Generalized Anti-Waring Numbers

Chris Fuller and Robert H. Nichols, Jr. Labry School of Science, Technology, and Business Cumberland University
1 Cumberland Square
Lebanon, TN 37087
USA
cfuller@cumberland.edu
rnichols@cumberland.edu

Abstract

The anti-Waring problem considers the smallest positive integer such that it and every subsequent integer can be expressed as the sum of the $k^{\text {th }}$ powers of r or more distinct natural numbers. We give a generalization that allows elements from any nondecreasing sequence, rather than only the natural numbers. This generalization is an extension of the anti-Waring problem, as well as the idea of complete sequences. We present new anti-Waring and generalized anti-Waring numbers, as well as a result to verify computationally when a generalized anti-Waring number has been found.

1 Introduction

For positive integers k and r, the anti-Waring number $N(k, r)$ is defined to be the smallest positive integer such that $N(k, r)$ and every subsequent positive integer can be expressed as the sum of the $k^{\text {th }}$ powers of r or more distinct positive integers. Several authors [3, 5, 7, 11] recently reported results on anti-Waring numbers.

Early results considered only $r=1$. As early as 1948 , Sprague found that $N(2,1)=$ 129 [15] and proved that $N(k, 1)$ exists for all $k \geq 2$ [16]. In 1964, Graham [6] reported that $N(3,1)=12759$ (Graham [6] references another Graham paper "On the Threshold of completeness for certain sequences of polynomial values" said to appear circa 1964). Dressler and Parker [4] also computed $N(3,1)$ in 1974. Lin [10] used Graham's method to find that
$N(4,1)=5134241$ with a computer in 1970. In 1992, Patterson [12, pp. 18-23] found that $N(5,1)=67898772$. In this paper, we independently verify each of these numbers and show that $N(6,1)=11146309948$.

More recently, Looper and Saritzky [11] proved that $N(k, r)$ exists for all positive integers k and r. Deering and Jamieson [3] found specific values of $N(2, r)$ for $1 \leq r \leq 10$ and $N(3, r)$ for $1 \leq r \leq 5$. Shortly afterwards, Fuller et al. [5] computed values of $N(2, r)$ for $1 \leq r \leq 50$ and $N(3, r)$ for $1 \leq r \leq 30$. We also verify these numbers and present $N(k, r)$ for more values of k and r. One can verify a suspected value of $N(k, r)$ using different sets of conditions [3, 5].

In an effort to generalize the anti-Waring results we consider a nondecreasing sequence of positive integers $A=\left(a_{i}\right)_{i \in \mathbb{N}}$. Here and throughout we use $\mathbb{N}=\{1,2,3, \ldots\}$. For positive integers k, n, and r we define the generalized anti-Waring number $N(k, n, r, A)$ to be the smallest positive integer, if it exists, such that it and every subsequent positive integer can be expressed as the sum of the $k^{\text {th }}$ powers of the a_{i} with $i \geq n$ ranging over r or more distinct values. If the sequence A has all distinct elements, we may use set notation for the last argument of the generalized anti-Waring number. The generalized anti-Waring number $N(k, n, r, A)$ does not exist for all sequences A (see Theorems 1 and 2 in Section 2). Looper and Saritzky [11] proved that both the anti-Waring number $N(k, r)$ and the generalized anti-Waring number $N(k, n, r, \mathbb{N})$ exist for all positive integers k, n, and r.

Early results of these generalized anti-Waring numbers when restricting r to 1 used different terminology. A nondecreasing sequence S of positive integers is complete if all sufficiently large positive integers can be written as a sum of distinct elements of S. If S is a complete sequence, the threshold of completeness, $\theta(S)$, is the largest positive integer that is not expressible as a sum of distinct elements of S. Therefore, the threshold of completeness, $\theta(S)$, is one less than the generalized anti-Waring number $N(1,1,1, S)$. Also, if $S=\left(s_{i}\right)_{i \in \mathbb{N}}$ is a nondecreasing sequence of positive integers such that the sequence $\left(s_{i}^{k}\right)_{i \geq n}$ is complete, then the generalized anti-Waring number $N(k, n, 1, S)$ exists and $N(k, n, 1, S)-1=\theta\left(\left(s_{i}^{k}\right)_{i \geq n}\right)$. Brown [1] defined a sequence to be complete only when the threshold of completeness is zero; we use the more general definition.

In the literature on complete sequences, some authors only report that a sequence is complete and hence the generalized anti-Waring number exists; some authors actually find the threshold of completeness. In 1952, Lekkerkerker [9] reported an account of the Zeckendorf representation (circa 1939 [17]), i.e., that every natural number is either a Fibonacci number or can be expressed as the sum of nonconsecutive Fibonacci numbers. Hence the generalized anti-Waring number for the Fibonacci sequence F is $N(1,1,1, F)=1$. In 1975, Kløve [8] found thresholds of completeness for sequences of the form $\left(\left\lfloor i^{\alpha}\right\rfloor\right)_{i \in \mathbb{N}}$, where $\lfloor x\rfloor$ is the floor function, for $1 \leq \alpha \leq 4.18$ in increments of 0.02. In 1978, Porubský [13] proved that $N(k, 1,1, \mathbb{P})$ exists for all positive integers k and the sequence of primes \mathbb{P}. Burr and Erdős [2] considered perturbations of complete sequences that resulted in noncomplete sequences and vice versa.

Generalized anti-Waring numbers extend the concept of anti-Waring numbers to sequences other than \mathbb{N}. The generalization also extends the concept of complete sequences
to consider sums of r or more terms. We will present conditions needed to verify values of $N(k, n, r, A)$ computationally, sequences for which no $N(k, n, r, A)$ exists, and new values of $N(k, n, r, A)$ for various sequences.

2 Verifying $N(k, n, r, A)$, when it exists

For given positive integers k, n, r, and any nondecreasing sequence of positive integers $A=\left(a_{i}\right)_{i \in \mathbb{N}}$, we define a positive integer to be (k, n, r, A)-good if it can be written as a sum of the $k^{\text {th }}$ powers of r or more distinct elements of the sequence $\left(a_{i}\right)_{i \geq n}$. We define a positive integer that is not (k, n, r, A)-good to be (k, n, r, A)-bad. Hence the generalized anti-Waring number $N(k, n, r, A)$ is the smallest positive integer such that it and every subsequent integer is (k, n, r, A)-good. Equivalently the threshold of completeness $N(k, n, r, A)-1$ is the largest integer that is (k, n, r, A)-bad.

The generalized anti-Waring number $N(k, n, r, A)$ does not exist for all sequences A. For example, the sum of any elements of the sequence $(2,4,6,8, \ldots)$ of positive even integers will never be odd. This is an instance of a more general phenomenon.

Theorem 1. Let $A=\left(a_{i}\right)_{i \in \mathbb{N}}$ be a nondecreasing sequence of positive integers. If all a_{i} for $i \geq n$ have a common divisor $d>1$, then for any positive integers k and r, the generalized anti-Waring number $N(k, n, r, A)$ does not exist.
Proof. Every sum of positive powers of the $a_{i}, i \geq n$, is divisible by d. Since $d>1$, arbitrarily large integers not divisible by d exist. Thus, arbitrarily large integers not representable in any way as a sum of powers of some of the a_{n}, a_{n+1}, \ldots also exist.

If instead the greatest common divisor is one, then the generalized anti-Waring number may or may not exist. We will consider examples of both cases.

As an additional example, the sequence of factorials has no generalized anti-Waring number.

Theorem 2. Let $A=(i!)_{i \in \mathbb{N}}$, and let k, n, and r are any positive integers. Then the generalized anti-Waring number $N(k, n, r, A)$ does not exist.
Proof. First notice that for each $a_{i} \in A$,

$$
a_{i}^{k} \bmod 6 \equiv \begin{cases}1, & \text { if } i=1 \\ 2^{k} \bmod 6, & \text { if } i=2 \\ 0, & \text { if } i>2\end{cases}
$$

Consider any (k, n, r, A)-good number m. Distinct integers $i_{1}, i_{2}, \ldots, i_{t}$ exist such that

$$
m=a_{i_{1}}^{k}+a_{i_{2}}^{k}+\cdots+a_{i_{t}}^{k}
$$

where $t \geq r$ and $i_{\alpha} \geq n$ for each $\alpha \in\{1,2, \ldots, t\}$. Thus the sum m must be $0,1,2^{k}$, or $1+2^{k}$ modulo 6 . Since we can have at most four consecutive (k, n, r, A)-good integers, no largest (k, n, r, A)-bad integer exists.

On the other hand, in some cases the generalized anti-Waring number $N(k, n, r, A)$ is known to exist, but its value has not been found. As mentioned above, both the anti-Waring number $N(k, r)$ and the generalized anti-Waring number $N(k, n, r, \mathbb{N})$ exist for all k, n, and r [11]. A general formula for either of these is not known, but we present several values in the next section. We rewrite the following result related to complete sequences by Brown $[1$, Theorem 1] in terms of generalized anti-Waring numbers.

Theorem 3. Let k and n be positive integers, and let $A=\left(a_{i}\right)_{i \in \mathbb{N}}$ be a nondecreasing sequence of positive integers. The generalized anti-Waring number $N(k, n, 1, A)$ both exists and equals one if and only if (i) $a_{n}=1$ and (ii) for all integers $p \geq n, a_{p+1}^{k} \leq 1+\sum_{i=n}^{p} a_{i}^{k}$.

This result only considers $r=1$. Also since Brown [1] defined complete sequences requiring the threshold of completeness to be zero, he requires $a_{n}=1$. Theorem 3 proves that all positive integers are representable as a sum of different elements of sequences such as the natural numbers, the Fibonacci numbers, and the powers of two (including 2^{0}). We must consider different conditions for the more general definition of complete sequences with any threshold of completeness.

The next result from Graham [6, Theorem 4] establishes completeness conditions for sequences generated by polynomials.

Theorem 4. Let $f(x)$ be a polynomial with real coefficients expressed in the form

$$
f(x)=\alpha_{0}+\alpha_{1}\binom{x}{1}+\cdots+\alpha_{n}\binom{x}{n}, \quad \alpha_{n} \neq 0
$$

The sequence $S(f)=(f(1), f(2), \cdots)$ is complete if and only if

1. $\alpha_{k}=p_{k} / q_{k}$ for some integers p_{k} and q_{k} with $\operatorname{gcd}\left(p_{k}, q_{k}\right)=1$ and $q_{k} \neq 0$ for $0 \leq k \leq n$,
2. $\alpha_{n}>0$, and
3. $\operatorname{gcd}\left(p_{0}, p_{1}, \ldots, p_{n}\right)=1$.

Again, in terms of generalized anti-Waring numbers Theorem 4 only considers the case of $r=1$ and can only be used to establish that a given generalized anti-Waring number exists. As a remark to this theorem, Graham notes that a sequence $(f(1), f(2), f(3), \ldots)$ is complete if and only if $(f(n), f(n+1), f(n+2), \ldots)$ is complete for any n. The next theorem shows that nothing like this can be expected in general.

Theorem 5. Let k, n, and r be positive integers, and let A be a sequence of nondecreasing positive integers. If the generalized anti-Waring number $N(k, n, r, A)$ exists, then so does $N(k, j, r, A)$ for $j \in\{1,2, \ldots, n-1\}$ and $N(k, j, r, A) \leq N(k, n, r, A)$. Furthermore, the converse is false.

Proof. The implication is clear. If all positive integers greater than or equal to $N(k, n, r, A)$ can be written as a sum $k^{\text {th }}$ powers of r or more distinct elements of $\left(a_{i}\right)_{i \geq n}$, then, with the same elements, each positive integer can be written as a sum $k^{\text {th }}$ powers of r or more distinct elements of $\left(a_{i}\right)_{i \geq j}$ for $j \in\{1,2, \ldots, n-1\}$. Therefore, we have $N(k, j, r, A) \leq N(k, n, r, A)$ for $j \in\{1,2, \ldots, n-1\}$.

To see that the converse is false, consider the sequence $A=\left(2^{i-1}\right)_{i \in \mathbb{N}}$. From the binary representation of the positive integers, the generalized anti-Waring number $N(1,1,1, A)$ clearly exists and equals one. However, the generalized anti-Waring number $N(1,2,1, A)$ does not exist because no odd integer can be expressed as a sum of elements from $\left(2^{i-1}\right)_{i \geq 2}$.

In general, whether $N(k, n, r, A)$ exists or not cannot easily be determined. However, we can validate a suspect value of $N(k, n, r, A)$ if enough consecutive integers are (k, n, r, A) good and certain other conditions are met. Theorem 6 is a generalization of a recent result for anti-Waring numbers [5, Theorem 2.2].

Theorem 6. Let k, n, r, b, and \hat{N} be positive integers, and let $A=\left(a_{i}\right)_{i \in \mathbb{N}}$ with $0<a_{i} \leq a_{i+1}$ and $a_{i} \in \mathbb{N}$ for all i. If the consecutive integers $\left\{\hat{N}, \ldots, b^{k}\right\}$ are all (k, n, r, A)-good, the number $\hat{N}-1$ is (k, n, r, A)-bad, and there exists a positive integer x such that the conditions

1. $\hat{N} \leq b^{k}+1-(b-x)^{k}$,
2. $a_{n} \leq b-x$,
3. $0<\left(\sum_{i=n}^{n+r-2} a_{i}^{k}\right)+2(m-x)^{k}-(m+1)^{k}$ for all $m \geq b$, and
4. $(m+1)^{k}-(m-x)^{k} \leq m^{k}$ for all $m \geq b$
hold, then the generalized anti-Waring number $N(k, n, r, A)$ exists and equals \hat{N}. Note: The sum in condition 3 is zero if $r=1$.

Proof. We want to prove that if $\ell \leq m^{k}$ and ℓ is (k, n, r, A)-bad, then $\ell \leq \hat{N}-1$ by induction on m with $m \geq b$.

This is clearly true for $m=b$ as we know the consecutive integers $\left\{\hat{N}, \ldots, b^{k}\right\}$ are all (k, n, r, A)-good.

Now suppose $\ell \leq(m+1)^{k}$ and ℓ is (k, n, r, A)-bad. If $\ell \leq m^{k}$, then by induction $\ell \leq \hat{N}-1$. Next, consider ℓ such that

$$
\begin{equation*}
m^{k}+1 \leq \ell \leq(m+1)^{k} \tag{1}
\end{equation*}
$$

Notice $b^{k}-(b-x)^{k} \leq m^{k}-(m-x)^{k}$ for $m \geq b$. Using this along with (1) and condition 1, we have

$$
\begin{equation*}
\hat{N} \leq \ell-(m-x)^{k} \tag{2}
\end{equation*}
$$

To see that $\ell-(m-x)^{k}$ is (k, n, r, A)-bad, suppose it is (k, n, r, A)-good. Then

$$
\ell-(m-x)^{k}=a_{i_{1}}^{k}+a_{i_{2}}^{k}+a_{i_{3}}^{k}+\cdots+a_{i_{t}}^{k}
$$

where $t \geq r, i_{\alpha} \neq i_{\beta}$ for all $\alpha \neq \beta$, and $i_{\alpha} \geq n$ for all $\alpha \in\{1,2, \ldots, t\}$. Since ℓ is $(k, n, r, A)-$ bad and

$$
\ell=a_{i_{1}}^{k}+a_{i_{2}}^{k}+a_{i_{3}}^{k}+\cdots+a_{i_{t}}^{k}+(m-x)^{k},
$$

either $m-x<a_{n}$, which contradicts condition 2 , or $a_{i_{\alpha}}=m-x$ for some $\alpha \in\{1,2, \ldots, t\}$. Therefore,

$$
\ell \geq a_{n}^{k}+a_{n+1}^{k}+a_{n+2}^{k}+\cdots+a_{n+r-2}^{k}+2(m-x)^{k} .
$$

If $r=1$, this is just $\ell \geq 2(m-x)^{k}$. Combining with (1), we get

$$
\left(\sum_{i=n}^{n+r-2} a_{i}^{k}\right)+2(m-x)^{k}-(m+1)^{k} \leq 0
$$

This contradicts condition 3 and means that $\ell-(m-x)^{k}$ must be (k, n, r, A)-bad.
Now from (1) and condition 4,

$$
\ell-(m-x)^{k} \leq(m+1)^{k}-(m-x)^{k} \leq m^{k}
$$

By induction we then have $\ell-(m-x)^{k} \leq \hat{N}-1$. This contradicts (2). Hence there are no ℓ that are (k, n, r, A)-bad and satisfy (1).

Most of the threshold of completeness results in the literature of complete sequences rely on work by Richert [14], where different sufficient conditions imply that a sequence is complete when restricting $r=1$. Our algorithms for computing generalized anti-Waring numbers were designed to stop when x and b are found satisfying Theorem 6 .

3 Values of $N(k, n, r, A)$

As a result of Theorems 1 and 2 , we know that $N(k, n, r, A)$ does not exist for all values of k, n, and r and all sequences A. Ideally, if the generalized anti-Waring number $N(k, n, r, A)$ exists, a formula for it can be derived. We have found such a formula for some cases. For other cases, we have computationally found and verified $N(k, n, r, A)$ with Theorem 6.

Johnson and Laughlin [7, Theorem 1] proved a first result

$$
\begin{equation*}
N(1,1, r, \mathbb{N})=\sum_{i=1}^{r} i=\frac{r}{2}(r+1) \tag{3}
\end{equation*}
$$

for the case of $k=n=1$. A similar argument is valid for general values of n.
Theorem 7. For positive integers n and r, the generalized anti-Waring number is given by

$$
N(1, n, r, \mathbb{N})=\sum_{i=n}^{n+r-1} i=\frac{r}{2}(r+1)+r(n-1)
$$

Proof. Clearly, the sum $\sum_{i=n}^{n+r-1} i$ is the smallest integer expressible as the sum of r or more distinct integers greater than or equal to n. For any positive integer x greater than the sum $\sum_{i=n}^{n+r-1} i$, we have

$$
x-\sum_{i=n}^{n+r-2} i>n+r-1
$$

Finally, we have that

$$
x=\sum_{i=n}^{n+r-2} i+\left(x-\sum_{i=n}^{n+r-2} i\right)
$$

so the integer x is the sum of r distinct integers greater than or equal to n.
Theorem 8. For positive integers n, r, and s and integers t such that $|t|<s$ and $\operatorname{gcd}(s, t)=$ 1, the generalized anti-Waring number is given by

$$
\begin{equation*}
N\left(1, n, r,(s i+t)_{i \in \mathbb{N}}\right)=1-s+\sum_{i=n}^{n+r+s-2}(s i+t) \tag{4}
\end{equation*}
$$

Note: For the case of $s=1$ and $t=0$, this reduces to $N(1, n, r, \mathbb{N})$ and agrees with Theorem 7.

Proof. The sequence $B=(s i+t)_{i \geq n}$ consists of all positive integers equivalent to $t \bmod s$ that are greater than or equal to $s n+t$. For any positive integer p, the sum of any p elements of B is equivalent to $p t \bmod s$. In order to express all sufficiently large integers as the sum of r or more distinct elements of B, we need sums with the number of summands covering all equivalence classes of \mathbb{Z}_{s}. The list $r, r+1, r+2, \ldots, r+s-1$ contains representatives of each equivalence class in \mathbb{Z}_{s}. Since the integers s and t are relatively prime, the same is true for the list $r t,(r+1) t,(r+2) t, \ldots,(r+s-1) t$. Hence, all sums containing between r and $r+s-1$ distinct elements of B will account for all sufficiently large positive integers, as we shall see. We must determine the smallest integer not expressible by one of these sums.

For $p \in\{r, r+1, r+2, \ldots, r+s-1\}$, let m_{p} be the sum of the first p elements of B, i.e.,

$$
m_{p}=\sum_{i=n}^{n+p-1}(s i+t)=s\left(\sum_{i=n}^{n+p-1} i\right)+p t
$$

As noted before, we have $m_{p} \equiv p t(\bmod s)$. We also know that m_{p} is the smallest integer equivalent to $p t \bmod s$ expressible as the sum of r or more distinct elements of B. Hence the integer $m_{p}-s$ is $\left(1, n, r,(s i+t)_{i \in \mathbb{N}}\right)$-bad. If a positive integer $x \geq m_{p}$ is also equivalent to $p t \bmod s$, then we have $x=m_{p}+\ell s$ for some positive $\ell \in \mathbb{Z}$ or, equivalently,

$$
x=\ell s+\sum_{i=n}^{n+p-1}(s i+t)=(s(\ell+n+p-1)+t)+\sum_{i=n}^{n+p-2}(s i+t) .
$$

Thus, all integers equivalent to $p t \bmod s$ greater than m_{p} are expressible as the sum of r or more distinct elements of B. Since we have $m_{p}<m_{p+1}$ for all p, the last $\left(1, n, r,(s i+t)_{i \in \mathbb{N}}\right)-$ bad integer is $m_{r+s-1}-s$. Therefore, the generalized anti-Waring number is $N(1, n, r,(s i+$ $\left.t)_{i \in \mathbb{N}}\right)=m_{r+s-1}-s+1$ which is (4).

k	$N(k, 1)$	x	b	bad count
1	1	1	4	0
2	129	4	18	31
3	12759	5	32	2788
4	5134241	8	59	889576
5	67898772	4	45	13912682
6	11146309948	5	55	2037573096

Table 1: Values of $N(k, 1,1, \mathbb{N})$

k	$N(k, 1,1, \mathbb{P})$	x	b	bad count
1	7	6	14	3
2	17164	54	187	2438
3	1866001	31	157	483370

Table 2: Values of $N(k, 1,1, \mathbb{P})$
For most cases, a formula for $N(k, n, r, A)$ is not known, but we can compute particular values. In the Tables 1 to 6 we list values of $N(k, n, r, A)$ along with the corresponding x and b that satisfy the conditions for Theorem 6 hence confirming the given generalized antiWaring number. Tables 1,3 , and 4 use $A=\mathbb{N}$. In Table 1 we consider $n=r=1$, i.e., the first positive integer such that it and every subsequent integer can be written as the sum $k^{\text {th }}$ powers of distinct integers. For each k we also include a bad count, i.e., the number of positive integers that cannot be written as a sum of $k^{\text {th }}$ powers. Table 2 lists the corresponding values over the sequence of primes \mathbb{P}. Table 3 lists generalized anti-Waring numbers for fixed $n=1$ and varying k and r. We stopped the table at $r=36$ but were able to compute some $N(k, 1, r, \mathbb{N})$ for much larger r. For example, we found that $N(2,1,1000, \mathbb{N})=333951595$ with $x=12898$ and $b=19395$. Table 4 lists generalized anti-Waring numbers for varying k, n, and r. Tables 3 and 4 omit generalized anti-Waring numbers when $k=1$ because a formula for $N(1, n, r, \mathbb{N})$ for all n and r in \mathbb{N} exists by Theorem 7. Tables 5 and 6 list generalized anti-Waring numbers for fixed $n=1$ and $r=1$ over various sequences of the form $(s i+t)_{i \in \mathbb{N}}$.

r	$N(2, r)$	x	b	$N(3, r)$	x	b	$N(4, r)$	x	b	$N(5, r)$	x	b
1	129	4	18	12759	5	32	51342411	8	59	67898772	4	45
2	129	4	18	12759	5	32	5134241	8	59	67898772	4	45
3	129	4	18	12759	5	32	5134241	8	59	67898772	4	45
4	129	4	18	12759	5	32	5134241	8	59	67898772	4	45
5	198	6	22	12759	5	32	5134241	8	59	67898772	4	45
6	238	6	23	15279	6	33	5134241	8	59	67898772	4	45
7	331	8	26	15279	6	33	5134241	8	59	67898772	4	45
8	383	9	27	15279	6	33	5134241	8	59	67898772	4	45
9	528	10	32	16224	6	33	5134241	8	59	67898772	4	45
10	648	12	33	18149	6	35	5134241	8	59	67898772	4	45
11	889	14	39	22398	7	37	5191473	8	59	67898772	4	45
12	989	15	41	24855	7	38	5626194	8	60	67898772	4	45
13	1178	17	44	28887	8	39	6018930	8	62	71780055	4	46
14	1398	19	47	36951	9	42	6408466	9	62	74729904	4	46
15	1723	21	52	39660	9	43	6664722	9	62	81846431	5	45
16	1991	24	54	49083	10	46	6938867	9	63	92894512	5	47
17	2312	26	58	56076	11	47	8077523	9	66	95723448	5	47
18	2673	28	62	66534	12	50	8592323	9	67	112031630	5	49
19	3048	31	65	75912	12	52	9269124	10	67	124811198	5	50
20	3493	34	69	87567	13	54	10418260	10	69	142118181	5	52
21	4094	36	75	101093	14	56	10589380	10	70	163637305	6	52
22	4614	39	79	1222064	15	60	12852837	11	72	18957962	6	54
23	5139	42	83	138696	16	62	13199973	11	73	210715205	6	55
24	5719	44	87	156498	17	64	15148358	11	76	247073537	6	57
25	6380	48	91	179520	18	67	16526214	12	76	285744830	7	57
26	7124	51	96	201921	19	69	17803895	12	78	319712379	7	59
27	7953	54	101	227400	20	72	20499591	13	81	374237223	7	61
28	8677	57	105	256254	22	73	21202776	13	81	430026890	7	63
29	9538	61	109	289869	23	76	24306872	13	84	491665093	8	64
30	10394	63	114	325590	24	79	25670088	14	84	558015873	8	65
31	11559	67	120	359358	25	82	29819129	14	88	640101337	8	68
32	12603	71	125	401496	26	85	31126025	15	88	737104155	9	68
33	13744	74	130	448503	27	88	35677050	15	92	839165455	9	71
34	14864	78	135	496257	29	90	38187306	16	92	950792455	9	73
35	16253	81	141	554217	30	93	43256507	16	96	1070200765	10	73
36	17529	85	146	611736	30	97	46180043	17	97	1215652918	10	76

Table 3: Values of $N(k, 1, r, \mathbb{N})$ and the corresponding x and b that satisfy Theorem 6. Values of $N(1, n, r, \mathbb{N})$ are given by Theorem 7 .

r	$N(2,2, r)$	x	b	$N(3,2, r)$	x	b	$N(4,2, r)$	x	b	$N(5,2, r)$	x	b
1	193	5	22	19310	6	36	6659841	9	62	84038312	5	46
2	193	5	22	19310	6	36	6659841	9	62	84038312	5	46
3	193	5	22	19310	6	36	6659841	9	62	84038312	5	46
4	213	6	22	19310	6	36	6659841	9	62	84038312	5	46
5	318	7	27	19310	6	36	6659841	9	62	84038312	5	46
6	334	8	26	19310	6	36	6692881	9	62	84038312	5	46
7	398	9	27	19310	6	36	6692881	9	62	84038312	5	46
8	527	10	32	19310	6	36	6692881	9	62	84038312	5	46
9	647	12	33	20885	7	36	6778897	9	62	84038312	5	46
10	888	14	39	24098	7	38	6778897	9	62	84038312	5	46
r	$N(2,3, r)$	x	b	$N(3,3, r)$	x	b	$N(4,3, r)$	x	b	$N(5,3, r)$	x	b
1	224	6	23	23775	7	38	7076321	9	63	110100822	5	49
2	224	6	23	23775	7	38	7076321	9	63	110100822	5	49
3	233	6	23	23775	7	38	7076321	9	63	110100822	5	49
4	314	7	26	23775	7	38	7076321	9	63	110100822	5	49
5	330	8	26	23775	7	38	7076321	9	63	110100822	5	49
6	418	9	28	23775	7	38	7076321	9	63	110100822	5	49
7	523	10	32	23775	7	38	7103505	9	63	110100822	5	49
8	643	12	33	24756	7	38	7103505	9	63	110100822	5	49
9	884	14	39	28221	7	41	7103505	9	63	110100822	5	49
10	984	15	41	28950	8	40	7103505	9	63	110100822	5	49
r	$N(2,4, r)$	x	b	$N(3,4, r)$	x	b	$N(4,4, r)$	x	b	$N(5,4, r)$	x	b
1	385	8	30	26862	7	40	8912545	9	68	129436797	5	51
2	385	8	30	26862	7	40	8912545	9	68	129436797	5	51
3	385	8	29	26862	7	40	8912545	9	68	129436797	5	51
4	385	8	28	26862	7	40	8912545	9	68	129436797	5	51
5	453	9	30	26862	7	40	8912545	9	68	129436797	5	51
6	558	10	33	26862	7	40	8912545	9	68	129436797	5	51
7	634	12	34	27528	7	40	8912545	9	68	129436797	5	51
8	875	14	39	28194	7	41	8912545	9	68	129436797	5	51
8	1387	19	46	48066	9	47	11728881	10	72	191116579	6	54
9	1668	21	51	49893	10	46	11728881	10	72	191116579	6	54
9	999	15	41	30111	8	40	8912545	9	68	129436797	5	51
10	1164	17	43	33234	8	42	8912545	9	68	130964972	5	51
7	133	1412	19	47	43880	9	45	9377041	10	68	167956256	5

Table 4: Values of $N(k, n, r, \mathbb{N})$ for $n>1$ and the corresponding x and b that satisfy Theorem 6. Values of $N(1, n, r, \mathbb{N})$ are given by Theorem 7 .

(s, t)	$k=2$	x	b	$k=3$	x	b
$(2,-1)$	1923	18	64	212595	15	77
$(2,+1)$	2355	20	71	266459	16	83
$(3,-2)$	3250	23	83	942316	25	126
$(3,-1)$	3014	22	80	957226	25	126
$(3,+1)$	4093	26	92	1103569	26	132
$(3,+2)$	4414	27	96	1181758	27	135
$(4,-3)$	10588	42	148	2576040	35	174
$(4,-1)$	11268	43	153	3026615	37	184
$(4,+1)$	13708	48	167	3152462	37	187
$(4,+3)$	14948	50	175	3534459	39	193
$(5,-4)$	14900	50	174	6146241	47	232
$(5,-3)$	14121	49	170	6373428	47	236
$(5,-2)$	16810	53	186	6672804	48	239
$(5,-1)$	16379	52	184	7077048	49	244
$(5,+1)$	17242	54	187	7165274	49	245
$(5,+2)$	19090	57	198	7526193	50	249
$(5,+3)$	19690	58	201	7821959	51	252
$(5,+4)$	19799	58	201	8326652	52	257
$(6,-5)$	255964	209	717	32025571	82	402
$(6,-1)$	261868	211	727	35431051	85	416
$(6,+1)$	270796	215	738	38008681	87	426
$(6,+5)$	282028	219	754	40622251	88	436
$(7,-6)$	44329	87	300	24233667	74	367
$(7,-5)$	45769	88	305	23668124	74	363
$(7,-4)$	49737	92	317	25473560	76	373
$(7,-3)$	49009	91	315	26139255	76	376
$(7,-2)$	48989	91	315	27035708	77	380
$(7,-1)$	49537	92	317	27348027	77	382
$(7,+1)$	51889	94	324	28963994	79	389
$(7,+2)$	55884	97	337	28297320	78	387
$(7,+3)$	54217	96	331	30183369	80	394
$(7,+4)$	60377	101	350	28992218	79	389
$(7,+5)$	58292	99	344	31374203	81	400
$(7,+6)$	63453	104	358	31015095	81	397
$(8,-7)$	183828	177	608	43603746	91	445
$(8,-5)$	186684	178	614	44323025	91	448
$(8,-3)$	192748	181	623	44594177	91	449
$(8,-1)$	199124	184	634	49916598	95	466
$(8,+1)$	208164	188	648	51794250	96	472
$(8,+3)$	216940	192	661	53940372	97	479
$(8,+5)$	223884	195	672	53774817	97	478
$(8,+7)$	227204	197	676	55157135	98	482
$(9,-8)$	104873	134	460	316621582	176	861
$(9,-7)$	114857	140	481	317215246	176	862
$(9,-5)$	114653	140	481	327375655	178	871
$(9,-4)$	118829	142	490	329700964	179	872
$(9,-2)$	120113	143	492	338139583	180	880
$(9,-1)$	130217	149	512	339498184	180	882
$(9,+1)$	134681	151	522	352115215	183	891
$(9,+2)$	129149	148	511	358747834	184	897
$(9,+4)$	137873	153	528	371854375	186	908
$(9,+5)$	141329	155	534	365220868	185	902
$(9,+7)$	142825	156	536	383482411	188	917
$(9,+8)$	149990	160	549	376489804	187	911
(3)						

Table 5: Values of $N\left(k, 1,1,(s i+t)_{i \in \mathbb{N}}\right)$ and the corresponding x and b that satisfy Theorem 6 . The generalized anti-Waring number $N\left(k, n, r,(s i+t)_{i \in \mathbb{N}}\right)$ does not exist if $\operatorname{gcd}(s, t)>1$ by Theorem 1, and values of $N\left(1, n, r,(s i+t)_{i \in \mathbb{N}}\right)$ are given by Theorem 8 .

(s, t)	$k=2$	x	b	$k=3$	x	b
$(10,-1)$	2866844	701	2396	167900541	142	698
$(10,+1)$	2770803	689	2356	164930981	142	693
$(11,-1)$	251377	207	711	188148921	148	724
$(11,+1)$	260001	211	723	200560127	151	740
$(12,-1)$	1186948	451	1543	1871937463	320	1555
$(12,+1)$	1207948	455	1556	1897625923	321	1562
$(13,-1)$	484333	288	986	427144568	195	951
$(13,+1)$	498269	292	1000	434996727	196	957
$(14,-1)$	14209388	1561	5333	718660158	232	1130
$(14,+1)$	14254244	1563	5342	750996509	235	1148
$(15,-1)$	878885	388	1328	7192487965	501	2434
$(15,+1)$	890945	390	1338	7247153841	502	2440
$(16,-1)$	4345668	863	2950	1162662009	272	1328
$(16,+1)$	4411364	869	2973	1188105593	274	1337
$(17,-1)$	1468737	501	1717	1528625985	298	1454
$(17,+1)$	1487777	505	1727	1574453445	302	1468
$(18,-1)$	47752420	2862	9774	23390399911	742	3606
$(18,+1)$	47891524	2866	9789	23431535880	743	3607
$(19,-1)$	2296953	627	2146	2670453204	360	1750
$(19,+1)$	2330393	632	2161	2654207231	359	1746
$(20,-1)$	12065164	1438	4915	3392160594	390	1895
$(20,+1)$	12241324	1449	4950	3426870488	391	1901

Table 6: Additional values of $N\left(k, 1,1,(s i+t)_{i \in \mathbb{N}}\right)$ and the corresponding x and b that satisfy Theorem 6 . The generalized anti-Waring number $N\left(k, n, r,(s i+t)_{i \in \mathbb{N}}\right)$ does not exist if $\operatorname{gcd}(s, t)>1$ by Theorem 1, and values of $N\left(1, n, r,(s i+t)_{i \in \mathbb{N}}\right)$ are given by Theorem 8 .

4 Future work

With enough time and computing power, we can compute any values of $N(k, n, r, A)$ that exist. However, we have only found a formula for cases with $k=1$.

Some simple inequalities involving $N(k, n, r, A)$ are clear. For example, for $i \leq j$ we have the inequalities $N(k, i, r, A) \leq N(k, j, r, A)$ and $N(k, n, i, A) \leq N(k, n, j, A)$ when each exists. We are unable to prove the inequality $N(k, n, r, A) \leq N(k+1, n, r, A)$ even though all data seem to emphatically support it.

We have found and considered several algorithms for generating good numbers. However, none reveal a formula for the largest bad number, i.e., threshold of completeness for $k>1$.

5 Acknowledgments

We thank the editor and the anonymous referee for their time and consideration. The referee's report was thorough and included valuable suggestions.

References

[1] J. L. Brown, Jr., Note on complete sequences of integers, Amer. Math. Monthly 68 (1961), 557-560.
[2] S. Burr and P. Erdős, Completeness properties of perturbed sequences, J. Number Theory 13 (1981), 446-455.
[3] J. Deering and W. Jamieson, On anti-Waring numbers, to appear in J. Combin. Math. Combin. Comput.
[4] R. Dressler and T. Parker, 12,758, Math. Comp. 28 (1974), 313-314.
[5] C. Fuller, D. Prier, and K. Vasconi, New results on an anti-Waring problem, Involve 7 (2014), 239-244.
[6] R. L. Graham, Complete sequences of polynomial values, Duke Math. J. 31 (1964), 275-285.
[7] P. Johnson and M. Laughlin, An anti-Waring conjecture and problem, Int. J. Math. Comput. Sci. 6 (2011), 21-26.
[8] T. Kløve, Sums of distinct elements from a fixed set, Math. Comp. 29 (1975), 1144-1149.
[9] C. G. Lekkerkerker, Voorstelling van natuurlikjke getallen door een som van getallen van Fibonaaci, Simon Stevin 29 (1952), 190-195.
[10] S. Lin, Computer experiments on sequences which form integral bases, in J. Leech, ed., Computational Problems in Abstract Algebra, Pergamon Press, 1970, pp. 365-370.
[11] N. Looper and N. Saritzky, An anti-Waring theorem and proof, to appear in J. Combin. Math. Combin. Comput.
[12] C. Patterson, The Derivation of a High Speed Sieve Device, Ph.D. thesis, University of Calgary, 1992.
[13] Š. Porubský, Sums of prime powers, Monatsh. Math 86 (1979), 301-303.
[14] H. E. Richert, Über Zerlegungen in paarweise verschiedene Zahlen, Nordisk Mat. Tidskr. 31 (1949), 120-122.
[15] R. Sprague, Über Zerlegungen in ungleiche Quadratzahlen, Math. Z. 51 (1948), 289-290.
[16] R. Sprague, Über Zerlegungen in n-te Potenzen mit lauter verschiedenen Grundzahlen, Math. Z. 51 (1948), 466-468.
[17] E. Zeckendorf, Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41 (1972), 179-182.

2010 Mathematics Subject Classification: Primary 11P05; Secondary 05A17.
Keywords: complete sequence, sum of powers, anti-Waring number.
(Concerned with sequence A001661.)

Received June 18 2015; revised versions received September 13 2015; September 212015. Published in Journal of Integer Sequences, September 242015.

Return to Journal of Integer Sequences home page.

