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Abstract

We study the Kronecker symbol
(
s
t

)
for the sequence of the convergents s/t of a

purely periodic continued fraction expansion. Whereas the corresponding sequence of

Jacobi symbols is always periodic, it turns out that the sequence of Kronecker symbols

may be aperiodic. Our main result describes the period length in the periodic case in

terms of the period length of the sequence of Jacobi symbols and gives a necessary and

sufficient condition for the occurrence of the aperiodic case.

1 Introduction and main results

Let [a0, a1, a2, . . .] be the regular continued fraction expansion of an irrational number z. We
consider the convergents sk/tk, k ≥ 0, of this expansion. They are defined by the well-known
recursion formulas

s−1 = 1, t−1 = 0, s0 = a0, t0 = 1, (1)

and
sk = aksk−1 + sk−2, tk = aktk−1 + tk−2, (2)

for k ≥ 1. Then
sk/tk = [a0, . . . , ak], k ≥ 0,
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is the kth convergent of z; see [4, p. 250]. Note that tk is a positive integer for k ≥ 0.

In two recent papers [2, 3], we investigated the Jacobi symbol
(

sk
tk

)
in the periodic case,

i.e., for a quadratic irrational z. Since this symbol is defined only for odd denominators tk,

we defined
(

sk
tk

)
= ∗ if tk is even. It turned out that the sequence of Jacobi symbols

(
sk
tk

)
,

k ≥ 0, is periodic with a period length L = dl, where l is the smallest possible period length
of [a0, a1, a2, . . .] and d is a divisor of 8 or 12. We called this sequence the Jacobi sequence of
z.

The natural generalization of the Jacobi symbol
(
s
t

)
for arbitrary co-prime integers s, t,

t ≥ 1, is the Kronecker symbol. It coincides with the Jacobi symbol if t is odd. If t = 2jt′,
where j ≥ 1 and t′ is an odd natural number, one defines

(s
t

)
=
(s
2

)j ( s
t′

)
,

with
(s
2

)
=

{
1, if s ≡ ±1 (mod 8);

−1, if s ≡ ±3 (mod 8);

see [1, p. 28 ff.]. The Kronecker symbol shares many properties with the Jacobi symbol, for
instance, the reciprocity law (s

t

)
= ε(s′, t′)

(
t

s

)
, (3)

where s and t are co-prime, s = 2js′, t = 2lt′ with odd natural numbers s′, t′, and

ε(s′, t′) =

{
−1, if s′, t′ both ≡ 3 (mod 4);

1, otherwise.

So one might think that the periodicity of the Jacobi sequence can be generalized to the
corresponding sequence of Kronecker symbols, which we call the Kronecker sequence of z.
This, however, is not true, as our main result shows. Furthermore, the Kronecker sequence
requires an approach that is considerably different from that of the Jacobi case, as the reader
will see in the following sections.

Why did we not settle with less, namely, with the Jacobi sequence? The answer is as
follows: simply because our curiosity grew when the difference between the two cases became
more and more obvious.

In this paper we restrict ourselves to the purely periodic case since the mixed periodic one
seems to be much more difficult. So let z = [a0, . . . , al−1], where l has been chosen smallest
possible. In the paper [2] we have seen that the Jacobi sequence of z is purely periodic with
a period length L = dl, d ≥ 1, such that

DL =

(
sL−1 sL−2

tL−1 tL−2

)
≡ I (mod 4). (4)
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Here I is the 2 × 2 unit matrix and the congruence has to be understood entry-by-entry.
Further, we may assume that L is even (in fact, d can be chosen as a divisor of 8 or 12, but
we do not require this in what follows, since our periods are not always shortest possible).

In this setting suppose that DL = I + 2mU , m ≥ 2, where not all entries of

U =

(
x y
u v

)
(5)

are even. Suppose, further, that u = 2eu′, with e ≥ 0 and u′ odd. A convergent sk/tk of z
is called critical with respect to L, if k ≤ L − 1, sk ≡ 3 (mod 4) and tk ≡ 0 (mod 2m+e)
(since m ≥ 2, the last-mentioned condition requires tk ≡ 0 (mod 4), of course). Now our
main result reads as follows.

Theorem 1. Let the above notation hold, in particular, let z be purely periodic and L be
a period length of the Jacobi sequence with the above properties. Suppose, further, that no

critical convergent with respect to L exists. Then the Kronecker sequence
(

sk
tk

)
, k ≥ 0, is

purely periodic with period length L or 2L. If there is, conversely, a critical convergent with
respect to L, then the Kronecker sequence is aperiodic.

Remark 2. In Proposition 6 we describe the cases of period length L and 2L of the theorem
precisely. As a rule, one finds more examples with periodic Kronecker sequences than with
aperiodic ones.

Example 3. For z = [1, 2, 3] = (4 +
√
37)/7 we may choose L = 6, m = 2. Here u = 21, so

e = 0. There is no critical convergent among s0/t0, . . . , s5/t5, but the convergent s1/t1 = 3/2
has the effect that the Kronecker sequence has only period length 2L = 12.

In the case z = [1, 2, 5] = (7 +
√
82)/11 we may choose L = 12, m = 2. Here u is odd, so

e = 0. Hence the convergent s7/t7 = 975/608 is critical with respect to L and the Kronecker
sequence is aperiodic.

An aperiodic example with e > 0 is z = (5 +
√
85)/10 = [1, 2, 2], where L = 36 works

with m = 3 and e = 1. Therefore, a critical convergent sk/tk must satisfy tk ≡ 0 (mod 16).
The convergent s6/t6 = 91/64 has this property.

2 The reciprocal Jacobi sequence

An obvious way to generalize the results concerning the Jacobi sequence consists in the
generalization of the auxiliary results needed for this purpose. It turns out, however, that
this is impossible, as the following example shows. If s/t = [a0, . . . , ak] is a rational number,
then the Jacobi symbol

(
s
t

)
(which equals ∗, if t is even) depends only on the residue classes

of a0, . . . , ak mod 4. No result of this kind can hold for the Kronecker symbol. Indeed, let
s/t = 3/2j and s′/t′ = 3/(7 · 2j), where j ≥ 3 is odd. We have

s/t = [0, (2j − 2)/3, 1, 2] and s′/t′ = [0, (7 · 2j − 2)/3, 1, 2].
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Here (2j−2)/3 ≡ (7 ·2j−2)/3 (mod 2j+1). The Kronecker symbol, however, takes the values(
s
t

)
= −1 and

(
s′

t′

)
= 1.

Hence our approach to the Kronecker sequence differs from the above strategy of gen-

eralizing auxiliary Jacobi results. Instead, we consider the reciprocal Jacobi sequence
(

tk
sk

)
,

k ≥ 0 (with
(

tk
sk

)
= ∗ if sk is even). Then we use the reciprocity law (3) in order to obtain

the values of the Kronecker symbol in the case where tk is even. For this purpose we need
the following proposition.

Proposition 4. Let z = [a0, . . . , al−1]. Suppose that L = dl, d ≥ 1, is an even period length

of the Jacobi sequence of z such that (4) holds. Then the reciprocal Jacobi sequence
(

tk
sk

)
,

k ≥ 0, is purely periodic with the same period length L.

Proof. From the identity

(
sk+L sk+L−1

tk+L tk+L−1

)
= DL ·

(
sk sk−1

tk tk−1

)
, k ≥ 0, (6)

(see [2, Eq. (9)] and (4) above) we obtain

sj+L ≡ sj (mod 4), tj+L ≡ tj (mod 4) for all j ≥ −1. (7)

Hence
(

tk+L

sk+L

)
=
(

tk
sk

)
= ∗ if sk is even, k ≥ 0.

If both sk and tk are odd, we have

(
tk+L

sk+L

)
= ε(tk+L, sk+L)

(
sk+L

tk+L

)
, (8)

by quadratic reciprocity. Now (7) shows ε(tk+L, sk+L) = ε(tk, sk). Since L is a period length

of the Jacobi sequence,
(

sk+L

tk+L

)
=
(

sk
tk

)
. Accordingly, (8) says

(
tk+L

sk+L

)
= ε(tk, sk)

(
sk
tk

)
.

Finally, quadratic reciprocity shows
(

tk+L

sk+L

)
=
(

tk
sk

)
.

There remains the case tk even, sk odd. Then k ≥ 1, since t0 = 1. We use the notation
of the proof of [2, Theorem 5] and put s = sk−1, t = tk−1, p = ak, q = 1, m = sk, N = tk
and δ = (−1)k−1. Since N is even, t must be odd. Two cases have to be distinguished:

Case 1: s is odd. Then the said theorem yields

(
δt

s

)(
p

q

)(
−δN

m

)
= ε(s, q,m)
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with ε(s, q,m) = −1, if two of the numbers s, q,m are ≡ 3 (mod 4), and ε(s, q,m) = 1,
otherwise. This gives (

N

m

)
=

(
−δ

m

)(
δ

s

)
ε(s, 1,m)

(
t

s

)
.

Now ε(s, 1,m) = ε(s,m), and quadratic reciprocity implies

(
N

m

)
=

(
−δ

m

)(
δ

s

)
ε(s,m)ε(t, s)

(s
t

)
,

i.e., (
tk
sk

)
=

(
−δ

sk

)(
δ

sk−1

)
ε(sk−1, sk)ε(tk−1, sk−1)

(
sk−1

tk−1

)
. (9)

In the same way we obtain

(
tk+L

sk+L

)
=

(
−δ′

sk+L

)(
δ′

sk+L−1

)
ε(sk+L−1, sk+L)ε(tk+L−1, sk+L−1)

(
sk+L−1

tk+L−1

)
,

where δ′ = (−1)k+L−1. However, L is even, so δ′ = δ. Further, all quantities on the right
hand side of (9) except the last one depend only on δ and the residue classes of sk, sk−1 and
tk−1 (mod 4), so we may write

(
tk+L

sk+L

)
=

(
−δ

sk

)(
δ

sk−1

)
ε(sk−1, sk)ε(tk−1, sk−1)

(
sk+L−1

tk+L−1

)
.

Since L is a period length of the Jacobi sequence, we see that the right hand side of this

identity coincides with the right hand side of (9). Thus,
(

tk+L

sk+L

)
=
(

tk
sk

)
.

Case 2: s is even. Since t and m are odd, both s + t and m + N are odd. The said
theorem gives (

−δs

s+ t

)(
p

q

)(
δm

m+N

)
= ε(s+ t, q,m+N) (10)

Here we use quadratic reciprocity and obtain

(
m

m+N

)
= ε(m,m+N)

(
m+N

m

)
= ε(m,m+N)

(
N

m

)
. (11)

Similarly,

(
s

s+ t

)
=

(
−t

s+ t

)
=

(
−1

s+ t

)(
t

s+ t

)
= (12)

(
−1

s+ t

)
ε(t, s+ t)

(
s+ t

t

)
=

(
−1

s+ t

)
ε(t, s+ t)

(s
t

)
.
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From (10), (11) and (12) we obtain an expression for
(
N
m

)
=
(

tk
sk

)
which depends only on

the residue classes of sk, tk, sk−1 tk−1 mod 4 and on
(
s
t

)
=
(

sk−1

tk−1

)
. The same is true for

(
tk+L

sk+L

)
, the residue classes of sk+L, tk+L, sk+L−1, tk+L−1 mod 4 and

(
sk+L−1

tk+L−1

)
. Since L is a

period length of the Jacobi sequence, we see that
(

tk+L

sk+L

)
equals

(
tk
sk

)
.

3 Proof of Theorem 1

As above, let z = [a0, a1, . . . , al−1] be a purely periodic quadratic irrational, the convergents
sk/tk being defined as in (1) and (2). Let L be an even multiple of l such that L is a period
length of the Jacobi sequence of z and (4) holds. Again, we write

DL = I + 2mU (13)

with m ≥ 2, U as in (5) such that not all entries of U are even and u = 2eu′, e ≥ 0, u′ odd.
Let k ≥ 0 be such that sk ≡ 3 (mod 4) and tk = 2m+f t′ with −m + 1 ≤ f ≤ e − 1, t′ odd.
Note that tk is even but sk/tk is not critical with respect to L in the case k ≤ L− 1.

Lemma 5. In the above setting, let f ≤ e− 2. Then

(
sk+L

tk+L

)
=

(
sk
tk

)

and tk+L = 2m+f t′′ with t′′ ≡ t′ (mod 4). In the case f = e− 1 we have

(
sk+L

tk+L

)
= −

(
sk
tk

)

and tk+L = 2m+e−1t′′ with t′′ ≡ t′ + 2 (mod 4).

Proof. From (6), (13) and (5) we obtain

tk+L = 2musk + tk + 2mvtk. (14)

Since u = 2eu′ and tk = 2m+f t′, this reads

tk+L = 2m+f (t′ + 2e−fu′sk + 2mvt′). (15)

If f ≤ e − 2, we obtain tk+L = 2m+f t′′ with t′′ ≡ t′ (mod 4) (observe m ≥ 2). Now the
reciprocity law (3) yields (

sk+L

tk+L

)
= ε(sk+L, t

′′)

(
tk+L

sk+L

)
.
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The Kronecker symbol on the right hand side coincides with the Jacobi symbol, since sk and,
consequently, sk+L is odd. Moreover, sk+L ≡ sk (mod 4) and t′′ ≡ t′ (mod 4). In addition,
the reciprocal Jacobi sequence has the period length L. From this we conclude

(
sk+L

tk+L

)
= ε(sk, t

′)

(
tk
sk

)
.

On applying the reciprocity law (3) again, we have

(
sk+L

tk+L

)
=

(
sk
tk

)
. (16)

In the case f = e − 1 we observe that e − f = 1 and u′sk is odd. Accordingly, (15) shows
tk+L = 2m+e−1t′′ with t′′ ≡ t′ + 2 (mod 4). Moreover, sk+L ≡ sk ≡ 3 (mod 4), and so
ε(sk+L, t

′′) = −ε(sk, t
′). This produces a sign change on the right hand side of (16).

The periodic case of the Kronecker symbol is contained in the following proposition.

Proposition 6. In the above setting, suppose there are no critical convergents with respect
to L. Then the Kronecker sequence is purely periodic with period length L except if there is
a convergent sk/tk with k ≤ L − 1, sk ≡ 3 (mod 4) and tk = 2m+e−1t′, t′ odd. In this case
the Kronecker sequence is purely periodic with period length 2L.

Proof. We consider an arbitrary convergent sk/tk. If tk is odd, the Kronecker symbol coin-

cides with the Jacobi symbol, which means
(

sk+L

tk+L

)
=
(

sk
tk

)
. If tk is even and sk ≡ 1 (mod

4), we have (
sk
tk

)
= ε(sk, t

′)

(
tk
sk

)
,

where t′ is the odd part of tk. However, ε(sk, t
′) = 1 since sk ≡ 1 (mod 4). Hence we obtain(

sk
tk

)
=
(

tk
sk

)
. In the same way,

(
sk+L

tk+L

)
=
(

tk+L

sk+L

)
, because sk+L ≡ sk (mod 4). Now the

periodicity of the reciprocal Jacobi sequence
(

tk
sk

)
, k ≥ 0, shows

(
sk+L

tk+L

)
=
(

sk
tk

)
.

The case tk even and sk ≡ 3 (mod 4) is contained in Lemma 1. If k ≤ L−1 and f ≤ e−2,

we have
(

sk+dL

tk+dL

)
=
(

sk
tk

)
for all natural numbers d. Finally, if k ≤ L− 1 and f = e− 1, we

obtain (
sk+dL

tk+dL

)
= (−1)d

(
sk
tk

)
.

In this situation the period length is 2L.

Suppose now that k ≤ L − 1 and sk/tk is critical with respect to L. Hence we have
sk ≡ 3 (mod 4) and tk ≡ 0 (mod 2m+e). Recall the definition of m and e: by (13), we have
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DL = I + 2mU , not all entries of U even; and the left lower entry u of U satisfies u = 2eu′,
u′ odd. The relation (6) implies D2L = D2

L. Therefore, this matrix reads

D2L = I + 2m+1Ũ with Ũ = U + 2m−1U2. (17)

Since U is as in (5), the left lower entry of U2 equals u(x+ v), in particular, it is ≡ 0 (mod

2e). Accordingly, the left lower entry ũ of Ũ , i.e., ũ = u+ 2m−1u(x+ v), is ≡ u (mod 2e+1),
since m ≥ 2. Hence ũ = 2eu′′, u′′ odd, with the same exponent e. This means the following.
If tk ≡ 0 (mod 2m+e+1), the convergent sk/tk is also critical with respect to 2L. Note that,
in this case, m has to be replaced by m+ 1 but e remains the same.

Hence there is a number r ≥ 0 such that sk/tk is critical with respect to 2rL but not
with respect to 2r+1L. In the following lemma we suppose that r has been chosen in this
way. For the sake of simplicity, however, we simply write L instead of 2rL and adopt the
other notation connected with DL. Then tk = 2m+et′, t′ odd.

Lemma 7. In the above setting, let k ≤ L−1. Suppose that sk/tk is critical with respect to L
but not critical with respect to 2L. Then sk+L/tk+L is critical with respect to 2L. Moreover,
for every d ≥ 1, (

sk+2dL

tk+2dL

)
= (−1)d

(
sk
tk

)
.

Proof. As above, we write tk = 2m+et′, t′ odd. Our situation corresponds to the case f = e
in formula (15), and so

tk+L = 2m+e(t′ + u′sk + 2mvt′).

Here, however t′, u′ and sk are odd. Accordingly, tk+L ≡ 0 (mod 2m+e+1), which means that
sk+L/tk+L is critical with respect to 2L, as we have seen above.

As in (17) we write D2L = D2
L = I + 2m+1Ũ , where the matrix Ũ has the lower entries

ũ = 2eu′′, u′′ odd, and ṽ. In this case the analogue of (14) reads

tk+2L = 2m+1ũsk + tk + 2m+1ṽtk. (18)

If we insert ũ = 2eu′′ and tk = 2m+et′, we obtain

tk+2L = 2m+e(2u′′sk + t′ + 2m+1ṽt′).

Because u′′ and sk are odd, this yields

tk+2L = 2m+et′′ with t′′ ≡ t′ + 2 (mod 4). (19)

As in the proof of Lemma 5 we use the reciprocity law and obtain

(
sk+2L

tk+2L

)
= ε(sk+2L, t

′′)

(
tk+2L

sk+2L

)
.
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By (19), ε(sk+2L, t
′′) = −ε(sk, t

′). Now the periodicity of the reciprocal Jacobi sequence
combined with another application of the reciprocity law yields

(
sk+2L

tk+2L

)
= −

(
sk
tk

)
.

Next formula (18) gives

tk+4L = 2m+1ũsk+2L + tk+2L + 2m+1ṽtk+2L.

On inserting ũ = 2eu′′ and tk+2L = 2m+et′′, we have

tk+4L = 2m+e(2u′′sk+2L + t′′ + 2m+1ṽt′′).

Since u′′ and sk+2L are odd, this gives

tk+4L = 2m+et′′′ with t′′′ ≡ t′′ + 2 (mod 4).

Now the above arguments show

(
sk+4L

tk+4L

)
= −

(
sk+2L

tk+2L

)
=

(
sk
tk

)
.

The general case k + 2dL, d ≥ 1, is settled in the same way by induction.

Let L be such that sk/tk is critical with respect to L. Then there is a number r1 ≥ 0
such that sk/tk is critical with respect to 2r1L but not with respect to 2r1+1L. Put k1 = k
and k2 = k + 2r1L. By Lemma 7, sk2/tk2 is critical with respect to 2r1+1L. Hence there is
a number r2 > r1 such that sk2/tk2 is critical with respect to 2r2L but not with respect to
2r2+1L. In this way we obtain an infinite sequence (kj , rj), j ≥ 1, which is strictly increasing
in both arguments such that skj/tkj is critical with respect to 2rjL but not with respect to
2rj+1L.

Example 8. In the case of the above example (7 +
√
82)/11 = [1, 2, 5] the convergent s7/t7

is critical with respect to L = 12, but not critical with respect to 2L = 24. Hence we have
k1 = 7, r1 = 0. Since 7 + L = 19, Lemma 7 says that s19/t19 is critical with respect to 2L.
Since it is not critical with respect to 4L, we have k2 = 19, r2 = 1. Now 19 + 2L = 43, and
s43/t43 is critical with respect to 8L, but not with respect to 16L. Hence k3 = 43 and r3 = 3.
Next we have 43 + 8L = 139, s139/t139 is critical with respect to 64L, but not with respect
to 128L. So we have k4 = 139 and r4 = 6. Accordingly, the first members of our sequence
are (7, 0), (19, 1), (43, 3) and (139, 6).

Proof of Theorem 1. We have only to consider the case that there is a critical convergent
with respect to L. Hence we know that there is a sequence (kj, rj) with the above properties.
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Suppose that the Kronecker sequence is periodic with period length 2idL, i ≥ 0, d ≥ 1, d
odd. Then there is an integer k0 ≥ 0 such that for all k ≥ k0

(
sk+2idL

tk+2idL

)
=

(
sk
tk

)
.

We choose a member (kj , rj) of our sequence in such a way that kj ≥ k0 and rj ≥ i − 1.
Then 2rj+1dL is a multiple of 2idL, and so

(
s
kj+2

rj+1
dL

t
kj+2

rj+1
dL

)
=

(
skj
tkj

)
,

by periodicity. By Lemma 7, however,

(
s
kj+2

rj+1
dL

t
kj+2

rj+1
dL

)
= (−1)d

(
skj
tkj

)
.

Since d is odd, this is a contradiction.
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