, where ⌊x⌋ is
the floor function, for 1 ≤ α ≤ 4.18 in increments of 0.02. In 1978, Porubský [13] proved that
N(k, 1, 1,P) exists for all positive integers k and the sequence of primes P. Burr and Erdős
[2] considered perturbations of complete sequences that resulted in noncomplete sequences
and vice versa.

Generalized anti-Waring numbers extend the concept of anti-Waring numbers to se-
quences other than N. The generalization also extends the concept of complete sequences
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to consider sums of r or more terms. We will present conditions needed to verify values of
N(k, n, r, A) computationally, sequences for which no N(k, n, r, A) exists, and new values of
N(k, n, r, A) for various sequences.

2 Verifying N(k, n, r, A), when it exists

For given positive integers k, n, r, and any nondecreasing sequence of positive integers
A = (ai)i∈N, we define a positive integer to be (k, n, r, A)-good if it can be written as a sum
of the kth powers of r or more distinct elements of the sequence (ai)i≥n. We define a positive
integer that is not (k, n, r, A)-good to be (k, n, r, A)-bad. Hence the generalized anti-Waring
number N(k, n, r, A) is the smallest positive integer such that it and every subsequent integer
is (k, n, r, A)-good. Equivalently the threshold of completeness N(k, n, r, A)−1 is the largest
integer that is (k, n, r, A)-bad.

The generalized anti-Waring number N(k, n, r, A) does not exist for all sequences A. For
example, the sum of any elements of the sequence (2, 4, 6, 8, . . .) of positive even integers will
never be odd. This is an instance of a more general phenomenon.

Theorem 1. Let A = (ai)i∈N be a nondecreasing sequence of positive integers. If all ai for
i ≥ n have a common divisor d > 1, then for any positive integers k and r, the generalized
anti-Waring number N(k, n, r, A) does not exist.

Proof. Every sum of positive powers of the ai, i ≥ n, is divisible by d. Since d > 1, arbitrarily
large integers not divisible by d exist. Thus, arbitrarily large integers not representable in
any way as a sum of powers of some of the an, an+1, . . . also exist.

If instead the greatest common divisor is one, then the generalized anti-Waring number
may or may not exist. We will consider examples of both cases.

As an additional example, the sequence of factorials has no generalized anti-Waring
number.

Theorem 2. Let A = (i!)i∈N, and let k, n, and r are any positive integers. Then the
generalized anti-Waring number N(k, n, r, A) does not exist.

Proof. First notice that for each ai ∈ A,

aki mod 6 ≡











1, if i = 1;

2k mod 6, if i = 2;

0, if i > 2.

Consider any (k, n, r, A)-good number m. Distinct integers i1, i2, . . . , it exist such that

m = aki1 + aki2 + · · ·+ akit

where t ≥ r and iα ≥ n for each α ∈ {1, 2, . . . , t}. Thus the sum m must be 0, 1, 2k, or
1 + 2k modulo 6. Since we can have at most four consecutive (k, n, r, A)-good integers, no
largest (k, n, r, A)-bad integer exists.
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On the other hand, in some cases the generalized anti-Waring number N(k, n, r, A) is
known to exist, but its value has not been found. As mentioned above, both the anti-Waring
number N(k, r) and the generalized anti-Waring number N(k, n, r,N) exist for all k, n, and
r [11]. A general formula for either of these is not known, but we present several values in
the next section. We rewrite the following result related to complete sequences by Brown [1,
Theorem 1] in terms of generalized anti-Waring numbers.

Theorem 3. Let k and n be positive integers, and let A = (ai)i∈N be a nondecreasing sequence
of positive integers. The generalized anti-Waring number N(k, n, 1, A) both exists and equals
one if and only if (i) an = 1 and (ii) for all integers p ≥ n, akp+1 ≤ 1 +

∑p

i=n a
k
i .

This result only considers r = 1. Also since Brown [1] defined complete sequences
requiring the threshold of completeness to be zero, he requires an = 1. Theorem 3 proves
that all positive integers are representable as a sum of different elements of sequences such
as the natural numbers, the Fibonacci numbers, and the powers of two (including 20). We
must consider different conditions for the more general definition of complete sequences with
any threshold of completeness.

The next result from Graham [6, Theorem 4] establishes completeness conditions for
sequences generated by polynomials.

Theorem 4. Let f(x) be a polynomial with real coefficients expressed in the form

f(x) = α0 + α1

(

x

1

)

+ · · ·+ αn

(

x

n

)

, αn 6= 0.

The sequence S(f) = (f(1), f(2), · · · ) is complete if and only if

1. αk = pk/qk for some integers pk and qk with gcd(pk, qk) = 1 and qk 6= 0 for 0 ≤ k ≤ n,

2. αn > 0, and

3. gcd(p0, p1, . . . , pn) = 1.

Again, in terms of generalized anti-Waring numbers Theorem 4 only considers the case
of r = 1 and can only be used to establish that a given generalized anti-Waring number
exists. As a remark to this theorem, Graham notes that a sequence (f(1), f(2), f(3), . . .) is
complete if and only if (f(n), f(n+1), f(n+2), . . .) is complete for any n. The next theorem
shows that nothing like this can be expected in general.

Theorem 5. Let k, n, and r be positive integers, and let A be a sequence of nondecreasing
positive integers. If the generalized anti-Waring number N(k, n, r, A) exists, then so does
N(k, j, r, A) for j ∈ {1, 2, . . . , n − 1} and N(k, j, r, A) ≤ N(k, n, r, A). Furthermore, the
converse is false.
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Proof. The implication is clear. If all positive integers greater than or equal to N(k, n, r, A)
can be written as a sum kth powers of r or more distinct elements of (ai)i≥n, then, with the
same elements, each positive integer can be written as a sum kth powers of r or more distinct
elements of (ai)i≥j for j ∈ {1, 2, . . . , n− 1}. Therefore, we have N(k, j, r, A) ≤ N(k, n, r, A)
for j ∈ {1, 2, . . . , n− 1}.

To see that the converse is false, consider the sequence A = (2i−1)i∈N. From the bi-
nary representation of the positive integers, the generalized anti-Waring number N(1, 1, 1, A)
clearly exists and equals one. However, the generalized anti-Waring numberN(1, 2, 1, A) does
not exist because no odd integer can be expressed as a sum of elements from (2i−1)i≥2

.

In general, whether N(k, n, r, A) exists or not cannot easily be determined. However, we
can validate a suspect value of N(k, n, r, A) if enough consecutive integers are (k, n, r, A)-
good and certain other conditions are met. Theorem 6 is a generalization of a recent result
for anti-Waring numbers [5, Theorem 2.2].

Theorem 6. Let k, n, r, b, and N̂ be positive integers, and let A = (ai)i∈N with 0 < ai ≤ ai+1

and ai ∈ N for all i. If the consecutive integers {N̂ , . . . , bk} are all (k, n, r, A)-good, the
number N̂−1 is (k, n, r, A)-bad, and there exists a positive integer x such that the conditions

1. N̂ ≤ bk + 1− (b− x)k,

2. an ≤ b− x,

3. 0 <

(

n+r−2
∑

i=n

aki

)

+ 2(m− x)k − (m+ 1)k for all m ≥ b, and

4. (m+ 1)k − (m− x)k ≤ mk for all m ≥ b

hold, then the generalized anti-Waring number N(k, n, r, A) exists and equals N̂ . Note: The
sum in condition 3 is zero if r = 1.

Proof. We want to prove that if ℓ ≤ mk and ℓ is (k, n, r, A)-bad, then ℓ ≤ N̂−1 by induction
on m with m ≥ b.

This is clearly true for m = b as we know the consecutive integers {N̂ , . . . , bk} are all
(k, n, r, A)-good.

Now suppose ℓ ≤ (m+1)k and ℓ is (k, n, r, A)-bad. If ℓ ≤ mk, then by induction ℓ ≤ N̂−1.
Next, consider ℓ such that

mk + 1 ≤ ℓ ≤ (m+ 1)k. (1)

Notice bk − (b− x)k ≤ mk − (m− x)k for m ≥ b. Using this along with (1) and condition 1,
we have

N̂ ≤ ℓ− (m− x)k. (2)

To see that ℓ− (m− x)k is (k, n, r, A)-bad, suppose it is (k, n, r, A)-good. Then

ℓ− (m− x)k = aki1 + aki2 + aki3 + · · ·+ akit
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where t ≥ r, iα 6= iβ for all α 6= β, and iα ≥ n for all α ∈ {1, 2, . . . , t}. Since ℓ is (k, n, r, A)-
bad and

ℓ = aki1 + aki2 + aki3 + · · ·+ akit + (m− x)k,

either m− x < an, which contradicts condition 2, or aiα = m− x for some α ∈ {1, 2, . . . , t}.
Therefore,

ℓ ≥ akn + akn+1 + akn+2 + · · ·+ akn+r−2 + 2(m− x)k.

If r = 1, this is just ℓ ≥ 2(m− x)k. Combining with (1), we get

(

n+r−2
∑

i=n

aki

)

+ 2(m− x)k − (m+ 1)k ≤ 0.

This contradicts condition 3 and means that ℓ− (m− x)k must be (k, n, r, A)-bad.
Now from (1) and condition 4,

ℓ− (m− x)k ≤ (m+ 1)k − (m− x)k ≤ mk.

By induction we then have ℓ− (m− x)k ≤ N̂ − 1. This contradicts (2). Hence there are no
ℓ that are (k, n, r, A)-bad and satisfy (1).

Most of the threshold of completeness results in the literature of complete sequences
rely on work by Richert [14], where different sufficient conditions imply that a sequence is
complete when restricting r = 1. Our algorithms for computing generalized anti-Waring
numbers were designed to stop when x and b are found satisfying Theorem 6.

3 Values of N(k, n, r, A)

As a result of Theorems 1 and 2, we know that N(k, n, r, A) does not exist for all values of
k, n, and r and all sequences A. Ideally, if the generalized anti-Waring number N(k, n, r, A)
exists, a formula for it can be derived. We have found such a formula for some cases. For
other cases, we have computationally found and verified N(k, n, r, A) with Theorem 6.

Johnson and Laughlin [7, Theorem 1] proved a first result

N(1, 1, r,N) =
r
∑

i=1

i =
r

2
(r + 1) (3)

for the case of k = n = 1. A similar argument is valid for general values of n.

Theorem 7. For positive integers n and r, the generalized anti-Waring number is given by

N(1, n, r,N) =
n+r−1
∑

i=n

i =
r

2
(r + 1) + r(n− 1).
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Proof. Clearly, the sum
∑n+r−1

i=n i is the smallest integer expressible as the sum of r or more
distinct integers greater than or equal to n. For any positive integer x greater than the sum
∑n+r−1

i=n i, we have

x−

n+r−2
∑

i=n

i > n+ r − 1.

Finally, we have that

x =
n+r−2
∑

i=n

i+

(

x−

n+r−2
∑

i=n

i

)

so the integer x is the sum of r distinct integers greater than or equal to n.

Theorem 8. For positive integers n, r, and s and integers t such that |t| < s and gcd(s, t) =
1, the generalized anti-Waring number is given by

N(1, n, r, (si+ t)i∈N) = 1− s+
n+r+s−2
∑

i=n

(si+ t). (4)

Note: For the case of s = 1 and t = 0, this reduces to N(1, n, r,N) and agrees with
Theorem 7.

Proof. The sequence B = (si + t)i≥n consists of all positive integers equivalent to t mod s
that are greater than or equal to sn+t. For any positive integer p, the sum of any p elements
of B is equivalent to pt mod s. In order to express all sufficiently large integers as the sum
of r or more distinct elements of B, we need sums with the number of summands covering
all equivalence classes of Zs. The list r, r+ 1, r+ 2, . . . , r+ s− 1 contains representatives of
each equivalence class in Zs. Since the integers s and t are relatively prime, the same is true
for the list rt, (r + 1)t, (r + 2)t, . . . , (r + s − 1)t. Hence, all sums containing between r and
r+ s− 1 distinct elements of B will account for all sufficiently large positive integers, as we
shall see. We must determine the smallest integer not expressible by one of these sums.

For p ∈ {r, r+1, r+2, . . . , r+ s− 1}, let mp be the sum of the first p elements of B, i.e.,

mp =

n+p−1
∑

i=n

(si+ t) = s

(

n+p−1
∑

i=n

i

)

+ pt.

As noted before, we have mp ≡ pt (mod s). We also know that mp is the smallest integer
equivalent to pt mod s expressible as the sum of r or more distinct elements of B. Hence
the integer mp − s is (1, n, r, (si+ t)i∈N)-bad. If a positive integer x ≥ mp is also equivalent
to pt mod s, then we have x = mp + ℓs for some positive ℓ ∈ Z or, equivalently,

x = ℓs+

n+p−1
∑

i=n

(si+ t) = (s(ℓ+ n+ p− 1) + t) +

n+p−2
∑

i=n

(si+ t).
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Thus, all integers equivalent to pt mod s greater than mp are expressible as the sum of r or
more distinct elements of B. Since we have mp < mp+1 for all p, the last (1, n, r, (si+ t)i∈N)-
bad integer is mr+s−1 − s. Therefore, the generalized anti-Waring number is N(1, n, r, (si+
t)i∈N) = mr+s−1 − s+ 1 which is (4).

k N(k, 1) x b bad count
1 1 1 4 0
2 129 4 18 31
3 12759 5 32 2788
4 5134241 8 59 889576
5 67898772 4 45 13912682
6 11146309948 5 55 2037573096

Table 1: Values of N(k, 1, 1,N)

k N(k, 1, 1,P) x b bad count
1 7 6 14 3
2 17164 54 187 2438
3 1866001 31 157 483370

Table 2: Values of N(k, 1, 1,P)

For most cases, a formula for N(k, n, r, A) is not known, but we can compute particular
values. In the Tables 1 to 6 we list values of N(k, n, r, A) along with the corresponding x
and b that satisfy the conditions for Theorem 6 hence confirming the given generalized anti-
Waring number. Tables 1, 3, and 4 use A = N. In Table 1 we consider n = r = 1, i.e., the
first positive integer such that it and every subsequent integer can be written as the sum kth

powers of distinct integers. For each k we also include a bad count, i.e., the number of positive
integers that cannot be written as a sum of kth powers. Table 2 lists the corresponding values
over the sequence of primes P. Table 3 lists generalized anti-Waring numbers for fixed n = 1
and varying k and r. We stopped the table at r = 36 but were able to compute some
N(k, 1, r,N) for much larger r. For example, we found that N(2, 1, 1000,N) = 333951595
with x = 12898 and b = 19395. Table 4 lists generalized anti-Waring numbers for varying
k, n, and r. Tables 3 and 4 omit generalized anti-Waring numbers when k = 1 because
a formula for N(1, n, r,N) for all n and r in N exists by Theorem 7. Tables 5 and 6 list
generalized anti-Waring numbers for fixed n = 1 and r = 1 over various sequences of the
form (si+ t)i∈N.
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r N(2, r) x b N(3, r) x b N(4, r) x b N(5, r) x b

1 129 4 18 12759 5 32 5134241 8 59 67898772 4 45
2 129 4 18 12759 5 32 5134241 8 59 67898772 4 45
3 129 4 18 12759 5 32 5134241 8 59 67898772 4 45
4 129 4 18 12759 5 32 5134241 8 59 67898772 4 45
5 198 6 22 12759 5 32 5134241 8 59 67898772 4 45
6 238 6 23 15279 6 33 5134241 8 59 67898772 4 45
7 331 8 26 15279 6 33 5134241 8 59 67898772 4 45
8 383 9 27 15279 6 33 5134241 8 59 67898772 4 45
9 528 10 32 16224 6 33 5134241 8 59 67898772 4 45
10 648 12 33 18149 6 35 5134241 8 59 67898772 4 45
11 889 14 39 22398 7 37 5191473 8 59 67898772 4 45
12 989 15 41 24855 7 38 5626194 8 60 67898772 4 45
13 1178 17 44 28887 8 39 6018930 8 62 71780055 4 46
14 1398 19 47 36951 9 42 6408466 9 62 74729904 4 46
15 1723 21 52 39660 9 43 6664722 9 62 81846431 5 45
16 1991 24 54 49083 10 46 6938867 9 63 92894512 5 47
17 2312 26 58 56076 11 47 8077523 9 66 95723448 5 47
18 2673 28 62 66534 12 50 8592323 9 67 112031630 5 49
19 3048 31 65 75912 12 52 9269124 10 67 124811198 5 50
20 3493 34 69 87567 13 54 10418260 10 69 142118181 5 52
21 4094 36 75 101093 14 56 10589380 10 70 163637305 6 52
22 4614 39 79 122064 15 60 12852837 11 72 189572962 6 54
23 5139 42 83 138696 16 62 13199973 11 73 210715205 6 55
24 5719 44 87 156498 17 64 15148358 11 76 247073537 6 57
25 6380 48 91 179520 18 67 16526214 12 76 285744830 7 57
26 7124 51 96 201921 19 69 17803895 12 78 319712379 7 59
27 7953 54 101 227400 20 72 20499591 13 81 374237223 7 61
28 8677 57 105 256254 22 73 21202776 13 81 430026890 7 63
29 9538 61 109 289869 23 76 24306872 13 84 491665093 8 64
30 10394 63 114 325590 24 79 25670088 14 84 558015873 8 65
31 11559 67 120 359358 25 82 29819129 14 88 640101337 8 68
32 12603 71 125 401496 26 85 31126025 15 88 737104155 9 68
33 13744 74 130 448503 27 88 35677050 15 92 839165455 9 71
34 14864 78 135 496257 29 90 38187306 16 92 950792455 9 73
35 16253 81 141 554217 30 93 43256507 16 96 1070200765 10 73
36 17529 85 146 611736 30 97 46180043 17 97 1215652918 10 76

Table 3: Values of N(k, 1, r,N) and the corresponding x and b that satisfy Theorem 6. Values
of N(1, n, r,N) are given by Theorem 7.
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r N(2, 2, r) x b N(3, 2, r) x b N(4, 2, r) x b N(5, 2, r) x b

1 193 5 22 19310 6 36 6659841 9 62 84038312 5 46
2 193 5 22 19310 6 36 6659841 9 62 84038312 5 46
3 193 5 22 19310 6 36 6659841 9 62 84038312 5 46
4 213 6 22 19310 6 36 6659841 9 62 84038312 5 46
5 318 7 27 19310 6 36 6659841 9 62 84038312 5 46
6 334 8 26 19310 6 36 6692881 9 62 84038312 5 46
7 398 9 27 19310 6 36 6692881 9 62 84038312 5 46
8 527 10 32 19310 6 36 6692881 9 62 84038312 5 46
9 647 12 33 20885 7 36 6778897 9 62 84038312 5 46
10 888 14 39 24098 7 38 6778897 9 62 84038312 5 46

r N(2, 3, r) x b N(3, 3, r) x b N(4, 3, r) x b N(5, 3, r) x b

1 224 6 23 23775 7 38 7076321 9 63 110100822 5 49
2 224 6 23 23775 7 38 7076321 9 63 110100822 5 49
3 233 6 23 23775 7 38 7076321 9 63 110100822 5 49
4 314 7 26 23775 7 38 7076321 9 63 110100822 5 49
5 330 8 26 23775 7 38 7076321 9 63 110100822 5 49
6 418 9 28 23775 7 38 7076321 9 63 110100822 5 49
7 523 10 32 23775 7 38 7103505 9 63 110100822 5 49
8 643 12 33 24756 7 38 7103505 9 63 110100822 5 49
9 884 14 39 28221 7 41 7103505 9 63 110100822 5 49
10 984 15 41 28950 8 40 7103505 9 63 110100822 5 49

r N(2, 4, r) x b N(3, 4, r) x b N(4, 4, r) x b N(5, 4, r) x b

1 385 8 30 26862 7 40 8912545 9 68 129436797 5 51
2 385 8 30 26862 7 40 8912545 9 68 129436797 5 51
3 385 8 29 26862 7 40 8912545 9 68 129436797 5 51
4 385 8 28 26862 7 40 8912545 9 68 129436797 5 51
5 453 9 30 26862 7 40 8912545 9 68 129436797 5 51
6 558 10 33 26862 7 40 8912545 9 68 129436797 5 51
7 634 12 34 27528 7 40 8912545 9 68 129436797 5 51
8 875 14 39 28194 7 41 8912545 9 68 129436797 5 51
9 999 15 41 30111 8 40 8912545 9 68 129436797 5 51
10 1164 17 43 33234 8 42 8912545 9 68 130964972 5 51

r N(2, 5, r) x b N(3, 5, r) x b N(4, 5, r) x b N(5, 5, r) x b

1 493 9 34 34844 8 43 9292705 9 69 167956256 5 54
2 493 9 33 34844 8 43 9292705 9 69 167956256 5 54
3 493 9 32 34844 8 43 9292705 9 69 167956256 5 54
4 494 9 32 34844 8 43 9292705 9 69 167956256 5 54
5 542 10 33 34844 8 43 9292705 9 69 167956256 5 54
6 670 12 35 34844 8 43 9377041 9 69 167956256 5 54
7 883 14 39 35060 8 43 9377041 9 69 167956256 5 54
8 983 15 41 35060 8 43 9377041 10 68 167956256 5 54
9 1188 17 44 38048 8 44 9377041 10 68 167956256 6 53
10 1412 19 47 43880 9 45 9377041 10 68 167956256 5 54

r N(2, 6, r) x b N(3, 6, r) x b N(4, 6, r) x b N(5, 6, r) x b

1 637 10 37 40416 8 45 11728881 10 72 191116579 6 54
2 637 10 37 40416 8 45 11728881 10 72 191116579 6 54
3 637 10 37 40416 8 45 11728881 10 72 191116579 6 54
4 637 11 35 40416 8 45 11728881 10 72 191116579 6 54
5 834 13 40 40416 8 45 11728881 10 72 191116579 6 54
6 870 13 40 40416 8 45 11728881 10 72 191116579 6 54
7 958 15 40 40416 8 45 11728881 10 72 191116579 6 54
8 1163 17 43 41450 9 44 11728881 10 72 191116579 6 54
9 1387 19 46 48066 9 47 11728881 10 72 191116579 6 54
10 1668 21 51 49893 10 46 11728881 10 72 191116579 6 54

Table 4: Values of N(k, n, r,N) for n > 1 and the corresponding x and b that satisfy
Theorem 6. Values of N(1, n, r,N) are given by Theorem 7.
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(s, t) k = 2 x b k = 3 x b

(2,−1) 1923 18 64 212595 15 77
(2,+1) 2355 20 71 266459 16 83
(3,−2) 3250 23 83 942316 25 126
(3,−1) 3014 22 80 957226 25 126
(3,+1) 4093 26 92 1103569 26 132
(3,+2) 4414 27 96 1181758 27 135
(4,−3) 10588 42 148 2576040 35 174
(4,−1) 11268 43 153 3026615 37 184
(4,+1) 13708 48 167 3152462 37 187
(4,+3) 14948 50 175 3534459 39 193
(5,−4) 14900 50 174 6146241 47 232
(5,−3) 14121 49 170 6373428 47 236
(5,−2) 16810 53 186 6672804 48 239
(5,−1) 16379 52 184 7077048 49 244
(5,+1) 17242 54 187 7165274 49 245
(5,+2) 19090 57 198 7526193 50 249
(5,+3) 19690 58 201 7821959 51 252
(5,+4) 19799 58 201 8326652 52 257
(6,−5) 255964 209 717 32025571 82 402
(6,−1) 261868 211 727 35431051 85 416
(6,+1) 270796 215 738 38008681 87 426
(6,+5) 282028 219 754 40622251 88 436
(7,−6) 44329 87 300 24233667 74 367
(7,−5) 45769 88 305 23668124 74 363
(7,−4) 49737 92 317 25473560 76 373
(7,−3) 49009 91 315 26139255 76 376
(7,−2) 48989 91 315 27035708 77 380
(7,−1) 49537 92 317 27348027 77 382
(7,+1) 51889 94 324 28963994 79 389
(7,+2) 55884 97 337 28297320 78 387
(7,+3) 54217 96 331 30183369 80 394
(7,+4) 60377 101 350 28992218 79 389
(7,+5) 58292 99 344 31374203 81 400
(7,+6) 63453 104 358 31015095 81 397
(8,−7) 183828 177 608 43603746 91 445
(8,−5) 186684 178 614 44323025 91 448
(8,−3) 192748 181 623 44594177 91 449
(8,−1) 199124 184 634 49916598 95 466
(8,+1) 208164 188 648 51794250 96 472
(8,+3) 216940 192 661 53940372 97 479
(8,+5) 223884 195 672 53774817 97 478
(8,+7) 227204 197 676 55157135 98 482
(9,−8) 104873 134 460 316621582 176 861
(9,−7) 114857 140 481 317215246 176 862
(9,−5) 114653 140 481 327375655 178 871
(9,−4) 118829 142 490 329700964 179 872
(9,−2) 120113 143 492 338139583 180 880
(9,−1) 130217 149 512 339498184 180 882
(9,+1) 134681 151 522 352115215 183 891
(9,+2) 129149 148 511 358747834 184 897
(9,+4) 137873 153 528 371854375 186 908
(9,+5) 141329 155 534 365220868 185 902
(9,+7) 142825 156 536 383482411 188 917
(9,+8) 149990 160 549 376489804 187 911

Table 5: Values of N(k, 1, 1, (si+t)i∈N) and the corresponding x and b that satisfy Theorem 6.
The generalized anti-Waring number N(k, n, r, (si+ t)i∈N) does not exist if gcd(s, t) > 1 by
Theorem 1, and values of N(1, n, r, (si+ t)i∈N) are given by Theorem 8.
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(s, t) k = 2 x b k = 3 x b

(10,−1) 2866844 701 2396 167900541 142 698
(10,+1) 2770803 689 2356 164930981 142 693
(11,−1) 251377 207 711 188148921 148 724
(11,+1) 260001 211 723 200560127 151 740
(12,−1) 1186948 451 1543 1871937463 320 1555
(12,+1) 1207948 455 1556 1897625923 321 1562
(13,−1) 484333 288 986 427144568 195 951
(13,+1) 498269 292 1000 434996727 196 957
(14,−1) 14209388 1561 5333 718660158 232 1130
(14,+1) 14254244 1563 5342 750996509 235 1148
(15,−1) 878885 388 1328 7192487965 501 2434
(15,+1) 890945 390 1338 7247153841 502 2440
(16,−1) 4345668 863 2950 1162662009 272 1328
(16,+1) 4411364 869 2973 1188105593 274 1337
(17,−1) 1468737 501 1717 1528625985 298 1454
(17,+1) 1487777 505 1727 1574453445 302 1468
(18,−1) 47752420 2862 9774 23390399911 742 3606
(18,+1) 47891524 2866 9789 23431535880 743 3607
(19,−1) 2296953 627 2146 2670453204 360 1750
(19,+1) 2330393 632 2161 2654207231 359 1746
(20,−1) 12065164 1438 4915 3392160594 390 1895
(20,+1) 12241324 1449 4950 3426870488 391 1901

Table 6: Additional values of N(k, 1, 1, (si + t)i∈N) and the corresponding x and b that
satisfy Theorem 6. The generalized anti-Waring number N(k, n, r, (si+ t)i∈N) does not exist
if gcd(s, t) > 1 by Theorem 1, and values of N(1, n, r, (si+ t)i∈N) are given by Theorem 8.

4 Future work

With enough time and computing power, we can compute any values of N(k, n, r, A) that
exist. However, we have only found a formula for cases with k = 1.

Some simple inequalities involving N(k, n, r, A) are clear. For example, for i ≤ j we
have the inequalities N(k, i, r, A) ≤ N(k, j, r, A) and N(k, n, i, A) ≤ N(k, n, j, A) when each
exists. We are unable to prove the inequality N(k, n, r, A) ≤ N(k + 1, n, r, A) even though
all data seem to emphatically support it.

We have found and considered several algorithms for generating good numbers. However,
none reveal a formula for the largest bad number, i.e., threshold of completeness for k > 1.
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[16] R. Sprague, Über Zerlegungen in n-te Potenzen mit lauter verschiedenen Grundzahlen,
Math. Z. 51 (1948), 466–468.

13



[17] E. Zeckendorf, Représentation des nombres naturels par une somme de nombres de
Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41 (1972), 179–182.
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