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Abstract

In this paper I consider the problem of finding minimal sets for some subsets of the

natural numbers. This problem was first introduced by Shallit, but since then there

has not been much progress.

Here, I consider the set of integers that can be written as a sum of two squares and

develop an algorithm that constructs the minimal sets for congruence classes. In fact,

this algorithm can be applied to a more general class of sets.

I show that minimal sets do not permit much structure, i.e., set-theoretic relations

between two sets will, in general, not be passed on to the respective minimal sets.

In addition to this, measure-theoretic tools cannot help in determining the number of

elements in minimal sets.

1 Introduction

In 2001, Shallit [Sha] introduced a problem concerning decimal digits of some sets of natural
numbers. To state the problem, let us first fix some notation (partially from [Sha]). Let
N denote the set of natural numbers (not including 0), and let N0 be the natural numbers,
including 0. If n is a natural number with decimal representation a1 · · · ak we let a1 · · · ak
denote both the number n as well as its decimal representation. Since we will deal with the
digits of n we need to make this distinction, but since it always will be clear which concept
we use, we do not use different notations. If we refer to the decimal representation, we will
sometimes call a1 · · · ak a string. If x and y are two strings, we say that x is a subsequence of
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y, if we can obtain x by deleting some digits of y, in this case we will write x⊳y. For example,
we have 134 ⊳ 918234 ⊳ 98188293894. Equivalently we will say that y can be generated from
x. If for two strings x, y we either have x ⊳ y or y ⊳ x, we call x and y comparable, and
otherwise incomparable. If M is a set such that any two strings in M are incomparable, we
call M not truncatable. From the book of Lothaire [SS, Theorem 6.1.2] we know that any
not truncatable set is finite.

If L ⊂ N, we will call
〈L〉 := {x ∈ N : ∃y ∈ L : y ⊳ x}

the generated set of L. It is clear that 〈1, 2, 3, 4, 5, 6, 7, 8, 9〉 = N.
If M ⊂ N is a set, we say that x ∈ M is minimal in M , if the only y ∈ M with y ⊳ x is

x. We call the set
S(M) := {x ∈ M : x is minimal}

the minimal set of M . Since minimal elements are pairwise incomparable, minimal sets are
always finite sets.

If x and y are two strings, let x ∗ y denote the string that has first the digits from x and
then the digits from y. Sometimes we will omit the asterisk. For k ∈ N define inductively
x∗k := x∗(k−1) ∗ x, x∗1 = x and we let x∗0 = ε, where ε is the empty word. If z ∈ N, let {z}∗

denote the set
{z}∗ = {z∗k : k ∈ N}.

If M ⊂ {0, 1, . . . , 9}, we set

M∗ := {x ∈ N0 : (d ⊳ x, d ∈ {0, . . . , 9}) ⇒ d ∈ M},

i.e., M∗ contains only the natural numbers, all of whose digits are in M , and for a, b ∈ N we
set

{a ∗ b}| := {a∗k ∗ b∗l : k, l ∈ N0, k + l ≥ 1}.

Then
{13}∗ = {13, 1313, 131313, 13131313, . . .}

and
{1 ∗ 3}| = {1, 3, 11, 13, 33, 111, 113, 133, 333, . . .}.

If n ∈ N, we let #n denote the number of digits of n. Let M, I ⊂ N0. Then we define a
set M∗I by

M∗I := {x ∈ M∗ : #x ∈ I}.

So we have 123{4}∗{5} = 1 ∗ 2 ∗ 3 ∗ 4 ∗ 4 ∗ 4 ∗ 4 ∗ 4 = 12344444 and

{1, 5}∗{2n:n∈N} = {11, 15, 51, 55, 1111, 1115, 1151, 1511, 5111, 1155, 5511, 1551, 5115,

1515, 5151, 1555, 5155, 5515, 5551, 5555, . . .}.

For m ∈ N and a ∈ Z we let [a]m be the congruence class of a modulo m.
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In [Sha], Shallit computed the minimal set for the primes and the composite natural
numbers and made a conjecture about the powers of 2. He showed that

S(M) = {2, 3, 5, 7, 11, 19, 41, 61, 89, 409, 449, 881, 991, 6469, 9001, 9049, 9649,

9949, 60649, 666649, 946669, 60000049, 66000049, 66600059}

for M = P and

S(M) = {4, 6, 8, 9, 10, 12, 15, 20, 21, 22, 25, 27, 30, 32, 33, 35, 50, 51, 52, 55, 57, 70,

72, 75, 77, 111, 117, 171, 371, 711, 713, 731}

for M = N\P and he conjectured that

S(M) = {1, 2, 4, 8, 65536}

for M = {2n : n ∈ N0}.
This conjecture already shows that it may be hard to determine the minimal set for a

given infinite set.
In a more recent work, Bright, Devillers and Shallit [BDS] computed the minimal set

for the primes in base-b representation for 2 ≤ b ≤ 30 (for some b only partially), the case
b = 10 being the above fact already mentioned in [Sha].

Gruber, Holzer, and Kutrib studied the problem from the viewpoint of (theoretical) com-
puter science, concerning (effective) constructions and decidability of problems that involve
so-called Higman-Haines sets (see [GHK07, GHK09]).

Although we know that the minimal set is always finite, known proofs of this fact are
not constructive. An idea for an algorithm would be to strike out all integers that can be
truncated and therefore do not belong to the minimal set. But since M is infinite, we cannot
(in finite time) check all elements from M without using special properties of the set M .
Actually, Gruber, Holzer, and Kutrib showed that the problem of determining the minimal
set for a given set is in general unsolvable.

In this paper, we will first consider one more example, namely the set

M := {n ∈ N : ∃x, y ∈ N : n = x2 + y2}.

Additionally we will get a result about repdigits that are sums of squares.
Next we consider a special class of sets, i.e., congruence classes. We will compute the

minimal sets for a few first examples and develop an algorithm that gives us the minimal
sets for “congruence class like” sets.

In the last two sections we will examine conceptual results. In Section 5, we consider
basic set operations, and in Section 6 we will deal with heuristics and measures. In these
sections we will see that conceptual approaches are unlikely to be successful.
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2 Results

Conjecture 1. Let

A := {n ∈ N : n = 700{7}∗{66k+61,k∈N} ∧ ∃x, y ∈ Z : n = x2 + y2}.

Then A = ∅.

Theorem 2. Let M = {n ∈ N : ∃x, y ∈ Z : n = x2 + y2}. If conjecture 1 is true, then

S(M) = {1, 2, 4, 5, 8, 9, 36, 37, 73, 333, 666, 676, 677, 706, 776, 60633, 77077, 7000777}.

If conjecture 1 is not true and A is defined as in the conjecture, then

S(M) = {1, 2, 4, 5, 8, 9, 36, 37, 73, 333, 666, 676, 677, 706, 776, 60633, 77077, 7000777,min
a∈A

a}.

Theorem 3. We have

S([0]6) = {6, 12, 18, 24, 30, 42, 48, 54, 72, 78, 84, 90, 114, 144, 150, 174, 210, 222, 228, 252,

258, 270, 282, 288, 414, 444, 450, 474, 510, 522, 528, 552, 558, 570, 582, 588,

714, 744, 750, 774, 810, 822, 828, 852, 858, 870, 882, 888, 1110, 1170, 1410,

1470, 1710, 1770, 2250, 2550, 2850, 4110, 4170, 4410, 4470, 4710, 4770, 5250,

5550, 5850, 7110, 7170, 7410, 7470, 7710, 7770, 8250, 8550, 8850},

S([1]6) = {1, 7, 25, 43, 49, 55, 85, 223, 229, 283, 289, 445, 523, 529, 583, 589, 823, 829,

883, 889},

S([2]6) = {2, 8, 14, 44, 50, 56, 74, 110, 116, 170, 176, 410, 416, 470, 476, 554, 710, 716,

770, 776},

S([3]6) = {3, 9, 15, 21, 27, 45, 51, 57, 75, 81, 87, 111, 117, 141, 147, 171, 177, 225, 255, 285,

411, 417, 441, 447, 471, 477, 525, 555, 585, 711, 717, 741, 747, 771, 777, 825,

855, 885},

S([4]6) = {4, 10, 16, 22, 28, 52, 58, 70, 76, 82, 88, 112, 118, 172, 178, 250, 256, 550, 556,

712, 718, 772, 778, 850, 856},

S([5]6) = {5, 11, 17, 23, 29, 41, 47, 71, 77, 83, 89, 143, 149, 221, 227, 281, 287, 443, 449,

743, 749, 821, 827, 881, 887}.

In fact, in Section 4, minimal sets for more congruence classes will be considered, so the
above result can be viewed as an example of those results.

Moreover, the following algorithm can be applied to congruence classes and yields the
minimal sets of every congruence class to a given modulus simultaneously.
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Algorithm 1 Minimal Set Algorithm for special partitions

1: for all i ∈ {1, . . . , n} do

2: Initialise S(Ai) as empty list
3: end for

4: for all i ∈ {1, . . . , n}, b ∈ {0, . . . , 9} do

5: Determine the set Ji(b)
6: end for

7: for all i ∈ {1, . . . , n} and each digit 1, . . . , 9 do

8: Determine which digit lies in which Ai

9: Write these digits in S(Ai)
10: end for

11: for all i ∈ {1, . . . , n}, b ∈ {0, . . . , 9} do

12: Take every x ∈ S(Aj) for every j ∈ Ji(b) and test if there is a number z ∈ S(Ai) such
that z ⊳ x ∗ b

13: if No then

14: Add x ∗ b to S(Ai)
15: end if

16: end for

17: repeat

18: Lines 11 to 16
19: until no number gets added in any minimal set

Theorem 4. Let n ∈ N, A1, . . . , An be a partition of N with the following property:

For any i ∈ {1, . . . , n} and any digit b ∈ {0, . . . , 9} there is a set Ji(b) ⊂ {1, . . . , n} such

that 10a+ b ∈ Ai if and only if there is a j ∈ Ji(b) with a ∈ Aj.

Then Algorithm 1 terminates after finite time and gives the minimal sets of the Ai.

This condition should be read as follows: If for any natural number n belonging to one
of the sets defining the partition, we can (for any digit d) predict in which set the number
n ∗ d lies, then we can determine the minimal sets. This condition is, for example, true for
congruence classes but not true, if we partition the natural numbers in primes and composite
numbers.

The results of the last two sections can be summarized as follows:

In general, one can expect not much structure when dealing with minimal sets.

This will be specified in the respective sections.

3 Squares and repdigits

In this section, we want to give one example of how to determine minimal sets. In all
explicitly given lists here and later, one first has to check that all the elements belong to the
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set M one considers, and that there are no x, y ∈ S(M) with x 6= y, x ⊳ y (i.e., that S(M)
is not truncatable). This is always easy (but can get exhausting when S(M) has a lot of
elements) and is left to the reader.

Recall that a repdigit is a natural number n all of whose digits (in decimal representation)
are the same. If this digit is d, we call n a d-repdigit. A 1-repdigit is called repunit.

We begin with a result about numbers that are sums of two squares.

Proof. (of Theorem 2) We will use the fact, the the set M is closed under multiplication.
This follows from the identity

(a2 + b2)(c2 + d2) = (ac+ bd)2 + (ad− bc)2.

Let x ∈ M with length at least 2. If x contains the digit 1, 2, 4, 5, 8 or 9 then x /∈ S(M).
So let x ∈ {3, 6, 7}{0, 3, 6, 7}∗. If the last digit of x is 0, then, since 10 is the sum of two
squares, x ∈ M is equivalent to x

10
∈ M and we have x

10
⊳ x, so x cannot be in S(M). We

consider the last two digits of x.

1. If the last two digits are 37, 73 or 36, we are done, since these are in S(M).

2. If the last two digits are 63, 67, 03 or 07, x is congruent 3 modulo 4 and thus not in M .

There remain the cases 33, 76, 06, 66 and 77.

33: Since 33 /∈ M,x has length at least three. If 7 ⊳ x, we are done, since 73 ⊳ x. If there
is another 3 in x we are also done, since 333 ⊳ x. So suppose x ∈ 6{0, 6}∗33. Since x
is divisible by 3, it also has to be divisible by 9, since a natural number x is the sum
of two squares if and only if the exponent in the prime factorization of every prime
p ≡ 3 (mod 4) that divides x is even. So 6 has to occur m times, with m ≡ 2 (mod 3).
If m > 2 we are done since then 666 ⊳ x, so m = 2. Since 6633 is not the sum of two
squares, there has to be a 0 in x. We have x ∈ 6{0}∗6{0}∗33. If there is a 0 in the first
place, we have 60633 ⊳ x, so let x = 66{0}∗33. But then 11|x and the alternating digit
sum of x

11
= 6{0}∗3 ist either 3 or 9, which are both not divisible by 11. So we have

112 ∤ x, so x /∈ M .

76: First 76 /∈ M , so x has at least length three. If 3 ⊳ x, then 37 ⊳ x. If not, x contains
another 6 or 7 and then 676 ⊳ x or 776 ⊳ x.

06: If x contains a 3 we are done. If x contains a 7, then 706 ⊳ x. So x ∈ 6{0, 6}∗6. But
then 6 has to occur with a multiplicity of 3k, since otherwise 3|x, 32 ∤ x. So 666 ⊳ x.

66: 66 /∈ M and if x has length at least three digits, then either 666 ⊳ x or 36 ⊳ x or
x ∈ 7{0, 7}∗66. If x contains no 0, then x cannot be written as the sum of two squares,
since otherwise 1

2
x ∈ 3{8}∗3, so 1

2
x ≡ 3 (mod 4) could be written as the sum of two

squares. So x has to contain a 0 and 706 ⊳ x.
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77: If x contains a 3 or 6 we are done, so x ∈ 7{0, 7}∗77. If x does not contain a 0, then
x /∈ M (see Lemma 5). If 77077 ⊳ x we are done, so x ∈ 7{0}∗{7}∗77. Let k denote
the number of zeros and m denote the number of sevens in the central part. We know
k ≥ 1. Since 7|x we need 72|x. By a divisibility rule for 7, we know that x

7
is divisible

by 7 if and only if
m−1∑

i=0

3i + 3m3k ≡ 5 (mod 7).

This is equivalent to
3m+1(3k−1 − 1) ≡ 2 (mod 7).

Modulo 7, there are 6 possibilities to write 2 as a product 2 = uv, these are (u, v) =
(±1,±2), (±2,±1), (±3,±3). Each of the cases gives a congruence condition modulo
6 for k and m:

(1, 2) ⇒ m ≡ 5 (mod 6), k ≡ 2 (mod 6),

(2, 1) ⇒ m ≡ 1 (mod 6), k ≡ 3 (mod 6),

(−1,−2) ⇒ m ≡ 2 (mod 6), k ≡ 4 (mod 6),

(−2,−1) is not possible ,

(3, 3) ⇒ m ≡ 0 (mod 6), k ≡ 5 (mod 6),

(−3,−3) ⇒ m ≡ 3 (mod 6), k ≡ 0 (mod 6).

In the second case, the smallest possible x is 7000777 and this is the sum of two squares.
So we only need to consider the remaining cases, if k < 3 orm < 1, i.e., the first and the
fifth case (note k > 0). Further, in these cases we only need to consider the numbers
x with k = 2 (in the first case) or m = 0 (in the fifth case).

In the fifth case, we have x ∈ 7{0}∗77. This is divisible by 3 but not by 32, so x /∈ M .

So let x ∈ 700{7}∗77 and let m denote the number of sevens in the central part. Since
m ≡ 5 (mod 6) is odd, we know 11|x and if we write m = 6k+5, the cross sum of x

11
is

21k + 31. So x is divisible by 112 if and only if k ≡ mod 911, i.e., m ≡ 59 (mod 66).

So the theorem follows.

Lemma 5. 1. Let x ∈ {7}∗. Then x cannot be written as the sum of two squares.

2. Let x ∈ {3}∗. Then x is the sum of two squares if and only if x = 333.

Proof. 1. (partially from [MO]) Let σ′
k denote the number that contains exactly k times

the digit 7. Then

σ′
k = 7 ·

k−1∑

i=0

10i = 7 ·
10k − 1

10− 1
=

7

9
(10k − 1).
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Since 9 is a square, σ′
k is the sum of two squares if and only if σk := 9σ′

k is the sum of
two squares. We divide the proof into two parts:

• Claim 1: k is even. Since 7|σ′
k and 7 ≡ 3 (mod 4), 7 has to divide the repunit

with k digits. If testing for divisibility by 7, we can split the number into blocks
of 3 digits and alternately add/subtract them. Every two full blocks will cancel
while non-full blocks will not give a multiple of 7 (one can easily check this). It
follows that 72|σ′

k ⇔ 6|k. In particular, k has to be even.

• Claim 2: If k > 1 and σ2k can be written as the sum of 2 squares, then σk can be
written as the sum of two squares. We have

σ2k = 7(102k − 1) = 7(10k − 1)(10k + 1) = σk(10
k + 1).

Since gcd(10k − 1, 10k + 1) = 1 we get gcd(σk, 10
k + 1) ∈ {1, 7}. Since σ2k can

be written as the sum of two squares, we have 2|vp(σ2k) (where vp(n) denotes, as
usual, the exponent of p in the prime decomposition of n) for any p ≡ 3 (mod 4).
For p 6= 7 we have p ∤ gcd(σk, 10

k + 1), so 2|vp(σk). For p = 7 either 2|v7(σk) (if
gcd(σk, 10

k+1) = 1) or 2 ∤ vp(σk) (if gcd(σk, 10
k+1) = 7). So either σk or 7σk can

be written as the sum of two squares. But for k > 1 we have 7σk ≡ 3 (mod 4), so
it follows that σk can be written as the sum of two squares.

Now consider σk with k = 2ml such that 2 ∤ l,m ∈ N0. If m = 0, σk is not the sum of
two squares, since k is odd. If l 6= 1, the second part yields that σl is the sum of two
squares if σk is the sum of two squares. Since this is false, σk is not the sum of two
squares. Now let l = 1. Then if σk is the sum of two squares, so is σ2 = 9 · 77. Since
77 is not the sum of two squares, σk is not the sum of two squares. This completes the
proof.

2. Let δ′k denote the number that contains exactly k times the digit 3, i.e., δ′k =
3
9
(10k−1).

Since 3|δ′k and 3 ≡ 3 (mod 4), 3 has to divide the repunit with k digits. This is the
case if and only if 3|k. We want to show that δ3k = 9δ′3k cannot be the sum of two
squares for k > 1. Suppose that δ3k is the sum of two squares. We have

δ3k = 3(103k − 1) = 3(10k − 1)(102k + 10k + 1) = δk(10
2k + 10k + 1).

Since 102k+10k+1−(10k+2)(10k−1) = 3, we know that gcd(10k−1, 102k+10k+1) ∈
{1, 3}. But 10k−1 ≡ 0 (mod 3) and 102k+10k+1 ≡ 0 (mod 3), so the gcd is exactly 3.
More precisely we have 102k +10k +1 ≡ 3 (mod 9), therefore gcd(δk, 10

2k + k+1) = 3.
Since δ3k is the sum of two squares, we have 2|vp(δ2k) for all p with p ≡ 3 (mod 4).
For all those p 6= 3, we have p ∤ gcd(δk, 102k + 10k + 1), so 2|vp(δk). For p = 3 we
get 2 ∤ v3(σk). It follows that 3δk is the sum of two squares. But for k > 1 we have
3δk ≡ 3 (mod 4), so this is a contradiction.
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Let us call a repdigit true if it has at least two digits. Then the previous lemma gives us
also the following theorem:

Theorem 6. 1. All true d-repdigits with d ∈ {2, 3, 6, 7, 8} are the sum of three squares.

2. The only true 5-repdigit that is not the sum of three squares is 55. The only true

d-repdigits with d ∈ {1, 4, 9} that are the sum of three squares are 11, 44, 99.

3. The only true repdigits that are the sum of two squares are 333 and 666.

4. No true repdigit is a square.

4 Congruence classes

In this section, we want to determine the minimal sets of some congruence classes. Since the
numbers in a given congruence class are “well distributed” it is relatively easy to determine
these sets, at least for m ≤ 6. In fact, one even gets an algorithm for determining all minimal
sets to a given modulus.

We begin with the modulus 2. This result is immediate.

Theorem 7. We have

S([0]2) = {2, 4, 6, 8, 10, 30, 50, 70, 90},

S([1]2) = {1, 3, 5, 7, 9}.

The cases m = 3, 4 are the first cases where we have to work a bit.

Theorem 8. We have

S([0]3) = {3, 6, 9, 12, 15, 18, 21, 24, 27, 42, 45, 48, 51, 54, 57, 72, 75, 78, 81, 84, 87, 111,

114, 117, 141, 144, 147, 171, 174, 177, 222, 225, 228, 252, 255, 258, 282, 285,

288, 411, 414, 417, 441, 444, 447, 471, 474, 477, 522, 525, 528, 552, 555, 558,

582, 585, 588, 711, 714, 717, 741, 744, 747, 771, 774, 777, 822, 825, 828, 852,

855, 858, 882, 885, 888},

S([1]3) = {1, 4, 7, 22, 25, 28, 52, 55, 58, 82, 85, 88},

S([2]3) = {2, 5, 8, 11, 14, 17, 41, 44, 47, 71, 74, 77}.

Proof. • We begin with the minimal set of [1]3. Let x ∈ [1]3. If x contains a digit that is
congruent 1 modulo 3 we are done. If x contains a digit d that is congruent 0 modulo
3, we can remove d from x. The resulting number y will be congruent 1 modulo 3 and
we have y ⊳ x. So no element of S([1]3) can contain a digit that is congruent 0 modulo
3. It remains to consider numbers all of whose digits are congruent 2 modulo 3. But
then x ∈ {2, 5, 8}∗. Therefore the result follows.
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• Determining the minimal set of [2]3 is completely analogous to those of [1]3.

• Now let x ∈ [0]3. If 3⊳x, 6⊳x or 9⊳x we are done. If 0⊳x, then the number y obtained
by removing 0 is congruent 0 modulo 3 and y ⊳x. So it remains to consider numbers all
of whose digits are not congruent 0 modulo 3. Suppose that x has exactly two digits.
Then one of these digits has to be congruent 1 modulo 3 and the other one has to be
congruent 2 modulo 3. All these numbers belong to S([0]3). Now suppose that x has
exactly 3 digits. Then all of these digits are either congruent 1 or 2 modulo 3. Again
all those numbers belong to S([0]3). Finally let x have at least 4 digits. If x has three
digits that are congruent to 1 or 2 modulo 3, then these digits build a number y with
y ∈ S([0]3) and y ⊳ x. If this is not the case, x has at least one digit that is congruent
1 modulo 3 and one digit that is congruent 2 modulo 3. Again these digits build a
number y with y ∈ S([0]3) and y ⊳ x.

Theorem 9. We have

S([0]4) = {4, 8, 12, 16, 20, 32, 36, 52, 56, 60, 72, 76, 92, 96, 100, 300, 500, 700, 900},

S([1]4) = {1, 5, 9, 33, 37, 73, 77},

S([2]4) = {2, 6, 10, 14, 18, 30, 34, 38, 50, 54, 58, 70, 74, 78, 90, 94, 98},

S([3]4) = {3, 7, 11, 15, 19, 51, 55, 59, 91, 95, 99}.

Proof. • Let x ∈ [1]4. If x contains a digit that is congruent 1 modulo 4 we are done. If
x contains a digit congruent 0 or 2 modulo 4, then the number obtained by removing
this digit is congruent 1 modulo 4. So no element of S([1]4) can contain a digit that
is congruent 0 or 2 modulo 4. It remains to examine numbers all of whose digits are
congruent 3 modulo 4. Then x ∈ {3, 7}∗ and we are done.

• Determining the minimal set of [3]4 is completely analogous to those of [1]4.

• Let x ∈ [2]4. If x contains a digit congruent to 2 modulo 4 we are done. If x has
at least three digits then the number obtained by taking only the last two digits is
congruent 2 modulo 4, so x cannot be in S[2]4. If x has exactly two digits, the first
digit is congruent 1 or 3 modulo 4 and the second is congruent 0 modulo 4.

• Determining the minimal of [0]4 is nearly the same as for [2]4 with one difference. If x
has at least three digits, then the number obtained by taking only the last two digits
is congruent 0 modulo 4 but it is only in S([0]4) if it is not 00. So we have to add to
S([0]4) all the numbers that have three digits, ending with 00 and whose first digit is
congruent 1 or 3 modulo 4.

The minimal sets for m = 5 are as easy to get as those for m = 2.
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Theorem 10. We have

S([0]5) = {5, 10, 20, 30, 40, 60, 70, 80, 90},

S([1]5) = {1, 6},

S([2]5) = {2, 7},

S([3]5) = {3, 8},

S([4]5) = {4, 9}.

We will now consider the case mentioned in the results, namely m = 6.

Proof. (of Theorem 3) We will sketch the proof for the first result. The others follow similarly.
If x ∈ [0]6, its last digit can be one of 0, 2, 4, 6, 8. If its last digits is 6 we are done. If

its last digit is 2 or 8, then the number obtained by removing the last digit is congruent 1
modulo 3. So we just have to check the list of S([1]3) and append to each of these numbers
the digit 2 or 8. If the last digit is 4, the process is analogous, here we have to take the list
of S([2]3). If the last digit is 0, the number obtained by removing the last digit is congruent
0 modulo 3. If it also is congruent 0 modulo 6, then there already is an z ∈ S([0]6) with
z ⊳ x. So we have to take all the elements of S([0]3) that are not congruent 0 modulo 6 and
append the digit 0.

In the above cases it was relatively easy to get the minimal sets (In fact we did not always
construct them but this is possible with the above ideas). If we try the same approach for
the congruence classes modulo 7, we see that it gets more complicated. Suppose that we
want to get the minimal set of [0]7. If the last digit of x ∈ [0]7 is 0, then the number obtained
by striking away the last digit will be congruent 2 modulo 7. So we would have to look at
the minimal set of [2]7, which we do not know yet. So in general, one cannot construct the
minimal set of a congruence class on its own. But it is possible to construct the minimal
sets of all m congruences classes modulo m simultaneously with Algorithm 2 below.

In fact, this is just a special case of Algorithm 1, whose validity we will now prove.

Proof. (of Theorem 4) First we show that the algorithm terminates after finite time. Each
of the for-loops need only finite time, so we just have to consider the repeat statement.
The steps will only be repeated finitely often, since we know that minimal sets are finite.
Therefore the algorithm will terminate after finite time.

Now we show that the algorithm indeed constructs the minimal sets for the Ai. It is
clear that the constructed sets are not truncatable and that each of them is a subset of the
respective Ai. We have to show that all integers n ∈ Ai can be generated by some integer
m ∈ S(Ai). For that, we show that each number n with l digits (l ∈ N) lies either in one of
the constructed sets or there is an m ∈ N (in the correct minimal set) with m ⊳ n. Suppose
that the algorithm terminates after the for-loop in line 11 has been gone through k-times. In
the first k−1 steps all natural numbers n with at most k digits have been considered and for
each of them either n ∈ S(Ai) for some i or there is an i and an m ∈ N with n,m ∈ Ai,m⊳n.

11



Algorithm 2 Minimal Set Algorithm for congruence classes

1: for all a ∈ {0, . . . ,m− 1} do

2: Initialize S([a]m) as empty list
3: end for

4: for all a ∈ {0, . . . ,m− 1}, b ∈ {0, . . . , 9} do

5: Determine all x(a, b) ∈ Z/mZ with 10x(a, b) + b ≡ a (mod m)
6: end for

7: for all a ∈ {0, . . . ,m− 1} and each digit 1, . . . , 9 do

8: Determine which digit a lies in which congruence class [a]m
9: Write these digits in S([a]m)

10: end for

11: for all a ∈ {0, . . . ,m− 1}, b ∈ {0, . . . , 9} do

12: Take every x ∈ S([x(a, b)]m) and test if there is a number z ∈ S([a]m) such that
z ⊳ x ∗ b

13: if No then

14: Add x ∗ b to S([a]m)
15: end if

16: end for

17: repeat

18: Lines 11 to 16
19: until no number gets added in any minimal set

So the claim holds for l ≤ k and we are left to consider integers with at least k + 1 digits.
We show by induction on l > k that none of them can belong to a minimal set.

In the last step, all natural numbers with k + 1 digits have been considered and none of
them belong to a minimal set (otherwise the algorithm would not have terminated). Now
suppose that no integer with l digits (where l ≥ k + 1) is in a minimal set. We show that
the same holds for all integers with l + 1 digits. Let x ∈ Ai ⊂ N with #x = l + 1. Write
x = y ∗b with #y = l, b ∈ {0, . . . , 9}. Then we know that y ∈ Aj for some j ∈ Ji(b) and from
the induction hypothesis we know that there is a z ∈ Aj with #z < l, z ⊳ y. Let w := z ∗ b.
Then #w < l + 1, w ∈ Ai, w ⊳ x. This proves the theorem.

Remark 11. Since congruence classes satisfy the condition in Theorem 4 and Algorithm 2
is just a special case of Algorithm 1, we know that Algorithm 2 terminates after a finite of
steps and gives the minimal sets of the congruence classes modulo m.

Although we know that the algorithms will terminate, we do not know when, i.e., in
general we cannot determine the run-time of the algorithms.

For congruence classes, we can say something about the maximal number of digits in the
minimal sets.

Theorem 12. Let m = 2a5b.

12



1. The largest number in S([0]m) has exactly max(a, b) + 1 digits.

2. For all k 6≡ 0, the largest number in S([k]m) has at most max(a, b) digits.

3. There is a k 6≡ 0, such that the largest number in S([k]m) has exactly max(a, b) digits.

Proof. Since m = 2a5b, the congruence class modulo m of n ∈ N depends only on its last
max(a, b) digits. If n has at least max(a, b)+1 digits, the number formed by the last max(a, b)
digits is in the same congruence class. So n cannot be in S([k]m) except for the case when
the last max(a, b) digits are all 0. This can only happen when n ≡ 0 (mod m), i.e, if k = 0.
When n ≡ 0 (mod m) and n has at least max(a, b)+2 digits, either one of the last max(a, b)
digits is not zero or the number formed by the first max(a, b) + 1 digits is congruent to 0
modulo m (since all digits except for the first are 0). In either case, n cannot be in the
minimal set.

It remains to show that there is an element in S([0]m) with max(a, b) + 1 digits and that
there is a k 6= 0 such that there is an element in S([k]m) with max(a, b) digits.

In the first case, we note that n = 10max(a,b) has exactly max(a, b) + 1 digits and is
congruent 0 modulo m. The only x ∈ N with x ⊳ n, x 6= n are the numbers x = 10y with
y < max(a, b) and none of these is congruent to 0 modulo m.

For the second case, take k = m− 1 and n = 10max(a,b)− 1. Then n ∈ [k]m, n has exactly
max(a, b) digits and all of its digits are 9. So there is an x ∈ S([k]m) with x 6= n, x ⊳ n if and
only if there is a y < max(a, b) with 10y − 1 ≡ −1 (mod m). But this is not possible.

Moreover, table 3 in appendix B gives rise to the following conjecture:

Conjecture 13. Let m ∈ N with (m, 10) = 1.

1. For any a 6= 0, the largest number in S([a]m) has at most m − 1 digits. If 10 is a
primitive root modulo m, then there is an integer in S([a]m) with exactly m− 1 digits.

2. The largest number in S([0]m) has at most m digits. If 10 is a primitive root modulo
m, then there is an integer in S([0]m) with exactly m digits.

5 Basic set operations

In the last two sections, what we did was essentially determine the minimal sets in special
cases. It would be great to have some relationships between the minimal sets of related sets
(such as subsets, unions, . . .). In this section we will show that in general there cannot be
much relationship.

In this section, let M,L ⊂ N be infinite sets and F ⊂ N be a finite set.
We begin to study subsets. Let L ⊂ M ⊂ N. For arbitrary subsets it seems impossible

to say something (consider L = P,M = N). If F ∩ S(M) = ∅, then it is obvious that
S(M\F ) = S(M). In the other case, one would expect that S(M\F ) has more elements
than S(M). This is not always true:

13



Theorem 14. There are infinitely many M ⊂ N such that there is a set F ⊂ M with

|S(M\F )| < |S(M)|.

Proof. Let a, b ∈ {1, . . . , 9}, a 6= b. Let M = {a ∗ b}| and F = {a, b}. Then M has infinitely
many infinite subsets M with F ⊂ {a, b, a ∗ b} ⊂ M and such that any x ∈ M,x 6= a, b has
two distinct digits. For all these sets we have S(M) = F,S(M\F ) = {a ∗ b}.

Example 15. Let M ′ be the set {1, 6, 11, 16, 66, 111, 116, 166, 666, . . .}, i.e. M ′ consists
exactly of the natural numbers, all of whose first digits are 1 and all of whose last dig-
its are 6. Take F = {1, 6} and let M be any subset of M ′ with {1, 6, 16} ∈ M and
{11, 66, 111, 666, . . .} /∈ M . Then S(M) = {1, 6} and S(M\F ) = {16}.

For “generic” sets (i.e., sets that are not specifically constructed for this purpose) the
above phenomenon seems not to happen. This leads to the following definition and conjec-
ture:

Definition 16. For a given set M ⊂ N define a sequence δn(M) of sets recursively by

δ0(M) := M, δ(M) := δ1(M) := M\S(M), δn+1(M) := δ(δn(M))

and let ηn(M) := |S(δn(M))| , η(M) := η1(M).

Example 17. Let M := {1, 6, 16, 1166, 111666, 11116666, . . .}. Then

δ0(M) = M,

δ(M) = {16, 1166, 111666, 11116666, . . .},

δ2(M) = {1166, 111666, 11116666, . . .},

...

and
η0(M) = 2, ηk(M) = 1 ∀k ≥ 1.

As shown above, there are infinitely many M with η(M) < η0(M). I conjecture that the
number of such sets is “small”.

Conjecture 18. There are only countably many infinite sets M ⊂ N with η(M) ≤ η0(M).
For all other sets we have ηn(M) → ∞.

For some of the following results we need to know that for each k ∈ N there is an infinite
set M with |S(M)| = k.

Lemma 19. Let K ∈ N. Then there are infinitely many sets M ⊂ N with |S(M)| = K. In

particular there is no bound for the cardinality of minimal sets.
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Proof. Choose m such that 9 · 10m−2 < K ≤ 9 · 10m−1. Then there are at least K natural
numbers that have exactly m digits. Therefore these numbers build a finite set M̃ which is
its own minimal set. Let M = 〈M̃〉. Then M has infinitely many subsets M with M̃ ⊂ M ,

i.e., S(M) = M̃ .

Theorem 20. Let C,K ∈ N. Then there are infinitely many M ⊂ N such there is an

F ⊂ M with |S(M)| = K, |S(M\F )| = C.

Proof. Choose M̃ as in Lemma 19, i.e. M̃ has exactly K elements with exactly m digits and
no elements with less digits.

If C < K take a subset F̃ ⊂ M̃ such that
∣∣∣M̃\F̃

∣∣∣ = C and take M such that M̃ ⊂ M ⊂

〈M̃\F̃ 〉 ∪ F̃ , F := F̃ .

Now let C > K. First we note that the number of elements x ∈ 〈M̃〉 with #x = n

is strictly increasing while n gets bigger. We choose n such that n > m and 〈M̃〉 has at

least C elements with exactly n digits. Now let F ⊂ 〈M̃〉 be the subset that contains all

the elements in 〈M̃〉 with less than n digits and choose M ⊂ 〈M̃〉 such that F ⊂ M , M
has exactly C elements with exactly n digits and all elements of M with more than n digits
can be generated by an element of M with exactly n digits. Then we have S(M) = M̃ , so
|S(M)| = K and S(M\F ) contains exactly the C numbers of M that have exactly n digits,
so |S(M\F )| = C.

Example 21. Let K = 17.

1. Let first C = 13. We take M̃ := {11, . . . , 27} and F̃ := {24, . . . , 27}. If we now take
M with

{11, . . . , 27} ⊂ M ⊂ 〈{11, . . . , 23}〉 ∪ {24, . . . , 27},

we get S(M) = {11, . . . , 27} and S(M\F ) = {11, . . . , 23}.

2. Let now C = 27 and take again M̃ = {11, . . . , 27}. We choose n = 3 and let

F = {11, . . . , 27} and M = {11, . . . , 27} ∪ 〈{111, . . . , 137}〉.

Then we get S(M) = {11, . . . , 27} and S(M\F ) = {111, . . . , 137}.

Let us now consider basic set operations. From the known formulae in set theory we
can relate some of these operations. So we only have to consider intersection, union and
complement.

Since the intersection of two sets is in particular a subset of each of the sets, the previous
theorem applies. Even more unfortunate, the set S(M ∩ L) can be disjoint to S(M) and
S(L):

Theorem 22. There are infinitely many sets L,M ⊂ N such that

(S(M) ∪ S(L)) ∩ S(M ∩ L) = ∅.
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Proof. Choose L,M such that S(M) ∩ L = ∅,S(L) ∩ M = ∅ and M ∩ L 6= ∅. Then
(S(M) ∪ S(L)) ∩ (M ∩ L) = ∅.

For the union of two sets there is at least a little bit of structure:

Theorem 23. We have S(M ∪ L) ⊂ S(M) ∪ S(L).

Proof. Let x ∈ S(M ∪ L) and without loss of generality x ∈ M . Suppose that x /∈ S(M).
Then there is a z ∈ M with z 6= x, z ⊳x. But since z lies also in M ∪L we have x /∈ S(M ∪L),
which is a contradiction.

In general, equality cannot hold, since the set S(M)∪S(L) could be truncatable. If it is
not truncatable, we indeed have equality:

Theorem 24. We have S(M ∪ L) = S(M) ∪ S(L) if and only if S(M) ∪ S(L) is not

truncatable.

Proof. We know

S(M) ⊂ S(M ∪ L) ⇔ ∀x ∈ S(M) : x ∈ S(M ∪ L)

⇔ ∀x ∈ S(M) : ∄y ∈ M ∪ L : y ⊳ x, y 6= x

⇔ ∀x ∈ S(M) : ∄y ∈ L : y ⊳ x, y 6= x

⇔ ∀x ∈ S(M) : ∄y ∈ S(L) : y ⊳ x, y 6= x,

so equality holds if and only if

∀x ∈ S(M) : ∄y ∈ S(L) : y ⊳ x, y 6= x ∧ ∀x ∈ S(L) : ∄y ∈ S(M) : y ⊳ x, y 6= x,

which is equivalent to saying that S(M) ∪ S(L) is not truncatable.

In particular it follows from Theorem 23 that |S(M ∪ L)| ≤ |S(M)| + |S(L)|. More
cannot be said:

Theorem 25. Let K,C1, C2 ∈ N with K ≤ C1 + C2.

1. If K = 1, there are sets M,L ∈ N with |S(M ∪ L)| = K, |S(M)| = 1, |S(L)| = C2.

2. If K > 1, there are sets M,L ∈ N with |S(M ∪ L)| = K, |S(M)| = C1, |S(L)| = C2.

Proof. 1. Let z ∈ N. We will construct sets M and L with S(M ∪ L) = {z}. Choose m
such that C2 ≤ 9 · 10m−1 and m > #z. Let L be an infinite set with z /∈ L,L ⊂ 〈{z}〉
such that L has exactly C2 elements with exactly m digits and all elements of L with
more than m digits can be generated by an element of L with exactly m digits and
such that 〈{z}〉\L is infinite. Let M = 〈{z}〉\L. Then S(M ∪ L) = S(M) = {z} and
|S(L)| = C2.
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2. Let K > 1 and z1, . . . , zK ∈ N such that there is a z0 such that z0, z1, . . . , zK are
pairwise incomparable. We will construct sets M and L with S(M ∪L) = {z1, . . . , zK}
that satisfy the conditions in the theorem.

First suppose that Ci + 1 > K for i = 1, 2. Let

X1,m := {x : z1 ⊳ x,#x ≥ m}, X2,n := {x : z2 ⊳ x,#x ≥ n}.

Choose m,n big enough, such that there are sets M̃, L̃ with

M̃ ⊂ {x ∈ X2,n : x 6= z2,#x = n, zi 6⊳ x for i 6= 2} and
∣∣∣M̃

∣∣∣ = C1 −K + 1,

L̃ ⊂ {x ∈ X1,m : x 6= z1,#x = m, zi 6⊳ x for i 6= 1} and
∣∣∣L̃
∣∣∣ = C2 −K + 1.

(Such sets would not exist, if there were no z0 such that z0, z1, . . . , zK are pairwise
incomparable). Now let

M := {z1, z3, . . . , zK} ∪ 〈M̃〉,

L := {z2, z3, . . . , zK} ∪ 〈L̃〉.

Then we get

M ∪ L = {z1, . . . , zK} ∪ 〈M̃〉 ∪ 〈L̃〉,

S(M) = {z1, z3, . . . , zK} ∪ M̃ ⇒ |S(M)| = C1,

S(L) = {z2, z3, . . . , zK} ∪ L̃ ⇒ |S(L)| = C2,

S(M ∪ L) = {z1, . . . , zK}

and this gives the result.

Now let K > C1. Pick C1 + C2 − K elements αi from 〈{z1, . . . , zC1
}〉\{z1, . . . , zC1

}
such that the elements in {α1, . . . , αC1+C2−K , zC1+1, . . . , zK} are pairwise incomparable
(we can just pick the αi to have the same number of digits and such that they do not
contain any of the zi, i > C1, as subsequence. This is possible if we choose the number
of digits high enough). Let

M := 〈{z1, . . . , zC1
}〉\{α1, . . . , αC1+C2−K}

and
L := {α1, . . . , αC1+C2−K} ∪ 〈{zC1+1, . . . , zK}〉.

Then the theorem follows.

Example 26. Let K = 7 and zi = i, i = 1, . . . , 7. These numbers fulfill the condition
mentioned in the proof since we can take z0 = 8 or z0 = 9.
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1. Let C1 = C2 = 8, so Ci −K + 1 = 2. Choose n = m = 2 and

M̃ = {28, 82}, L̃ = {18, 19}.

Then we get

S(M) = {1, 3, 4, 5, 6, 7, 28, 82}, S(L) = {2, 3, 4, 5, 6, 7, 18, 19}

and
S(M ∪ L) = {1, 2, 3, 4, 5, 6, 7}.

2. Let C1 = 3, C2 = 5, so C1 + C2 −K = 1. Take α1 = 11 and

M = 〈{1, 2, 3}〉\{11}, L = {11} ∪ 〈{4, 5, 6, 7}〉.

Then
S(M) = {1, 2, 3}, S(L) = {4, 5, 6, 7, 11}

and
S(M ∪ L) = {1, 2, 3, 4, 5, 6, 7}.

With respect to the complement there is also just a bit to say. It is clear that S(M c)
contains (among elements with more than one digit) exactly the one-digit numbers that are
not in S(M).

One question that could arise is the following: Given a finite set M ′ that is the minimal
set of an infinite set M , can one say something about the set S(M c)? This is not the case:

Theorem 27. Let M ′ be a finite, not truncatable set that contains at least one number

x ∈ {1, . . . , 9}. Then for every ε > 0 there are two infinite sets M1,M2 with S(M1) =
S(M2) = M ′ and

|S(M c
1) ∩ S(M c

2)|

|S(M c
1)|

< ε.

If further M ′ contains all digits, M1,M2 can be chosen such that S(M c
1) and S(M c

2) are

disjoint.

Proof. Without loss of generality let M ′ = {1, . . . , d}∪̇M̃ with M̃ possibly empty and M̃ ∩
{1, . . . , 9} = ∅. Let

M1 := {1, . . . , d}∗{1,...,k}∪{m+2n,n∈N0} ∪ M̃ ∪ {x ∈ {1, . . . , d, 0}∗ : 0 ⊳ x},

M2 := {1, . . . , d}∗{1,...,m}∪{m+2n,n∈N0} ∪ M̃ ∪ {x ∈ {1, . . . , d, 0}∗ : 0 ⊳ x}

with some arbitrary m, k with m > k+1, k > max{#x : x ∈ M ′}. In particular, M1 and M2

contain every number with a 0 that does not contain the digits d+1, . . . , 9. Since M ′ is not
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truncatable, no number from M̃ contains one of the digits 1, . . . , d, so S(M1) = S(M2) =

{1, . . . , d} ∪ M̃ = M ′. We have

M c
1 = 〈{d+ 1, . . . , 9}〉 ∪ {1, . . . , d}∗{k+1,...,m−1}∪{m+2n+1,n∈N0}\M̃,

M c
2 = 〈{d+ 1, . . . , 9}〉 ∪ {1, . . . , d}∗{m+2n+1,n∈N0}\M̃,

and consequently

S(M c
1) = {d+ 1, . . . , 9} ∪ {1, . . . , d}∗{k+1},S(M c

2) = {d+ 1, . . . , 9} ∪ {1, . . . , d}∗{m+1}.

So
|S(M c

1) ∩ S(M c
2)|

|S(M c
1)|

=
9− d

9− d+ (k + 1)d
k→∞
−→ 0.

If M ′ contains all digits, we have d = 9, so the second part follows.

Example 28. Let M ′ = {1, 2, 33, 44, 55, 66, 77, 88, 99}. Then we have d = 2 and M̃ =
{33, 44, 55, 66, 77, 88, 99}. We take k = 3,m = 5. Then

M1 = {1, 2, 11, 12, 21, 22, 111, 112, 122, 121, 211, 212, 221, 222} ∪X ∪ M̃ ∪ Y,

where the set X consists of all numbers that contain only the digits 1 and 2 and whose
number of digits is of the form 5+ 2l, l ∈ N0 and Y is the set that contains all numbers that
contain only the digits 1, 2 and 0 where the 0 has to occur, i.e.

X = {1111, 1112, 1121, 1211, 2111, 1122, 2211, 1212,

2121, 1221, 2112, 1222, 2122, 2212, 2221, 2222, . . .},

Y = {10, 20, 101, 102, 201, 202, 110, 120, 210, 220, . . .}.

We have

M2 = {1, 2, 11, 12, 21, 22, 111, 112, 122, 121, 211, 212, 221, 222, . . .} ∪X ∪ M̃ ∪ Y,

where the maximal number of digits in the first set is 5. Then

S(M1) = {1, 2} ∪ M̃ = S(M2).

Further,
M c

1 = 〈{3, . . . , 9}〉 ∪ A ∪B ∪ Z\M̃,

where the set A consists of all numbers that contain only the digits 1 and 2 and that have
exactly 4 digits, the set B consists of all numbers that contain only the digits 1 and 2 and
that have exactly 6 digits and the set Z consists of all numbers that contain only the digits
1 and 2 and whose number of digits is of the form 8 + 2l, l ∈ N0. Similarly, we have

M c
2 = 〈{3, . . . , 9}〉 ∪ B ∪ Z\M̃.

So we get

S(M c
1) = {3, . . . , 9} ∪ A, S(M c

2) = {3, . . . , 9} ∪ B, S(M c
1) ∩ S(M c

2) = {3, . . . , 9}

and if we let k and m grow, the sets A and B get bigger.
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Note that theorem 27 is false if M ′ does not contain any digit, since then S(M c
1) =

S(M c
2) = {1, . . . , 9}.

6 Heuristics

Since it seems that there are no really useful results when considering basic set operations,
we could try to get heuristic results. For that, we note that if a minimal set contains “many”
integers with a “small” number of digits, then the number of elements in the minimal set is
“small”, and vice versa. This leads to the following definition

Definition 29. We call a function µ : N → R>0 a digit measure if whenever #x < #y, we
have µ(x) > µ(y) and µ is constant on integers with the same number of digits. If µ(x) → 0
when #x → ∞, we call µ a zero digit measure.

Every digit measure induces a function µ̃ : P(N) → R+ by µ̃(A) :=
∑

a∈A µ(a). By
abuse of notation, we will write µ̃ = µ and also call this a digit measure. We call a digit
measure finite, if µ(N) < ∞.

So a digit measure “measures” a number x by looking only at the number of digits x has.

Example 30. Some seemingly natural digit measures are

µ1(n) = 10−#n, µ2(n) = 10−2#n, µ3(n) =
1

#n
10−#n, µ4(n) =

1

(#n)2
10−#n.

We normalize them in the following way:

µc :=
10

9
µ1, µg := 10µ2, µh :=

10

9
µ3, µz =

20

3π2
µ4.

Then, if we let Ak denote the set of integers with k digits, we have

µc(n) =
10
9
10−#n µc(Ak) = 1 µc(N) = ∞

µg(n) = 101−2#n µg(Ak) = 9 · 10−k µg(N) = 1
µh(n) =

10
9

1
#n

10−#n µh(Ak) =
1
k

µh(N) = ∞

µz(n) =
20
3π2

1
(#n)2

10−#n µz(Ak) =
6
π2

1
k2

µz(N) = 1

All these are zero digit measures.

We will try to use digit measures to obtains results about minimal sets. As we will see
in the following, this is nearly as impossible as it was to obtain set-theoretic results.

If M ⊂ N, it could be nice if there were a digit measure, such that µ(S(M))
µ(M)

is constant.
The next theorem says that even a weaker version is not possible.

Theorem 31. There is no digit measure with the following property: There is a function

f : R → R such that whenever µ(M) = x we have µ(S(M)) = f(x).
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Proof. We consider the congruence classes modulo 3. Since every such congruence class has
the same number of integers with k digits for every k, we have µ([a]3) = µ([b]3) for every
a, b ∈ N and for every digit measure. But from Table 1 in Appendix B we can see that

µ(S([0]3)) = 3µ(1) + 18µ(10) + 54µ(100) > 3µ(1) + 9µ(10) = µ(S([1]3)).

So even if we would know µ(M) for a set M (which can be near to impossible to compute
exactly for infinite sets), we cannot say anything sharp about µ(S(M)). So we could try to
find bounds, i.e., real numbers such that

K1 ≤ µ(S(M)) ≤ K2, C1 ≤
µ(S(M))

µ(M)
≤ C2.

If µ is an arbitrary digit measure, then for the first problem we only have the bounds
0 < µ(S(M)) < ∞, since for every c ∈ R>0 the function cµ also is a digit measure. So since
this question depends on the normalization of µ, we will focus on the second question.

It is clear that 0 ≤ µ(S(M))
µ(M)

≤ 1 for every digit measure µ. We show that there are (in

general) no better bounds.

Lemma 32. Let M ′ ⊂ N be a finite, not truncatable set and µ an arbitrary zero digit

measure. Then for every ε ∈ (0, 1) there is an infinite set M such that M ′ = S(M) and

µ(S(M))

µ(M)
> 1− ε.

Proof. Let m := µ(M ′) and R < mε
1−ε

. Since µ is a zero digit measure and its values depend
only on the number of digits, there is an infinite set S ⊂ N with S ∩M ′ = ∅, S ⊂ 〈M ′〉 and∑

n∈S µ(n) ≤ R. Then with M := M ′ ∪ S the lemma follows.

Now we turn our attention to a lower bound. This seems to be more difficult to obtain
than an upper bound. If µ is an infinite zero digit measure, then it is clear that there are
no better bounds other than µ(S(M))

µ(M)
≥ 0. We investigate the problem for our two finite zero

digit measures, i.e., µg and µz. First it is clear that for given M ′ (finite and not truncatable)
and any set M with S(M) = M ′ we have

µ(M ′)

µ(M)
≥

µ(M ′)

µ(〈M ′〉)
,

so we restrict ourselves to this case. Given any finite not truncatable set M ′, this is at most
µ(M ′)
µ(N) . Since µ(N) < ∞, this gives a lower bound depending on M ′. We show that for µg

and µz there are no global lower bounds.
At least for µg this is counterintuitive, since for any k we have for M = 〈Ak〉

µg(S(M))

µg(M)
=

µg(Ak)∑
i≥k µg(Ai)

=
9

10
.
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For µz this becomes more complicated and depends on k:

µz(S(M))

µz(M)
=

1
k2

π2

6
−
∑k−1

i=1
1
i2

.

k

µz(S(M))
µz(M)

1

1
10

2

2
10

3

3
10

4

4
10

5

5
10

6

6
10

7

7
10

8

8
10

9

9
10

10

10
10

Figure 1: Values for µz(S(M))
µz(M)

.

From the values in figure 1 we can already guess that the ratio tends to zero.

Theorem 33. We have
µz(Ak)

µz(〈Ak〉)
→

k→∞
0.

Proof. We already know that
µz(Ak)

µz(〈Ak〉)
=

1
k2∑
i≥k

1
i2

.
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Let Σn denote the n-th partial sum of the infinite sum (note that Σn depends on k. Since
this is not important for our further arguments, we will still stick with this notation). Then

µz(Ak)

µz(〈Ak〉)
<

1
k2

Σn

.

Taking the common denominator for the fractions in Σn we get

1
k2

Σn

=
k2n+2 +O(k2n+1)

k2 · (nk2n +O(k2n−1))
→

1

n
.

So we have µz(Ak)
µz(〈Ak〉)

< 1
n
for any n. This gives the result.

Now we consider µg. Here we cannot take the sets Ak, since the ratio would be constant
as seen above.

Theorem 34. Let Sk denote any set with Sk = {n},#n = k. Then

µg(Sk)

µg(〈Sk〉)
→

k→∞
0.

Proof. First we need to examine µ(〈Sk〉). Unfortunately, we cannot determine this exactly,
but we can give a bound which suffices for our purpose. Our aim is to construct a subset of
〈Sk〉 by constructing elements that have exactly l + 1 digits from those that have l digits.
Choose an element with l digits. Then we have l + 1 positions where we can insert a new
digit to form a number with l + 1 digits. To make sure that the constructed numbers are
all distinct, we choose the new digit such that its two neighbours are different from the new
digit. So we have for any position at least 7 possibilites to do so. Note that we only use one
l-digit number in this process, since otherwise we could get the same l + 1-digit number a
number of times. This construction gives a subset T of 〈Sk〉, where we are missing some (in
fact many) elements. We get

µg(Sk)

µg(〈Sk〉)
<

µg(Sk)

µg(T )

=
101−2k

101−2k +
∑∞

i=1 7(k + 1)101−2(k+i)

=
101−2k

101−2k + 7 · 101−2k · k+1
99

→
k→∞

0.
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In fact the above proof works for any zero digit measure µ such that
∞∑

i=1

(k + i)
µk+1

µk
→

k→∞
∞,

where µl denotes the value of µ at any integer with l digits.

Example 35. The digit measure µ(n) = 10−(#n)2 does not satisfy the above condition, so

the above proof won’t work here. When considering the sets Ak, one sees that
µ(Ak)
µ(〈Ak〉)

→
k→∞

1.

It would be interesting to know whether there are lower bounds for this digit measure.

Also, there cannot be any results that relate the minimal sets to an asymptotic formula
or the density of M , since this would not change if we changed a finite number of elements
in M , whereas the minimal set could change drastically through this.

7 Appendix A

The following list shows the minimal sets for all congruences classes for the modulus m for
2 ≤ m ≤ 8.

S([0]2) = {2, 4, 6, 8, 10, 30, 50, 70, 90}

S([1]2) = {1, 3, 5, 7, 9}

S([0]3) = {3, 6, 9, 12, 15, 18, 21, 24, 27, 42, 45, 48, 51, 54, 57, 72, 75, 78, 81, 84, 87, 111,

114, 117, 141, 144, 147, 171, 174, 177, 222, 225, 228, 252, 255, 258, 282, 285,

288, 411, 414, 417, 441, 444, 447, 471, 474, 477, 522, 525, 528, 552, 555, 558,

582, 585, 588, 711, 714, 717, 741, 744, 747, 771, 774, 777, 822, 825, 828, 852,

855, 858, 882, 885, 888}

S([1]3) = {1, 4, 7, 22, 25, 28, 52, 55, 58, 82, 85, 88}

S([2]3) = {2, 5, 8, 11, 14, 17, 41, 44, 47, 71, 74, 77}

S([0]4) = {4, 8, 12, 16, 20, 32, 36, 52, 56, 60, 72, 76, 92, 96, 100, 300, 500, 700, 900}

S([1]4) = {1, 5, 9, 33, 37, 73, 77}

S([2]4) = {2, 6, 10, 14, 18, 30, 34, 38, 50, 54, 58, 70, 74, 78, 90, 94, 98}

S([3]4) = {3, 7, 11, 15, 19, 51, 55, 59, 91, 95, 99}

S([0]5) = {5, 10, 20, 30, 40, 60, 70, 80, 90}

S([1]5) = {1, 6}

S([2]5) = {2, 7}

S([3]5) = {3, 8}

S([4]5) = {4, 9}
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S([0]6) = {6, 12, 18, 24, 30, 42, 48, 54, 72, 78, 84, 90, 114, 144, 150, 174, 210, 222, 228, 252,

258, 270, 282, 288, 414, 444, 450, 474, 510, 522, 528, 552, 558, 570, 582, 588,

714, 744, 750, 774, 810, 822, 828, 852, 858, 870, 882, 888, 1110, 1170, 1410,

1470, 1710, 1770, 2250, 2550, 2850, 4110, 4170, 4410, 4470, 4710, 4770, 5250,

5550, 5850, 7110, 7170, 7410, 7470, 7710, 7770, 8250, 8550, 8850}

S([1]6) = {1, 7, 25, 43, 49, 55, 85, 223, 229, 283, 289, 445, 523, 529, 583, 589, 823, 829,

883, 889}

S([2]6) = {2, 8, 14, 44, 50, 56, 74, 110, 116, 170, 176, 410, 416, 470, 476, 554, 710, 716,

770, 776}

S([3]6) = {3, 9, 15, 21, 27, 45, 51, 57, 75, 81, 87, 111, 117, 141, 147, 171, 177, 225, 255,

285, 411, 417, 441, 447, 471, 477, 525, 555, 585, 711, 717, 741, 747, 771, 777,

825, 855, 885}

S([4]6) = {4, 10, 16, 22, 28, 52, 58, 70, 76, 82, 88, 112, 118, 172, 178, 250, 256, 550, 556,

712, 718, 772, 778, 850, 856}

S([5]6) = {5, 11, 17, 23, 29, 41, 47, 71, 77, 83, 89, 143, 149, 221, 227, 281, 287, 443, 449,

743, 749, 821, 827, 881, 887}

S([0]7) = {7, 14, 21, 28, 35, 42, 49, 56, 63, 84, 91, 98, 105, 112, 119, 126, 133, 161, 168, 182,

189, 196, 203, 224, 245, 252, 259, 266, 294, 301, 308, 322, 329, 336, 343, 364,

392, 399, 406, 413, 434, 441, 448, 455, 483, 504, 511, 518, 525, 532, 539, 553,

581, 588, 595, 602, 609, 616, 644, 651, 658, 665, 686, 805, 812, 819, 826, 833,

861, 868, 882, 889, 896, 903, 924, 945, 952, 959, 966, 994, 1001, 1008, 1022,

1029, 1036, 1092, 1099, 1106, 1113, 1155, 1183, 1225, 1232, 1239, 1253, 1295,

1302, 1309, 1316, 1386, 1652, 1659, 1666, 1806, 1813, 1855, 1883, 1925, 1932,

1939, 1953, 1995, 2002, 2009, 2044, 2065, 2205, 2226, 2233, 2296, 2436, 2443,

2464, 2534, 2555, 2604, 2625, 2695, 2905, 2926, 2933, 2996, 3003, 3024, 3066,

3094, 3206, 3234, 3304, 3311, 3318, 3332, 3339, 3381, 3388, 3416, 3444, 3486,

3612, 3619, 3626, 3661, 3668, 3682, 3689, 3696, 3906, 3934, 4004, 4011, 4018,

4053, 4081, 4088, 4116, 4151, 4158, 4165, 4186, 4333, 4361, 4368, 4403, 4445,

4466, 4501, 4508, 4543, 4816, 4851, 4858, 4865, 4886, 5005, 5012, 5019, 5033,

5082, 5089, 5103, 5152, 5159, 5222, 5229, 5243, 5292, 5299, 5313, 5334, 5341,

5348, 5383, 5502, 5509, 5544, 5551, 5558, 5803, 5852, 5859, 5922, 5929, 5943,

5992, 5999, 6006, 6041, 6048, 6055, 6111, 6118, 6125, 6181, 6188, 6195, 6405,

6461, 6468, 6524, 6545, 6552, 6559, 6594, 6601, 6608, 6622, 6629, 6664, 6692,

6699, 6811, 6818, 6825, 6881, 6888, 6895, 8001, 8008, 8022, 8029, 8036, 8092,
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8099, 8106, 8113, 8155, 8183, 8225, 8232, 8239, 8253, 8295, 8302, 8309, 8316,

8386, 8652, 8659, 8666, 8806, 8813, 8855, 8883, 8925, 8932, 8939, 8953, 8995,

9002, 9009, 9044, 9065, 9205, 9226, 9233, 9296, 9436, 9443, 9464, 9534, 9555,

9604, 9625, 9695, 9905, 9926, 9933, 9996, 10003, 10066, 10311, 10318, 10381,

10388, 11011, 11018, 11081, 11088, 11116, 11151, 11158, 11165, 11186, 11501,

11508, 11816, 11851, 11858, 11865, 11886, 12222, 12229, 12292, 12299, 12922,

12929, 12992, 12999, 13006, 13111, 13118, 13181, 13188, 13811, 13818, 13881,

13888, 16555, 18011, 18018, 18081, 18088, 18116, 18151, 18158, 18165, 18186,

18501, 18508, 18816, 18851, 18858, 18865, 18886, 19222, 19229, 19292, 19299,

19922, 19929, 19992, 19999, 20006, 20055, 20622, 20629, 20692, 20699, 22022,

22029, 22092, 22099, 22225, 22232, 22239, 22253, 22295, 22302, 22309, 22925,

22932, 22939, 22953, 22995, 24444, 25333, 26005, 26222, 26229, 26292, 26299,

26922, 26929, 26992, 26999, 29022, 29029, 29092, 29099, 29225, 29232, 29239,

29253, 29295, 29302, 29309, 29925, 29932, 29939, 29953, 29995, 30002, 30009,

30044, 30233, 30933, 32004, 32333, 33033, 33103, 33313, 33334, 33341, 33348,

33383, 33803, 34111, 34118, 34181, 34188, 34811, 34818, 34881, 34888, 36666,

39004, 39333, 40005, 40033, 40544, 41111, 41118, 41181, 41188, 41811, 41818,

41881, 41888, 43666, 44044, 44436, 44443, 44464, 44604, 45003, 45444, 48111,

48118, 48181, 48188, 48811, 48818, 48881, 48888, 50001, 50008, 50022, 50029,

50092, 50099, 50155, 50855, 51002, 51009, 51555, 52444, 53333, 55055, 55405,

55524, 55545, 55552, 55559, 55594, 58002, 58009, 58555, 59444, 60004, 60011,

60018, 60081, 60088, 60466, 61222, 61229, 61292, 61299, 61922, 61929, 61992,

61999, 64001, 64008, 64666, 65555, 66066, 66206, 66612, 66619, 66626, 66661,

66668, 66682, 66689, 66696, 66906, 68222, 68229, 68292, 68299, 68922, 68929,

68992, 68999, 80003, 80066, 80311, 80318, 80381, 80388, 81011, 81018, 81081,

81088, 81116, 81151, 81158, 81165, 81186, 81501, 81508, 81816, 81851, 81858,

81865, 81886, 82222, 82229, 82292, 82299, 82922, 82929, 82992, 82999, 83006,

83111, 83118, 83181, 83188, 83811, 83818, 83881, 83888, 86555, 88011, 88018,

88081, 88088, 88116, 88151, 88158, 88165, 88186, 88501, 88508, 88816, 88851,

88858, 88865, 88886, 89222, 89229, 89292, 89299, 89922, 89929, 89992, 89999,

90006, 90055, 90622, 90629, 90692, 90699, 92022, 92029, 92092, 92099, 92225,

92232, 92239, 92253, 92295, 92302, 92309, 92925, 92932, 92939, 92953, 92995,

94444, 95333, 96005, 96222, 96229, 96292, 96299, 96922, 96929, 96992, 96999,

99022, 99029, 99092, 99099, 99225, 99232, 99239, 99253, 99295, 99302, 99309,

99925, 99932, 99939, 99953, 99995, 100002, 100009, 111111, 111118, 111181,
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111188, 111811, 111818, 111881, 111888, 115003, 118111, 118118, 118181,

118188, 118811, 118818, 118881, 118888, 181111, 181118, 181181, 181188,

181811, 181818, 181881, 181888, 185003, 188111, 188118, 188181, 188188,

188811, 188818, 188881, 188888, 200004, 222222, 222229, 222292, 222299,

222922, 222929, 222992, 222999, 223006, 229222, 229229, 229292, 229299,

229922, 229929, 229992, 229999, 292222, 292229, 292292, 292299, 292922,

292929, 292992, 292999, 293006, 299222, 299229, 299292, 299299, 299922,

299929, 299992, 299999, 300006, 331002, 331009, 333333, 338002, 338009,

400001, 400008, 444444, 446005, 500003, 554001, 554008, 555555, 600005,

662004, 666666, 669004, 800002, 800009, 811111, 811118, 811181, 811188,

811811, 811818, 811881, 811888, 815003, 818111, 818118, 818181, 818188,

818811, 818818, 818881, 818888, 881111, 881118, 881181, 881188, 881811,

881818, 881881, 881888, 885003, 888111, 888118, 888181, 888188, 888811,

888818, 888881, 888888, 900004, 922222, 922229, 922292, 922299, 922922,

922929, 922992, 922999, 923006, 929222, 929229, 929292, 929299, 929922,

929929, 929992, 929999, 992222, 992229, 992292, 992299, 992922, 992929,

992992, 992999, 993006, 999222, 999229, 999292, 999299, 999922, 999929,

999992, 999999, 1000006, 2000005, 3000004, 4000003, 5000002, 5000009,

6000001, 6000008, 8000006, 9000005}

S([1]7) = {1, 8, 22, 29, 36, 43, 50, 57, 64, 92, 99, 204, 246, 253, 260, 267, 274, 302, 309,

323, 330, 337, 344, 372, 379, 393, 400, 407, 442, 449, 456, 470, 477, 526, 533,

554, 596, 603, 652, 659, 666, 673, 904, 946, 953, 960, 967, 974, 2003, 2066,

2073, 2444, 2556, 2633, 2703, 2766, 2773, 3004, 3053, 3074, 3200, 3207, 3270,

3277, 3333, 3354, 3452, 3459, 3704, 3753, 3774, 3900, 3907, 3970, 3977, 4026,

4054, 4096, 4404, 4446, 4460, 4467, 4474, 4544, 4726, 4754, 4796, 5244, 5342,

5349, 5552, 5559, 5566, 5944, 6000, 6007, 6056, 6070, 6077, 6553, 6602, 6609,

6623, 6630, 6637, 6672, 6679, 6693, 6700, 6707, 6756, 6770, 6777, 9003, 9066,

9073, 9444, 9556, 9633, 9703, 9766, 9773, 20000, 20007, 20056, 20070, 20077,

20700, 20707, 20756, 20770, 20777, 27000, 27007, 27056, 27070, 27077, 27700,

27707, 27756, 27770, 27777, 30003, 30073, 30703, 30773, 33342, 33349, 33552,

33559, 37003, 37073, 37703, 37773, 40244, 40552, 40559, 40944, 44066, 44444,

44766, 47244, 47552, 47559, 47944, 55553, 55623, 55693, 60026, 60096, 60726,

60796, 65556, 66200, 66207, 66270, 66277, 66333, 66900, 66907, 66970, 66977,

67026, 67096, 67726, 67796, 90000, 90007, 90056, 90070, 90077, 90700, 90707,
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90756, 90770, 90777, 97000, 97007, 97056, 97070, 97077, 97700, 97707, 97756,

97770, 97777, 300000, 300007, 300070, 300077, 300700, 300707, 300770,

300777, 307000, 307007, 307070, 307077, 307700, 307707, 307770, 307777,

335553, 370000, 370007, 370070, 370077, 370700, 370707, 370770, 370777,

377000, 377007, 377070, 377077, 377700, 377707, 377770, 377777, 555556}

S([2]7) = {2, 9, 16, 30, 37, 44, 51, 58, 65, 86, 100, 107, 114, 135, 170, 177, 184, 331, 338,

345, 366, 401, 408, 415, 436, 450, 457, 471, 478, 485, 506, 534, 555, 576, 604,

611, 618, 646, 660, 667, 674, 681, 688, 800, 807, 814, 835, 870, 877, 884, 1031,

1038, 1045, 1101, 1108, 1115, 1150, 1157, 1171, 1178, 1185, 1311, 1318, 1381,

1388, 1731, 1738, 1745, 1801, 1808, 1815, 1850, 1857, 1871, 1878, 1885, 3334,

3355, 3411, 3418, 3481, 3488, 3614, 3684, 4006, 4055, 4076, 4111, 4118, 4181,

4188, 4335, 4566, 4706, 4755, 4776, 4811, 4818, 4881, 4888, 5000, 5007, 5035,

5070, 5077, 5336, 5504, 5546, 5560, 5567, 5574, 5700, 5707, 5735, 5770, 5777,

6001, 6008, 6036, 6071, 6078, 6134, 6400, 6407, 6470, 6477, 6631, 6638, 6666,

6701, 6708, 6736, 6771, 6778, 6834, 8031, 8038, 8045, 8101, 8108, 8115, 8150,

8157, 8171, 8178, 8185, 8311, 8318, 8381, 8388, 8731, 8738, 8745, 8801, 8808,

8815, 8850, 8857, 8871, 8878, 8885, 10334, 10411, 10418, 10481, 10488, 11055,

11111, 11118, 11181, 11188, 11755, 11811, 11818, 11881, 11888, 17334, 17411,

17418, 17481, 17488, 18055, 18111, 18118, 18181, 18188, 18755, 18811, 18818,

18881, 18888, 33336, 33546, 40000, 40007, 40035, 40070, 40077, 40700, 40707,

40735, 40770, 40777, 47000, 47007, 47035, 47070, 47077, 47700, 47707, 47735,

47770, 47777, 50045, 50745, 53335, 55400, 55407, 55470, 55477, 55666, 57045,

57745, 60006, 60076, 60706, 60776, 66334, 66614, 66684, 67006, 67076, 67706,

67776, 80334, 80411, 80418, 80481, 80488, 81055, 81111, 81118, 81181, 81188,

81755, 81811, 81818, 81881, 81888, 87334, 87411, 87418, 87481, 87488, 88055,

88111, 88118, 88181, 88188, 88755, 88811, 88818, 88881, 88888, 333335,

600000, 600007, 600070, 600077, 600700, 600707, 600770, 600777, 607000,

607007, 607070, 607077, 607700, 607707, 607770, 607777, 663336, 670000,

670007, 670070, 670077, 670700, 670707, 670770, 670777, 677000, 677007,

677070, 677077, 677700, 677707, 677770, 677777}

S([3]7) = {3, 10, 17, 24, 45, 52, 59, 66, 80, 87, 94, 115, 122, 129, 164, 185, 192, 199, 206,

220, 227, 255, 262, 269, 276, 290, 297, 402, 409, 416, 444, 472, 479, 486, 500,

507, 514, 556, 570, 577, 584, 605, 612, 619, 640, 647, 654, 675, 682, 689, 815,
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822, 829, 864, 885, 892, 899, 906, 920, 927, 955, 962, 969, 976, 990, 997, 1116,

1144, 1186, 1256, 1655, 1816, 1844, 1886, 1956, 2005, 2012, 2019, 2075, 2082,

2089, 2215, 2222, 2229, 2285, 2292, 2299, 2516, 2586, 2600, 2607, 2670, 2677,

2705, 2712, 2719, 2775, 2782, 2789, 2915, 2922, 2929, 2985, 2992, 2999, 4000,

4007, 4014, 4070, 4077, 4084, 4112, 4119, 4182, 4189, 4406, 4420, 4427, 4462,

4469, 4476, 4490, 4497, 4700, 4707, 4714, 4770, 4777, 4784, 4812, 4819, 4882,

4889, 5015, 5064, 5085, 5155, 5505, 5540, 5547, 5554, 5575, 5715, 5764, 5785,

5855, 6002, 6009, 6044, 6072, 6079, 6114, 6184, 6422, 6429, 6492, 6499, 6555,

6702, 6709, 6744, 6772, 6779, 6814, 6884, 8116, 8144, 8186, 8256, 8655, 8816,

8844, 8886, 8956, 9005, 9012, 9019, 9075, 9082, 9089, 9215, 9222, 9229, 9285,

9292, 9299, 9516, 9586, 9600, 9607, 9670, 9677, 9705, 9712, 9719, 9775, 9782,

9789, 9915, 9922, 9929, 9985, 9992, 9999, 11112, 11119, 11182, 11189, 11462,

11469, 11812, 11819, 11882, 11889, 18112, 18119, 18182, 18189, 18462, 18469,

18812, 18819, 18882, 18889, 20002, 20009, 20072, 20079, 20702, 20709, 20772,

20779, 22116, 22186, 22256, 22816, 22886, 22956, 27002, 27009, 27072, 27079,

27702, 27709, 27772, 27779, 29116, 29186, 29256, 29816, 29886, 29956, 40064,

40764, 41114, 41184, 41814, 41884, 44222, 44229, 44292, 44299, 44600, 44607,

44670, 44677, 44922, 44929, 44992, 44999, 47064, 47764, 48114, 48184, 48814,

48884, 50116, 50186, 50655, 50816, 50886, 55044, 55555, 55744, 57116, 57186,

57655, 57816, 57886, 60000, 60007, 60014, 60070, 60077, 60084, 60700, 60707,

60714, 60770, 60777, 60784, 67000, 67007, 67014, 67070, 67077, 67084, 67700,

67707, 67714, 67770, 67777, 67784, 81112, 81119, 81182, 81189, 81462, 81469,

81812, 81819, 81882, 81889, 88112, 88119, 88182, 88189, 88462, 88469, 88812,

88819, 88882, 88889, 90002, 90009, 90072, 90079, 90702, 90709, 90772, 90779,

92116, 92186, 92256, 92816, 92886, 92956, 97002, 97009, 97072, 97079, 97702,

97709, 97772, 97779, 99116, 99186, 99256, 99816, 99886, 99956, 111114,

111184, 111814, 111884, 118114, 118184, 118814, 118884, 181114, 181184,

181814, 181884, 188114, 188184, 188814, 188884, 200000, 200007, 200070,

200077, 200700, 200707, 200770, 200777, 207000, 207007, 207070, 207077,

207700, 207707, 207770, 207777, 221112, 221119, 221182, 221189, 221812,

221819, 221882, 221889, 228112, 228119, 228182, 228189, 228812, 228819,

228882, 228889, 270000, 270007, 270070, 270077, 270700, 270707, 270770,

270777, 277000, 277007, 277070, 277077, 277700, 277707, 277770, 277777,

291112, 291119, 291182, 291189, 291812, 291819, 291882, 291889, 298112,
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298119, 298182, 298189, 298812, 298819, 298882, 298889, 811114, 811184,

811814, 811884, 818114, 818184, 818814, 818884, 881114, 881184, 881814,

881884, 888114, 888184, 888814, 888884, 900000, 900007, 900070, 900077,

900700, 900707, 900770, 900777, 907000, 907007, 907070, 907077, 907700,

907707, 907770, 907777, 921112, 921119, 921182, 921189, 921812, 921819,

921882, 921889, 928112, 928119, 928182, 928189, 928812, 928819, 928882,

928889, 970000, 970007, 970070, 970077, 970700, 970707, 970770, 970777,

977000, 977007, 977070, 977077, 977700, 977707, 977770, 977777, 991112,

991119, 991182, 991189, 991812, 991819, 991882, 991889, 998112, 998119,

998182, 998189, 998812, 998819, 998882, 998889}

S([4]7) = {4, 11, 18, 25, 32, 39, 53, 60, 67, 81, 88, 95, 102, 109, 123, 130, 137, 165, 172, 179,

193, 200, 207, 221, 228, 263, 270, 277, 291, 298, 305, 333, 361, 368, 375, 501,

508, 515, 522, 529, 550, 557, 571, 578, 585, 592, 599, 613, 655, 662, 669, 683,

802, 809, 823, 830, 837, 865, 872, 879, 893, 900, 907, 921, 928, 963, 970, 977,

991, 998, 1005, 1033, 1075, 1222, 1229, 1292, 1299, 1355, 1663, 1705, 1733,

1775, 1922, 1929, 1992, 1999, 2013, 2062, 2069, 2083, 2202, 2209, 2223, 2230,

2237, 2272, 2279, 2293, 2622, 2629, 2692, 2699, 2713, 2762, 2769, 2783, 2902,

2909, 2923, 2930, 2937, 2972, 2979, 2993, 3000, 3007, 3063, 3070, 3077, 3301,

3308, 3315, 3350, 3357, 3371, 3378, 3385, 3665, 3700, 3707, 3763, 3770, 3777,

5002, 5009, 5065, 5072, 5079, 5100, 5107, 5170, 5177, 5261, 5268, 5555, 5562,

5569, 5702, 5709, 5765, 5772, 5779, 5800, 5807, 5870, 5877, 5961, 5968, 6122,

6129, 6192, 6199, 6521, 6528, 6591, 6598, 6633, 6661, 6668, 6822, 6829, 6892,

6899, 8005, 8033, 8075, 8222, 8229, 8292, 8299, 8355, 8663, 8705, 8733, 8775,

8922, 8929, 8992, 8999, 9013, 9062, 9069, 9083, 9202, 9209, 9223, 9230, 9237,

9272, 9279, 9293, 9622, 9629, 9692, 9699, 9713, 9762, 9769, 9783, 9902, 9909,

9923, 9930, 9937, 9972, 9979, 9993, 10000, 10007, 10063, 10070, 10077, 10700,

10707, 10763, 10770, 10777, 17000, 17007, 17063, 17070, 17077, 17700, 17707,

17763, 17770, 17777, 20122, 20129, 20192, 20199, 20661, 20668, 20822, 20829,

20892, 20899, 22033, 22222, 22229, 22292, 22299, 22733, 22922, 22929, 22992,

22999, 27122, 27129, 27192, 27199, 27661, 27668, 27822, 27829, 27892, 27899,

29033, 29222, 29229, 29292, 29299, 29733, 29922, 29929, 29992, 29999, 30013,

30083, 30713, 30783, 33100, 33107, 33170, 33177, 33555, 33800, 33807, 33870,

33877, 36663, 37013, 37083, 37713, 37783, 50005, 50075, 50705, 50775, 55521,

55528, 55591, 55598, 55661, 55668, 57005, 57075, 57705, 57775, 66315, 66385,
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66665, 80000, 80007, 80063, 80070, 80077, 80700, 80707, 80763, 80770, 80777,

87000, 87007, 87063, 87070, 87077, 87700, 87707, 87763, 87770, 87777, 90122,

90129, 90192, 90199, 90661, 90668, 90822, 90829, 90892, 90899, 92033, 92222,

92229, 92292, 92299, 92733, 92922, 92929, 92992, 92999, 97122, 97129, 97192,

97199, 97661, 97668, 97822, 97829, 97892, 97899, 99033, 99222, 99229, 99292,

99299, 99733, 99922, 99929, 99992, 99999, 500000, 500007, 500070, 500077,

500700, 500707, 500770, 500777, 507000, 507007, 507070, 507077, 507700,

507707, 507770, 507777, 556665, 570000, 570007, 570070, 570077, 570700,

570707, 570770, 570777, 577000, 577007, 577070, 577077, 577700, 577707,

577770, 577777, 666663}

S([5]7) = {5, 12, 19, 26, 33, 40, 47, 61, 68, 82, 89, 96, 103, 110, 117, 131, 138, 166, 173, 180,

187, 201, 208, 222, 229, 243, 271, 278, 292, 299, 306, 320, 327, 341, 348, 362,

369, 376, 390, 397, 411, 418, 432, 439, 446, 481, 488, 600, 607, 642, 649, 663,

670, 677, 803, 810, 817, 831, 838, 866, 873, 880, 887, 901, 908, 922, 929, 943,

971, 978, 992, 999, 1006, 1041, 1048, 1076, 1111, 1118, 1146, 1181, 1188, 1300,

1307, 1370, 1377, 1643, 1706, 1741, 1748, 1776, 1811, 1818, 1846, 1881, 1888,

2000, 2007, 2042, 2049, 2070, 2077, 2203, 2210, 2217, 2231, 2238, 2273, 2280,

2287, 2441, 2448, 2700, 2707, 2742, 2749, 2770, 2777, 2903, 2910, 2917, 2931,

2938, 2973, 2980, 2987, 3001, 3008, 3022, 3029, 3071, 3078, 3092, 3099, 3211,

3218, 3281, 3288, 3442, 3449, 3666, 3701, 3708, 3722, 3729, 3771, 3778, 3792,

3799, 3911, 3918, 3981, 3988, 4163, 4366, 4422, 4429, 4443, 4492, 4499, 4863,

6032, 6039, 6046, 6466, 6606, 6620, 6627, 6662, 6669, 6676, 6690, 6697, 6732,

6739, 6746, 8006, 8041, 8048, 8076, 8111, 8118, 8146, 8181, 8188, 8300, 8307,

8370, 8377, 8643, 8706, 8741, 8748, 8776, 8811, 8818, 8846, 8881, 8888, 9000,

9007, 9042, 9049, 9070, 9077, 9203, 9210, 9217, 9231, 9238, 9273, 9280, 9287,

9441, 9448, 9700, 9707, 9742, 9749, 9770, 9777, 9903, 9910, 9917, 9931, 9938,

9973, 9980, 9987, 10001, 10008, 10071, 10078, 10701, 10708, 10771, 10778,

11163, 11443, 11863, 17001, 17008, 17071, 17078, 17701, 17708, 17771, 17778,

18163, 18443, 18863, 20032, 20039, 20732, 20739, 22111, 22118, 22181, 22188,

22300, 22307, 22370, 22377, 22811, 22818, 22881, 22888, 24442, 24449, 27032,

27039, 27732, 27739, 29111, 29118, 29181, 29188, 29300, 29307, 29370, 29377,

29811, 29818, 29881, 29888, 30000, 30007, 30042, 30049, 30070, 30077, 30700,

30707, 30742, 30749, 30770, 30777, 37000, 37007, 37042, 37049, 37070, 37077,

37700, 37707, 37742, 37749, 37770, 37777, 44231, 44238, 44441, 44448, 44931,
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44938, 60366, 60443, 66022, 66029, 66092, 66099, 66666, 66722, 66729, 66792,

66799, 67366, 67443, 80001, 80008, 80071, 80078, 80701, 80708, 80771, 80778,

81163, 81443, 81863, 87001, 87008, 87071, 87078, 87701, 87708, 87771, 87778,

88163, 88443, 88863, 90032, 90039, 90732, 90739, 92111, 92118, 92181, 92188,

92300, 92307, 92370, 92377, 92811, 92818, 92881, 92888, 94442, 94449, 97032,

97039, 97732, 97739, 99111, 99118, 99181, 99188, 99300, 99307, 99370, 99377,

99811, 99818, 99881, 99888, 100000, 100007, 100070, 100077, 100700, 100707,

100770, 100777, 107000, 107007, 107070, 107077, 107700, 107707, 107770,

107777, 114441, 114448, 170000, 170007, 170070, 170077, 170700, 170707,

170770, 170777, 177000, 177007, 177070, 177077, 177700, 177707, 177770,

177777, 184441, 184448, 444442, 444449, 800000, 800007, 800070, 800077,

800700, 800707, 800770, 800777, 807000, 807007, 807070, 807077, 807700,

807707, 807770, 807777, 814441, 814448, 870000, 870007, 870070, 870077,

870700, 870707, 870770, 870777, 877000, 877007, 877070, 877077, 877700,

877707, 877770, 877777, 884441, 884448}

S([6]7) = {6, 13, 20, 27, 34, 41, 48, 55, 83, 90, 97, 104, 111, 118, 125, 174, 181, 188, 195,

223, 244, 251, 258, 293, 300, 307, 321, 328, 335, 370, 377, 391, 398, 405, 433,

440, 447, 454, 475, 503, 510, 517, 524, 531, 538, 573, 580, 587, 594, 804, 811,

818, 825, 874, 881, 888, 895, 923, 944, 951, 958, 993, 1000, 1007, 1021, 1028,

1070, 1077, 1091, 1098, 1105, 1140, 1147, 1154, 1175, 1224, 1294, 1700, 1707,

1721, 1728, 1770, 1777, 1791, 1798, 1805, 1840, 1847, 1854, 1875, 1924, 1994,

2211, 2218, 2225, 2281, 2288, 2295, 2435, 2533, 2911, 2918, 2925, 2981, 2988,

2995, 3023, 3051, 3058, 3093, 3233, 3303, 3310, 3317, 3331, 3338, 3373, 3380,

3387, 3723, 3751, 3758, 3793, 3933, 4003, 4024, 4073, 4094, 4325, 4395, 4423,

4444, 4493, 4500, 4507, 4570, 4577, 4703, 4724, 4773, 4794, 5004, 5011, 5018,

5074, 5081, 5088, 5144, 5221, 5228, 5291, 5298, 5333, 5704, 5711, 5718, 5774,

5781, 5788, 5844, 5921, 5928, 5991, 5998, 8000, 8007, 8021, 8028, 8070, 8077,

8091, 8098, 8105, 8140, 8147, 8154, 8175, 8224, 8294, 8700, 8707, 8721, 8728,

8770, 8777, 8791, 8798, 8805, 8840, 8847, 8854, 8875, 8924, 8994, 9211, 9218,

9225, 9281, 9288, 9295, 9435, 9533, 9911, 9918, 9925, 9981, 9988, 9995, 10051,

10058, 10751, 10758, 11444, 11500, 11507, 11570, 11577, 12221, 12228, 12291,

12298, 12921, 12928, 12991, 12998, 17051, 17058, 17751, 17758, 18444, 18500,

18507, 18570, 18577, 19221, 19228, 19291, 19298, 19921, 19928, 19991, 19998,

22154, 22224, 22294, 22854, 22924, 22994, 29154, 29224, 29294, 29854, 29924,

29994, 30225, 30295, 30533, 30925, 30995, 33011, 33018, 33081, 33088, 33333,
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33711, 33718, 33781, 33788, 37225, 37295, 37533, 37925, 37995, 40004, 40074,

40704, 40774, 44225, 44295, 44435, 44925, 44995, 47004, 47074, 47704, 47774,

50000, 50007, 50021, 50028, 50070, 50077, 50091, 50098, 50700, 50707, 50721,

50728, 50770, 50777, 50791, 50798, 57000, 57007, 57021, 57028, 57070, 57077,

57091, 57098, 57700, 57707, 57721, 57728, 57770, 57777, 57791, 57798, 80051,

80058, 80751, 80758, 81444, 81500, 81507, 81570, 81577, 82221, 82228, 82291,

82298, 82921, 82928, 82991, 82998, 87051, 87058, 87751, 87758, 88444, 88500,

88507, 88570, 88577, 89221, 89228, 89291, 89298, 89921, 89928, 89991, 89998,

92154, 92224, 92294, 92854, 92924, 92994, 99154, 99224, 99294, 99854, 99924,

99994, 222221, 222228, 222291, 222298, 222921, 222928, 222991, 222998,

229221, 229228, 229291, 229298, 229921, 229928, 229991, 229998, 292221,

292228, 292291, 292298, 292921, 292928, 292991, 292998, 299221, 299228,

299291, 299298, 299921, 299928, 299991, 299998, 400000, 400007, 400070,

400077, 400700, 400707, 400770, 400777, 407000, 407007, 407070, 407077,

407700, 407707, 407770, 407777, 442224, 442294, 442924, 442994, 449224,

449294, 449924, 449994, 470000, 470007, 470070, 470077, 470700, 470707,

470770, 470777, 477000, 477007, 477070, 477077, 477700, 477707, 477770,

477777, 922221, 922228, 922291, 922298, 922921, 922928, 922991, 922998,

929221, 929228, 929291, 929298, 929921, 929928, 929991, 929998, 992221,

992228, 992291, 992298, 992921, 992928, 992991, 992998, 999221, 999228,

999291, 999298, 999921, 999928, 999991, 999998}

S([0]8) = {8, 16, 24, 32, 40, 56, 64, 72, 96, 104, 112, 120, 144, 152, 192, 200, 304, 336, 344,

360, 376, 504, 512, 520, 544, 552, 592, 600, 704, 736, 744, 760, 776, 904, 912,

920, 944, 952, 992, 1000, 3000, 5000, 7000, 9000}

S([1]8) = {1, 9, 25, 33, 57, 65, 73, 305, 345, 377, 385, 505, 545, 553, 585, 705, 745, 777,

785}

S([2]8) = {2, 10, 18, 34, 50, 58, 66, 74, 90, 98, 114, 146, 154, 194, 306, 330, 338, 370, 378,

386, 514, 546, 554, 594, 706, 730, 738, 770, 778, 786, 914, 946, 954, 994}

S([3]8) = {3, 11, 19, 27, 51, 59, 67, 75, 91, 99, 107, 147, 155, 187, 507, 547, 555, 587, 707,

747, 771, 779, 787, 907, 947, 955, 987}

S([4]8) = {4, 12, 20, 28, 36, 52, 60, 68, 76, 92, 100, 108, 116, 156, 180, 188, 196, 300, 308,

332, 372, 380, 388, 500, 508, 516, 556, 580, 588, 596, 700, 708, 732, 772,

780, 788, 900, 908, 916, 956, 980, 988, 996}

S([5]8) = {5, 13, 21, 29, 37, 61, 69, 77, 93, 101, 109, 117, 141, 149, 181, 189, 197, 301, 309,
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333, 341, 349, 381, 389, 701, 709, 733, 741, 749, 781, 789, 901, 909, 917, 941,

949, 981, 989, 997}

S([6]8) = {6, 14, 22, 30, 38, 54, 70, 78, 94, 102, 110, 118, 150, 158, 182, 190, 198, 334, 342,

374, 502, 510, 518, 550, 558, 582, 590, 598, 734, 742, 774, 902, 910, 918, 950,

958, 982, 990, 998}

S([7]8) = {7, 15, 23, 31, 39, 55, 63, 95, 103, 111, 119, 143, 183, 191, 199, 303, 335, 343,

383, 503, 511, 519, 543, 583, 591, 599, 903, 911, 919, 943, 983, 991, 999}

8 Appendix B

Tables 1 and 2 show the number of elements in S([a]m) that have exactly k digits for 2 ≤
m ≤ 13 and some choosen a.
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Set 1 2 3 4 5 6 7 8 9 10 11 Σ

[0]2 4 5 − − − − − − − − − 9
[1]2 5 − − − − − − − − − − 5
[0]3 3 18 54 − − − − − − − − 75
[1]3 3 9 − − − − − − − − − 12
[2]3 3 9 − − − − − − − − − 12
[0]4 2 12 5 − − − − − − − − 19
[1]4 3 4 − − − − − − − − − 7
[2]4 2 15 − − − − − − − − − 17
[3]4 2 9 − − − − − − − − − 11
[0]5 1 8 − − − − − − − − − 9
[1]5 2 − − − − − − − − − − 2
[2]5 2 − − − − − − − − − − 2
[3]5 2 − − − − − − − − − − 2
[4]5 2 − − − − − − − − − − 2
[0]6 1 11 36 27 − − − − − − − 75
[1]6 2 5 13 − − − − − − − − 20
[2]6 2 5 13 − − − − − − − − 20
[3]6 2 9 27 − − − − − − − − 38
[4]6 1 10 14 − − − − − − − − 25
[5]6 1 10 14 − − − − − − − − 25
[0]7 1 11 68 218 340 160 10 − − − − 808
[1]7 2 9 37 74 84 34 − − − − − 240
[2]7 2 8 40 111 103 34 − − − − − 298
[3]7 1 10 55 138 157 160 − − − − − 521
[4]7 1 11 58 147 155 34 − − − − − 406
[5]7 1 11 60 156 155 74 − − − − − 457
[6]7 1 10 151 146 156 104 − − − − − 568
[0]8 1 8 30 5 − − − − − − − 44
[1]8 2 5 12 − − − − − − − − 19
[2]8 1 9 24 − − − − − − − − 34
[3]8 1 9 17 − − − − − − − − 27
[4]8 1 9 33 − − − − − − − − 43
[5]8 1 8 30 − − − − − − − − 39
[6]8 1 8 30 − − − − − − − − 39
[7]8 1 7 25 − − − − − − − − 33

Table 1: Number of elements in S([a]m) that have exactly k digits for 2 ≤ m ≤ 8
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Set 1 2 3 4 5 6 7 8 9 10 11 Σ

[0]9 1 8 56 288 690 336 168 48 6 − − 1601
[1]9 1 7 36 85 51 27 8 1 − − − 216
[2]9 1 7 36 85 51 27 8 1 − − − 216
[3]9 1 7 36 90 15 3 − − − − − 152
[4]9 1 7 36 85 51 27 8 1 − − − 216
[5]9 1 7 36 85 51 27 8 1 − − − 216
[6]9 1 7 36 90 15 3 − − − − − 152
[7]9 1 7 36 85 51 27 8 1 − − − 216
[8]9 1 7 36 85 51 27 8 1 − − − 216
[0]10 0 9 − − − − − − − − − 9
[1]10 1 − − − − − − − − − − 1
[0]11 0 9 64 350 510 46 − − − − − 979
[1]11 1 7 45 170 215 155 100 45 10 1 − 749
[2]11 1 7 45 166 200 148 88 31 10 1 − 697
[3]11 1 7 44 169 197 155 100 45 10 1 − 729
[0]12 0 8 35 87 27 − − − − − − 157
[4]12 1 5 18 21 − − − − − − − 45
[5]12 1 5 18 21 − − − − − − − 45
[0]13 0 7 58 347 1269 1698 901 303 34 − − 4617
[10]13 0 7 58 320 935 892 355 93 14 2 − 2676

Table 2: Number of elements in S([a]m) that have exactly k digits for 9 ≤ m ≤ 13

Table 3 shows the maximal number of digits in minimal sets for some m ≤ 100. The first
value gives the maximal number of digits in S([a]m) for a 6= 0, the second value those for
a = 0.

Modulus max. number Modulus max. number Modulus max. number

2 1/2 12 4/5 25 2/3
3 2/3 13 9/10 30 3/4
4 2/3 14 7/8 32 5/6
5 1/2 15 3/4 40 3/4
6 3/4 16 4/5 50 2/3
7 6/7 17 16/17 60 4/5
8 3/4 18 9/10 70 7/8
9 8/9 19 18/19 80 4/5
10 1/2 20 2/3 90 9/10
11 10/6 21 11/11 100 2/3

Table 3: Maximal number of digits in minimal sets for some m ≤ 100
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9 Appendix C

Table 4 shows the rounded values of some digit measures for some minimal sets.

Set µc µg µh µz

N 0, 1 0, 009 0, 05 0, 000477465
P 0, 050623559 0, 004050506 0, 024226514 0, 000213392
N\P 0, 068555556 0, 0042107 0, 030194444 0, 000217167

2 0, 070555556 0, 0060305 0, 034583333 0, 000319024
[0]2 0, 05 0, 00405 0, 024074074 0, 000213386
[1]2 0, 055555556 0, 005 0, 027777778 0, 000265258
[0]3 0, 059333333 0, 0031854 0, 024833333 0, 000163471
[2]3 0, 043333333 0, 00309 0, 02 0, 000161277
[0]4 0, 036111111 0, 0021205 0, 015694444 0, 000108939
[1]4 0, 037777778 0, 00304 0, 018148148 0, 000160098
[2]4 0, 038888889 0, 00215 0, 016666667 0, 00010964
[3]4 0, 032222222 0, 00209 0, 014444444 0, 000108225
[0]5 0, 02 0, 00108 0, 008518519 5, 49379 · 10−5

[1]5 0, 022222222 0, 002 0, 011111111 0, 000106103
[0]6 0, 027633333 0, 001113627 0, 01068963 5, 56933 · 10−5

[1]6 0, 029222222 0, 0020513 0, 013324074 0, 000107299
[3]6 0, 035222222 0, 0020927 0, 015194444 0, 000108261
[4]6 0, 023777778 0, 0011014 0, 009648148 5, 54281 · 10−5

[0]7 0, 033706778 0, 001117021 0, 012068479 5, 57373 · 10−5

[1]7 0, 037252667 0, 002093775 0, 015652762 0, 000108275
[2]7 0, 036907111 0, 002084112 0, 015451466 0, 000108044
[3]7 0, 030058889 0, 00110564 0, 011125317 5, 54836 · 10−5

[4]7 0, 031587111 0, 001115949 0, 011596651 5, 57235 · 10−5

[5]7 0, 031913778 0, 001116158 0, 011672841 5, 57262 · 10−5

[6]7 0, 040807111 0, 001115248 0, 013808688 5, 5611 · 10−5

[0]8 0, 023388889 0, 001083005 0, 009362963 5, 49778 · 10−5

[1]8 0, 029111111 0, 0020512 0, 013296296 0, 000107298
[2]8 0, 023777778 0, 0010924 0, 009555556 5, 52055 · 10−5

[3]8 0, 023 0, 0010917 0, 009361111 5, 51963 · 10−5

[4]8 0, 024777778 0, 0010933 0, 009805556 5, 52175 · 10−5

[5]8 0, 023333333 0, 001083 0, 009351852 5, 49777 · 10−5

[7]8 0, 021666667 0, 0010725 0, 008842593 5, 47353 · 10−5

[0]9 0, 030228143 0, 001085895 0, 010847425 5, 50147 · 10−5

[1]9 0, 02389309 0, 001073686 0, 009346921 5, 47506 · 10−5

[3]9 0, 023905889 0, 00107369 0, 009350974 5, 47507 · 10−5

Table 4: Values of some digit measures
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