Special Numbers in the Ring \mathbb{Z}_{n}

Joshua Harrington
Department of Mathematics
Cedar Crest College
Allentown, PA 18104
USA
Joshua.Harrington@cedarcrest.edu
Samuel S. Gross
Noblis, Inc.
Falls Church, VA 22042
USA
samuel.gross@noblis-nsp.com

Abstract

In a recent article, Nowicki introduced the concept of a special number. Specifically, an integer d is called special if for every integer m there exist solutions in non-zero integers a, b, c to the equation $a^{2}+b^{2}-d c^{2}=m$. In this article we investigate pairs of integers (n, d), with $n \geq 2$, such that for every integer m there exist units a, b, and c in \mathbb{Z}_{n} satisfying $m \equiv a^{2}+b^{2}-d c^{2}(\bmod n)$. By refining a recent result of Harrington, Jones, and Lamarche on representing integers as the sum of two non-zero squares in \mathbb{Z}_{n}, we establish a complete characterization of all such pairs.

1 Introduction

The following definition was recently stated by Nowicki [4].
Definition 1. We call a positive integer d special if for every integer m there exist non-zero integers a, b, and c so that $a^{2}+b^{2}-d c^{2}=m$.

The necessary conditions of the following theorem were proven by Nowicki, while Lam [3] later provided the sufficient conditions.

Theorem 2. An integer d is special if and only if d is of the form q or $2 q$ where either $q=1$ or q is a product of primes all congruent to 1 modulo 4.

With this complete representation of special numbers, the following theorem follows from Dirichlet's theorem on primes in arithmetic progression (see Theorem 8 below) and the Chinese remainder theorem. For completeness, we provide a proof of this theorem in Section 4.

Theorem 3. For any odd integer $n \geq 3$, any d with $\operatorname{gcd}(d, n)=1$, and any integer m, there exist integers a, b, and c such that $a^{2}+b^{2}-d c^{2} \equiv m(\bmod n)$.

In light of Theorem 3, we give the following definition, which imposes a unit restriction on a, b, and c.

Definition 4. We say that d is unit-special in \mathbb{Z}_{n} if for an integer m, there exist units a, b, and c in \mathbb{Z}_{n} with $a^{2}+b^{2}-d c^{2} \equiv m(\bmod n)$.

We note that the requirement that a, b, and c be units in \mathbb{Z}_{n} ensures that a^{2}, b^{2}, and c^{2} are non-zero in \mathbb{Z}_{n}. Although one could loosen this restriction to just require a^{2}, b^{2}, and c^{2} to be non-zero, this is not the setting that we investigate in this article. Among the results in this article, we provide the following complete characterization of unit-special numbers in \mathbb{Z}_{n}.

Theorem 5. Let n be a positive integer. An integer d is unit-special in \mathbb{Z}_{n} if and only if the following three conditions hold:

- n is not divisible by 2 or 3 .
- If $p \equiv 3(\bmod 4)$ is prime and p divides n, then $\operatorname{gcd}(d, p)=1$.
- If 5 divides n, then $d \equiv \pm 2(\bmod 5)$.

To establish Theorem 5 we first refine a recent result of Harrington, Jones, and Lamarche [2] on representing integers as the sum of two non-zero squares in the ring \mathbb{Z}_{n}, stated below.

Theorem 6. Let $n \geq 2$ be an integer. The equation

$$
x^{2}+y^{2} \equiv z \quad(\bmod n)
$$

has a non-trivial solution $\left(x^{2}, y^{2} \not \equiv 0(\bmod n)\right)$ for all z in \mathbb{Z}_{n} if and only if all of the following are true.

1. q^{2} does not divide n for any prime $q \equiv 3(\bmod 4)$.
2. 4 does not divide n.
3. n is divisible by some prime $p \equiv 1(\bmod 4)$.
4. If n is odd and $n=5^{k} m$ with $\operatorname{gcd}(5, m)=1$ and $k<3$, then m is divisible by some prime $p \equiv 1(\bmod 4)$.

At the end of their article, Harrington, Jones, and Lamarche ask the following question.
Question 1. Theorem 6 considers the situation when the entire ring \mathbb{Z}_{n} can be obtained as the sum of two non-zero squares. When this cannot be attained, how badly does it fail?

In this article, we address Question 1 in a slightly refined setting. In particular, we prove the following theorem.

Theorem 7. Let $n \geq 2$ be an integer. For a fixed integer z, there exist units a and b in \mathbb{Z}_{n} such that $a^{2}+b^{2} \equiv z(\bmod n)$ if and only if all of the following hold:

- If $p \equiv 3(\bmod 4)$ is a prime dividing n, then $\operatorname{gcd}(z, p)=1$.
- If 5 divides n, then $z \not \equiv \pm 1(\bmod 5)$.
- If 3 divides n, then $z \equiv 2(\bmod 3)$.
- If 2 divides n and 4 does not, then $z \equiv 0(\bmod 2)$.
- If 4 divides n and 8 does not, then $z \equiv 2(\bmod 4)$.
- If 8 divides n, then $z \equiv 2(\bmod 8)$.

We again note that the requirement that a and b are units in \mathbb{Z}_{n} ensures that a^{2} and b^{2} are non-zero in \mathbb{Z}_{n}. Since Question 1 does not have the unit restriction, Theorem 7 does not give a complete answer to the question. However, it does provide sufficient conditions in the setting of Question 1. Although the majority of this article focuses on the refined setting where a and b are units in \mathbb{Z}_{n}, we do briefly investigate the more general setting of Question 1 and provide a result in this direction.

2 Preliminaries and notation

We will make use of the following results and definitions from classical number theory (see, for example [1]).

Theorem 8 (Dirichlet). Let a, b be integers such that $\operatorname{gcd}(a, b)=1$. Then the sequence $\{a k+b\}$, over integers k, contains infinitely many primes.

Definition 9. Let p be an odd prime. The Legendre symbol of an integer a modulo p is given by

$$
\left(\frac{a}{p}\right)= \begin{cases}1, & \text { if } a \text { is a non-zero square modulo } p \\ -1, & \text { if } a \text { is not a square modulo } p \\ 0, & \text { if } a \equiv 0 \quad(\bmod p)\end{cases}
$$

Theorem 10. Let $p \geq 7$ be a prime. There exist non-zero elements t, u, v, and w in \mathbb{Z}_{p} such that

$$
\left.\begin{array}{rlrl}
\left(\frac{u}{p}\right) & =\left(\frac{u+1}{p}\right)=1, & \left(\frac{v}{p}\right) & =\left(\frac{v+1}{p}\right)=-1, \\
\left(\frac{w}{p}\right) & =-\left(\frac{w+1}{p}\right)=1, & \text { and } & \left(\frac{t}{p}\right)
\end{array}\right)=-\left(\frac{t+1}{p}\right)=-1 . ~ l
$$

The following result can be found in a book of Suzuki's [5] and is originally due to Euler.
Theorem 11. A positive integer z can be written as the sum of two squares if and only if all prime factors q of z with $q \equiv 3(\bmod 4)$ occur with even exponent.

The following theorem, which follows immediately from the Chinese remainder theorem, appears in Harrington, Jones, and Lamarche's article.

Theorem 12. Suppose that $m_{1}, m_{2}, \ldots, m_{t}$ are all pairwise relatively prime integers ≥ 2, and set $M=m_{1} m_{2} \cdots m_{k}$. Let $c_{1}, c_{2}, \ldots, c_{t}$ be any integers, and let $x \equiv c(\bmod M)$ be the solution of the system of congruences $x \equiv c_{i}\left(\bmod m_{i}\right)$ using the Chinese remainder theorem. Then there exists a y such that $y^{2} \equiv c(\bmod M)$ if and only if there exist $y_{1}, y_{2}, \ldots, y_{t}$ such that $y_{i}^{2} \equiv c_{i}\left(\bmod m_{i}\right)$.

3 Sums of squares in \mathbb{Z}_{n}

We begin by examining when integers are a sum of two unit squares modulo n. Later we shall relax this condition and only require both squares to be non-zero modulo n.

Let us first examine the case when the modulus is a power of 2 .
Theorem 13. Let k be a positive integer. For a fixed integer z, there exist units a and b in $\mathbb{Z}_{2^{k}}$ such that $a^{2}+b^{2} \equiv z\left(\bmod 2^{k}\right)$ if and only if one of the following is true:

- $k=1$ and $z \equiv 0(\bmod 2) ;$
- $k=2$ and $z \equiv 2(\bmod 4)$;
- $k \geq 3$ and $z \equiv 2(\bmod 8)$.

Proof. We computationally check that the theorem is true for $k \leq 3$.
Suppose $k>3$. If $a^{2}+b^{2} \equiv z\left(\bmod 2^{k}\right)$, then $a^{2}+b^{2} \equiv z(\bmod 8)$. Thus, we deduce that $z \equiv 2(\bmod 8)$.

Conversely, suppose that $z \equiv 2(\bmod 8)$. We proceed with a proof by induction on k. We have already established the base case $k \leq 3$. Suppose that the theorem holds for $k-1$ so that that there are units a and b in $\mathbb{Z}_{2^{k-1}}$ such that $a^{2}+b^{2} \equiv z\left(\bmod 2^{k-1}\right)$. Then for some odd integer t and some integer $r \geq k-1$ we can write

$$
a^{2}+b^{2}=z+t 2^{r} .
$$

If $r \geq k$, then $a^{2}+b^{2} \equiv z\left(\bmod 2^{k}\right)$, as desired. So suppose that $r=k-1$. Then

$$
\begin{aligned}
a^{2}+\left(b+2^{k-2}\right)^{2} & =a^{2}+b^{2}+b 2^{k-1}+2^{2 k-4} \\
& =z+t 2^{k-1}+b 2^{k-1}+2^{2 k-4} \\
& =z+2^{k-1}(t+b)+2^{2 k-4}
\end{aligned}
$$

Since $k \geq 4$, we know that $2^{2 k-4} \equiv 0\left(\bmod 2^{k}\right)$. Also, since b was chosen to be a unit in $\mathbb{Z}_{2^{k-1}}$, then b must be odd. Thus, $t+b$ is even and we deduce that $2^{k-1}(t+b) \equiv 0\left(\bmod 2^{k}\right)$. Hence,

$$
a^{2}+\left(b+2^{k-2}\right)^{2} \equiv z \quad\left(\bmod 2^{k}\right)
$$

It follows that $b+2^{k-2}$ is an odd integer and is therefore a unit in $\mathbb{Z}_{2^{k}}$, as desired.
We next treat the case where the modulus is a power of an odd prime. The following is an application of Hensel's Lifting Lemma. We provide the proof here for completeness.

Lemma 14. For an odd prime p and integer z, suppose there are non-zero elements a and b_{1} in \mathbb{Z}_{p} such that $a^{2}+b_{1}^{2} \equiv z(\bmod p)$. Then for any positive integer k, the integer a is a unit in $\mathbb{Z}_{p^{k}}$ and there exists a unit b_{k} in $\mathbb{Z}_{p^{k}}$ such that $a^{2}+b_{k}^{2} \equiv z\left(\bmod p^{k}\right)$.

Proof. Suppose that $a^{2}+b_{1}^{2} \equiv z(\bmod p)$ for some non-zero elements a and b_{1} in \mathbb{Z}_{p}. Then for some integer $t_{1}, a^{2}+b_{1}^{2}=z+t_{1} p$. Let $b_{2} \equiv b_{1}-t_{1} p\left(2 b_{1}\right)^{-1}\left(\bmod p^{2}\right)$, and note that b_{2} is a unit in $\mathbb{Z}_{p^{2}}$. It follows that

$$
\begin{aligned}
a^{2}+b_{2}^{2} & \equiv a^{2}+\left(b_{1}-t_{1} p\left(2 b_{1}\right)^{-1}\right)^{2} \quad\left(\bmod p^{2}\right) \\
& \equiv a^{2}+b_{1}^{2}-t_{1} p \quad\left(\bmod p^{2}\right) \\
& \equiv z+t_{1} p-t_{1} p \quad\left(\bmod p^{2}\right) \\
& \equiv z \quad\left(\bmod p^{2}\right) .
\end{aligned}
$$

Since a is also a unit modulo p^{2}, this proves the result for $k=2$. The remainder of the theorem now follows by induction on k with

$$
a^{2}+b_{k+1}^{2} \equiv z \quad\left(\bmod p^{k+1}\right)
$$

where $b_{k+1} \equiv b_{k}-t_{k} p^{k}\left(2 b_{k}\right)^{-1}\left(\bmod p^{k}\right)$ with t_{k} satisfying $a^{2}+b_{k}^{2}=z+t_{k} p^{k}$.
An appropriate converse for Lemma 14 can be stated, however the information contained in such a statement varies with the modulus. Specifically, we can easily prove the following two theorems after verifying the base case $k=1$ and applying Lemma 14.

Theorem 15. Let k be a positive integer. For a fixed integer z, there exist units a and b in $\mathbb{Z}_{3^{k}}$ with $a^{2}+b^{2} \equiv z\left(\bmod 3^{k}\right)$ if and only if $z \equiv 2(\bmod 3)$.

Theorem 16. Let k be a positive integer. For a fixed integer z, there exist units a and b in $\mathbb{Z}_{5^{k}}$ with $a^{2}+b^{2} \equiv z\left(\bmod 5^{k}\right)$ if and only if $z \not \equiv \pm 1(\bmod 5)$.

For powers of primes that are 1 modulo 4 , we have the following theorem which is a bit more general then Lemma 14.

Theorem 17. Let $p \geq 13$ be a prime with $p \equiv 1(\bmod 4)$ and let k be a positive integer. For every integer z, there exist units a and b in $\mathbb{Z}_{p^{k}}$ such that $a^{2}+b^{2} \equiv z\left(\bmod p^{k}\right)$.

Proof. We show that the result holds for $k=1$ and the remainder of the proof will follow from Lemma 14. So let $k=1$. First suppose that $z \equiv 0(\bmod p)$. Since $p \equiv 1(\bmod 4)$, we know that -1 is a square modulo p. Thus, we can let

$$
a^{2} \equiv 1 \quad(\bmod p) \quad \text { and } \quad b^{2} \equiv p-1 \quad(\bmod p)
$$

so that $a^{2}+b^{2} \equiv z(\bmod p)$, where a and b are units modulo p.
Now suppose that $z \not \equiv 0(\bmod p)$. Since $p \geq 7$, we can use Theorem 10 to choose u such that

$$
\left(\frac{u}{p}\right)=\left(\frac{u-1}{p}\right)=\left(\frac{z}{p}\right) .
$$

It follows that

$$
\left(\frac{u z}{p}\right)=\left(\frac{-(u-1) z}{p}\right)=1 .
$$

Thus, letting

$$
a^{2} \equiv u z \quad(\bmod p) \quad \text { and } \quad b^{2} \equiv-(u-1) z \quad(\bmod p)
$$

proves the result for $k=1$ since $u, u-1$, and z are all units modulo p.
In the next corollary, which provides an extension of Theorem 6 to our new unit-setting, we piece together the information in Theorem 17 using the Chinese remainder theorem as stated in Theorem 12.

Corollary 18. Let $n \geq 13$ be an odd integer not divisible by 5 and with all prime divisors congruent to 1 modulo 4. Then for any fixed integer z, there exist units a and b in \mathbb{Z}_{n} with $a^{2}+b^{2} \equiv z(\bmod n)$.

We now turn our attention to primes that are 3 modulo 4 .
Theorem 19. Let $p \geq 7$ be a prime with $p \equiv 3(\bmod 4)$ and let k be a positive integer. For a fixed integer z, there exist units a and b in $\mathbb{Z}_{p^{k}}$ with $a^{2}+b^{2} \equiv z\left(\bmod p^{k}\right)$ if and only if z is a unit in $\mathbb{Z}_{p^{k}}$.

Proof. First suppose that the a and b are units modulo p^{k} with $a^{2}+b^{2} \equiv z\left(\bmod p^{k}\right)$. If z is not a unit modulo p^{k}, then $z \equiv x p\left(\bmod p^{k}\right)$ for some integer x, whence $z \equiv 0(\bmod p)$. It follows that $a^{2} \equiv-b^{2}(\bmod p)$. However, this leads to a contradiction since

$$
\left(\frac{-b^{2}}{p}\right)=\left(\frac{-1}{p}\right) \cdot\left(\frac{b^{2}}{p}\right)=-1
$$

For the converse, we show that the result holds for $k=1$ and the remainder of the proof will follow from Lemma 14. In this case, choose u from Theorem 10 such that

$$
\left(\frac{u}{p}\right)=-\left(\frac{u-1}{p}\right)=\left(\frac{z}{p}\right) .
$$

It follows that

$$
\left(\frac{u z}{p}\right)=\left(\frac{-(u-1) z}{p}\right)=1
$$

Thus, letting

$$
a^{2} \equiv u z \quad(\bmod p) \quad \text { and } \quad b^{2} \equiv-(u-1) z \quad(\bmod p)
$$

proves the result for $k=1$ since $u, u-1$, and z are all units modulo p.
Piecing together Theorems 13,15,16,17, and 19 using the Chinese remainder theorem as stated in Theorem 12 provides a proof for Theorem 7. We note once more that Theorem 7 provides some insight in to Question 1.

The following two corollaries are immediate consequences of Theorem 7.
Corollary 20. Suppose n is odd and not divisible by 3 or 5 . If z is a unit modulo n, then there exist units a and b in \mathbb{Z}_{n} such that $a^{2}+b^{2} \equiv z(\bmod n)$.

Corollary 21. If n is even, then no unit can be written as the sum of two square units.
To further address Question 1, in the following theorem we loosen the restriction that a and b are units in $\mathbb{Z}_{p^{k}}$ and instead only require a^{2} and b^{2} to be non-zero modulo p^{k}.

Theorem 22. Let $p \geq 7$ be a prime with $p \equiv 3(\bmod 4)$ and let k be a positive integer. For a fixed non-zero element $z \in \mathbb{Z}_{p^{k}}$, there exist elements a and b with a^{2} and b^{2} each non-zero in $\mathbb{Z}_{p^{k}}$ such that $a^{2}+b^{2} \equiv z\left(\bmod p^{k}\right)$ if and only if $z \equiv x p^{r}\left(\bmod p^{k}\right)$ for some unit x in $\mathbb{Z}_{p^{k}}$ and some non-negative even integer $r<k$.

Proof. Suppose that a^{2} and b^{2} are non-zero elements in $\mathbb{Z}_{p^{k}}$ with $a^{2}+b^{2} \equiv z\left(\bmod p^{k}\right)$. If z is a unit in $\mathbb{Z}_{p^{k}}$, then we may write $z \equiv z p^{0}\left(\bmod p^{k}\right)$ which proves the result. Suppose, then, that z is not a unit in $\mathbb{Z}_{p^{k}}$. Since $z \not \equiv 0\left(\bmod p^{k}\right)$, then we can write $z \equiv x p^{r}\left(\bmod p^{k}\right)$ for some unit $x \in \mathbb{Z}_{p^{k}}$ and some positive integer $r<k$. Thus,

$$
a^{2}+b^{2}=x p^{r}+c p^{k}=p^{r}\left(x+c p^{k-r}\right),
$$

for some $c \in \mathbb{Z}$. It follows that p divides $a^{2}+b^{2}$, but p does not divide $x+c p^{k-r}$ since x is a unit in $\mathbb{Z}_{p^{k}}$. Hence, p^{r} divides $a^{2}+b^{2}$, but p^{r+1} does not. Since $p \equiv 3(\bmod 4)$, it follows by Theorem 11 that r must be even.

Conversely, suppose that $z \equiv x p^{r}\left(\bmod p^{k}\right)$ for some unit $x \in \mathbb{Z}_{p^{k}}$ and some non-negative even integer $r<k$. Since x is a unit in $\mathbb{Z}_{p^{k}}$, it follows by Theorem 19 that there exist units
u and v such that $u^{2}+v^{2} \equiv x\left(\bmod p^{k}\right)$. Since r is an even integer, we may define $a \equiv u p^{r / 2}$ $\left(\bmod p^{k}\right)$ and $b \equiv v p^{r / 2}\left(\bmod p^{k}\right)$. Notice that a^{2} and b^{2} are non-zero in $\mathbb{Z}_{p^{k}}$ since $r<k$. Furthermore,

$$
\begin{aligned}
a^{2}+b^{2} & \equiv\left(u p^{r / 2}\right)^{2}+\left(v p^{r / 2}\right)^{2} \quad\left(\bmod p^{k}\right) \\
& \equiv u^{2} p^{r}+v^{2} p^{r} \quad\left(\bmod p^{k}\right) \\
& \equiv x p^{r} \quad\left(\bmod p^{k}\right) .
\end{aligned}
$$

This completes the proof of the theorem.
The Chinese remainder theorem as stated in Theorem 12 along with Theorems 6 and 22 partially answers Question 1 when n is not divisible by 2 or 3 .

4 Special numbers in \mathbb{Z}_{n}

For convenience and completeness, we restate and prove Theorem 3.
Theorem. For any odd integer $n \geq 3$, any unit d in \mathbb{Z}_{n}, and any integer m, there exist integers a, b, and c such that $a^{2}+b^{2}-d c^{2} \equiv m(\bmod n)$.

Proof. Let $n \geq 3$ be an integer and let d be a unit in \mathbb{Z}_{n}. By the Chinese remainder theorem and Theorem 8 there exists some prime p satisfying

$$
p \equiv 1 \quad(\bmod 4) \quad \text { and } \quad p \equiv d \quad(\bmod n)
$$

It follows from Theorem 2 that such a prime must be a special number. Therefore, for any integer m, there exist integers a, b, and c such that $a^{2}+b^{2}-p c^{2}=m$. In this case a, b, and c will satisfy

$$
a^{2}+b^{2}-d c^{2} \equiv m \quad(\bmod n)
$$

This proves the theorem.
Our main goal in this section is to prove Theorem 5. To do this, we first establish three lemmas.

Lemma 23. Let k be a positive integer. Then there are no unit-special numbers modulo 2^{k} or 3^{k}.

Proof. The theorem can be checked computationally for $k=1$. Let $p \in\{2,3\}$ and $k>1$. Suppose that d is unit-special in $\mathbb{Z}_{p^{k}}$. Then there exist units a, b, and c in $\mathbb{Z}_{p^{k}}$ such that $a^{2}+b^{2}-d c^{2} \equiv z\left(\bmod p^{k}\right)$ for all $z \in \mathbb{Z}_{p^{k}}$. It follows that $a^{2}+b^{2}-d c^{2} \equiv z(\bmod p)$. However, since d is not unit-special in \mathbb{Z}_{p}, there is some element $z \in \mathbb{Z}_{p}$ that cannot be written in this form. Therefore d cannot be unit-special in $\mathbb{Z}_{p^{k}}$.

Lemma 24. Let k be a positive integer. An integer d is unit-special in $\mathbb{Z}_{5^{k}}$ if and only if $d \equiv \pm 2(\bmod 5)$.

Proof. The theorem can be verified computationally for $k=1$. If d is unit-special in $\mathbb{Z}_{5^{k}}$ for some $k>1$, then d is also unit-special modulo 5 whence $d \equiv \pm 2(\bmod 5)$.

Conversely, suppose that $k>1$ and $d \equiv \pm 2(\bmod 5)$. Let m be any fixed integer. Then there exist units a, b, and c modulo 5 such that $a^{2}+b^{2}-d c^{2} \equiv m(\bmod 5)$. As such, by Lemma 14 there exists a unit $b_{k} \in \mathbb{Z}_{5^{k}}$ with

$$
a^{2}+b_{k}^{2} \equiv m+d c^{2} \quad\left(\bmod 5^{k}\right)
$$

Therefore the result holds for all positive integers k.
Lemma 25. For an odd positive integer n not divisible by 3 or 5 , if d is a unit in \mathbb{Z}_{n}, then d is unit-special in \mathbb{Z}_{n}.

Proof. Let d be a unit modulo n, and fix $m \in \mathbb{Z}_{n}$. We proceed with two cases as to whether or not $m+d$ is a unit modulo n.

Suppose $m+d$ is a unit modulo n, then by Corollary 20 we may obtain units a and b modulo n such that

$$
a^{2}+b^{2} \equiv m+d \quad(\bmod n) .
$$

The result follows by choosing $c \equiv 1(\bmod n)$.
Now suppose that $m+d$ is not a unit modulo n. Factor n as

$$
n=\left(\prod_{i=1}^{t} p_{i}^{e_{i}}\right) \cdot\left(\prod_{j=1}^{r} q_{j}^{f_{j}}\right)
$$

where each p_{i} is distinct with $m+d \not \equiv 0\left(\bmod p_{i}\right)$, and each q_{j} is distinct with $m+d \equiv 0$ $\left(\bmod q_{j}\right)$. Then it follows from Corollary 20 that there exist units a_{i} and b_{i} in $\mathbb{Z}_{p^{e_{i}}}$ such that $a_{i}^{2}+b_{i}^{2} \equiv m+d\left(\bmod p_{i}\right)$. Now, notice that since d is a unit modulo n, then d is also a unit modulo q_{j}. We deduce that $m+4 d \not \equiv 0\left(\bmod q_{j}\right)$, since otherwise

$$
m+d \equiv 0 \quad\left(\bmod q_{j}\right) \equiv m+4 d \quad\left(\bmod q_{j}\right)
$$

would imply that $4 \equiv 1\left(\bmod q_{j}\right)$. This cannot happen since n is not divisible by 3 . Thus, $m+4 d$ is a unit in $\mathbb{Z}_{q_{j}}$. It follows from Corollary 20 that there exist units a_{i}^{\prime} and b_{i}^{\prime} in $\mathbb{Z}_{q_{j}^{f_{j}}}$ such that

$$
\left(a_{i}^{\prime}\right)^{2}+\left(b_{i}^{\prime}\right)^{2} \equiv m+4 d \quad\left(\bmod q_{j}^{f_{j}}\right)
$$

Next, we use the Chinese remainder theorem to choose a, b, and c which satisfy the system of congruences

$$
\begin{array}{rlll}
a \equiv a_{i} & \left(\bmod p_{i}^{e_{i}}\right) & a \equiv a_{i}^{\prime} & \left(\bmod q_{j}^{f_{j}}\right) \\
b \equiv b_{i} & \left(\bmod p_{i}^{e_{i}}\right) & b \equiv b_{i}^{\prime} & \left(\bmod q_{j}^{f_{j}}\right)
\end{array}
$$

and

$$
c \equiv 1 \quad\left(\bmod p_{i}^{e_{i}}\right) \quad c \equiv 2 \quad\left(\bmod q_{j}^{f_{j}}\right)
$$

This ensures that a, b, and c are units in \mathbb{Z}_{n} with $a^{2}+b^{2}-d c^{2} \equiv m(\bmod n)$.
The following Corollary follows from Lemma 25 and Theorem 3.
Corollary 26. Let n be an odd positive integer with $n \notin\{1,3,5,9,25\}$. Then every integer can be written as the sum of three non-zero squares in \mathbb{Z}_{n}.

Proof. Write $n=3^{r} 5^{t} m$ with m relatively prime to 3 and 5 . First suppose that $m \neq 1$. Since -1 is a unit in \mathbb{Z}_{m}, it follows from Lemma 25 that for any integer z there exist units a_{1}, b_{1}, and c_{1} in \mathbb{Z}_{m} such that $a_{1}^{2}+b_{1}^{2}+c_{1}^{2} \equiv z(\bmod m)$. Theorem 3 implies that there exist integers a_{2}, b_{2}, and c_{2} such that $a_{2}^{2}+b_{2}^{2}+c_{2}^{2} \equiv z\left(\bmod 3^{r} 5^{t}\right)$. Using the Chinese remainder theorem as stated in Theorem 12, there exist a, b, and c such that $a^{2}+b^{2}+c^{2} \equiv z(\bmod n)$. Such a choice of a ensures that $a^{2} \equiv a_{1}^{2}(\bmod m)$. Since a_{1} is relatively prime to m we see that m does not divide a^{2}. Thus, n does not divide a^{2}. This shows that a^{2} is non-zero in \mathbb{Z}_{n}. Similar arguments show that b^{2} and c^{2} are non-zero in \mathbb{Z}_{n}.

Now suppose that $m=1$ so that $n=3^{r} 5^{t}$. Following the Hensel Lifting argument of Lemma 14, it is easy to show that for a positive integer k, if z can be written as the sum of three non-zero squares in $\mathbb{Z}_{3^{k-1}}$, then it can also be written as the sum of three non-zero squares in $\mathbb{Z}_{3^{k}}$. We check computationally that every integer can be written as the sum of three non-zero squares in $\mathbb{Z}_{3^{3}}$. Thus, for $k \geq 3$, we can write every integer as the sum of three non-zero squares in $\mathbb{Z}_{3^{k}}$. The same argument shows that we can also write every integer as the sum of three non-zero squares in \mathbb{Z}_{5}. Using an argument similar to the one in the first paragraph of the proof, it then follows that if $r \geq 3$ or $t \geq 3$, every integer can be written as the sum of three non-zero squares in \mathbb{Z}_{n}. The remaining finite number of cases can easily be confirmed computationally.

We are now in a position to prove Theorem 5.
Proof of Theorem 5. Lemma 23 implies that if d is unit-special in \mathbb{Z}_{n}, then n is not divisible by 2 or 3 . It follows from Lemma 24 that if 5 divides n, then $d \equiv \pm 2(\bmod 5)$. Now suppose that n is divisible by some prime $p \equiv 3(\bmod 4)$. If d is unit-special in \mathbb{Z}_{n}, then we may obtain units a, b, c modulo n such that

$$
a^{2}+b^{2}-d c^{2} \equiv 0 \quad(\bmod n)
$$

It would then follow that

$$
a^{2}+b^{2}-d c^{2} \equiv 0 \quad(\bmod p)
$$

If $d \equiv 0(\bmod p)$, then this would contradict Theorem 19. As such, we conclude $\operatorname{gcd}(d, p)=$ 1.

To prove the converse, we first show that if n is odd, 5 does not divide n, and n is not divisible by any prime $p \equiv 3(\bmod 4)$, then every integer is unit-special in \mathbb{Z}_{n}. To see this,
let m and d be fixed integers. By Corollary 18, there exist units a and b in \mathbb{Z}_{n} such that $a^{2}+b^{2} \equiv m+d(\bmod n)$. Since m is chosen arbitrarily, this shows that d is unit-special in \mathbb{Z}_{n} since

$$
a^{2}+b^{2}-d \cdot(1)^{2} \equiv m \quad(\bmod n) .
$$

This observation together with Theorem 12, Lemma 24, and Lemma 25 finishes the proof of the theorem.

5 Acknowledgments

The authors would like to thank the anonymous referee for suggestions that improved this article.

References

[1] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, fifth edition, Oxford University Press, 1979.
[2] J. Harrington, L. Jones, and A. Lamarche, Representing integers as the sum of two squares in the ring \mathbb{Z}_{n}, J. Integer Seq. 17 (2014), Article 14.7.4.
[3] P. C. Lam, Representation of integers Using $a^{2}+b^{2}-d c^{2}$, J. Integer Seq. 18 (2015), Article 15.8.6.
[4] A. Nowicki, The numbers $a^{2}+b^{2}-d c^{2}$, J. Integer Seq. 18 (2015), Article 15.2.3.
[5] J. Suzuki, Euler and Number Theory: A Study in Mathematical Invention, Leonhard Euler: Life, Work and Legacy, Studies in the History of Philosophy of Mathematics, 5, Robert E. Bradley and C. Edward Sandifer, eds., Elsevier, 2007.

2010 Mathematics Subject Classification: Primary 11E25; Secondary 11A07.
Keywords: sum of squares, ring of integers modulo n, congruence.

Received August 1 2015; revised versions received September 18 2015; September 302015. Published in Journal of Integer Sequences, November 252015.

Return to Journal of Integer Sequences home page.

