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Abstract

We present techniques for obtaining a generating function for the diagonal 75, ,, of
the triangle formed from the coefficients of a generating function G(x) raised to the
power k. We obtain some relations between central coefficients and coefficients of the

diagonal 75, ,, and we also give some examples.

1 Introduction

A triangle is a classic object of research in combinatorics. For instance, the Pascal triangle,
the Bernoulli-Euler triangle, the Catalan triangle, and the Motzkin triangle are discussed in

many papers and books [3, 10, 7].
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Let G(x) be an ordinary power series without a constant term, i.e., G(z) = > g, 2",
n>0
where gy = 0 and g; # 0. In this paper we deal with the triangle 7}, ;, defined as follows:

(Ga)]F = T

n>k

Here we assume that G(x)? = Ty = 1.
Then the generating function G(z) raised to the power k gives the following triangle T,

Tor  Tho . . Tpnor Ton

The following notation will be used throughout this paper. The authors [4, 5] introduced
the notion of the composita of a given ordinary generating function G(x) = >, _,g(n)z".

Definition 1. The composita is the function of two variables defined by

GA(nk) = Y g(M)g(Aa) - g(\), (1)

TLECH

where n, k,\; are integers that are greater than 0, C,, is the set of all compositions of n, and
Ty is the composition into k parts exactly (Zle Ai =n).

The generating function of the composita is equal to

G(a)]F = GAn,k)a" = T, 2" (2)

n>k n>k

This notation coincides with the concept of Riordan array (1,G(z)) or (@,G(x)),

which was given by Shapiro, Getu, Woan, and Woodson [§].
Recently, in [6], we have shown how to find a generating function of the central elements
of such triangles

Clz) =) Ton1pz" ' =F'(z), (3)

where F'(x) is the solution of the equation
F(z) = zS5(F(x)) (4)

and



For solving (4), one uses the Lagrange inversion formula (LIF), which was proved by
Stanley [10]. In [6], we applied the LIF for the generating functions raised to the k power:

G(a)]F =" G*(n k) 2"

n>k

and

[F(a)]f =" FAn k)"

n>k

We obtained the following relation between two triangles:
k
FA('H, k) = _T2nfk,n-
n

In this paper we present a method for obtaining the generating function for the diagonal
Thy,, of a triangle T}, . The triangle is given by the following expression

[G(2)])F = Z Tog "

n>k

2 Main results

The main result of this paper is given in the following theorem.

Theorem 2. Suppose we have the generating function G(x) = > g, a" that forms a triangle
n>0
ka.'

G())F =) T "

n>k

Then the generating function A(x) = 3, <o Tonna™ for the diagonal Ty, of the triangle is

defined b
4 ! x F'(x)
Alw) = i )

where F(x) = x S(F(x)) with S(z) = fo).
Proof. Suppose we have the following Laurent series
@(z):@z+wo+%+---+%+---
Then, raising this generating function to the power k, we get
[@(2)]" = @u(2) + En(2),

where ®(z) contains the nonnegative powers of z and Ej(z) contains the remaining powers
of z. According to Suetin [11], ®(z) is the Faber polynomial.
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Let us consider the generating function G(z) in terms of ®(z). That is,

[G(2)]F = [22®(1/2)]F ZTnkz

n>k

2)|F = 2% E Torz "

n>k

Then we have

After transformation, the Faber polynomial is equal to

Z) = Z Tank,n Zka (6)
k=0

For the case z = 0, we have

(I)n(O) = TQn,n' (7)

According to Curtiss [2] and Suetin [11], the generating function for the Faber polynomials

is equal to
t /
PR DLNC

n>0

where ¢(t) is the compositional inverse of ®(¢).
Then the generating function for the case z = 0 is equal to

t¢’ Y

n>0

Next we set t = % Taking into account that

—¢'(1/x)

xr2

(¢(1/2)) = ¢'(1/x) (1/z) =

¢ (1/x) = —2* (¢(1/z))

we get the generating function for <I>n(0)

Az) = — = D, (8)

n>0

Since ¢(t) is the compositional inverse of ®(t), the following identity holds:
P(o(t)) = t.

If we substitute 1/x for ¢, then we obtain the following relation:
O(p(1/x)) = 1/x.
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Since

®(r) = 2°G(1/z) = 25(1 /),

we get
o(1/2)S(1/p(1/x)) = —
Then 1
5(1/2) =xS(1/6(1/x)).
According to (4), we have 1
ojm

Therefore, according to (7) and (8), the generating function for the diagonal T, , is equal
to

T 1 / ,
A(ZE):— (F(gc)) :UF ZTanx

F(x) n>0

The theorem is thus proved. O
As applications of Theorem 2, we give the following examples.
Example 3. Let us consider the Pascal triangle. This triangle can be defined by the gener-

ating function )
ol = () =2 (1 2y

n>k

is the generating function
1—+v1—-4x
5 .

Therefore, the generating function for the diagonal 75, ,, with the general term (2"7:1) is

F(z) =

v F'(r) 2z
Flr)  (1-+vI—4d2) VI—4da’

Example 4. Let us find the generating function A(z) = > (T, n2" for the triangle
defined by the following generating function

Ax) =

G(r) =z +2* +2°

Solving the equation

F(z) = 2(1+ F(z) + F(2)?),
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we get the generating function for the Motzkin numbers (see the sequence A001006 in [9])

V=32 -2r+1—x+1

Fle) = 2z

Then we have

v F'(z) V=32 -2z +1+x—1
Flx)  (r-1)vV=327 20 +1-322 -2 +1

After transformation, we obtain

1

A = )
(z) V=312 —-2x+1

Example 5. Let us find the generating function A(z) = > (T, n2" for the triangle
defined by the following expression

1- ﬂ] _yF (")

",
2 n

Gl = |

n>k

The solution of the functional equation (4) for this case is the following generating func-
tion (see sequence A001764 in [9])

2 (1 (2T
F(:U):\/g_xsm (garcsm( 5 ))

Therefore, the desired generating function has the form

Alz) = xgg;? =1+ 2% ( ; )x” 2\/;/3_% cot (larcsm (@)) +

Example 6. Let us consider the triangle defined by the expression

1
5

[G(2)]" = [2” cot(x)]™ = Y Ty ma”,
n>m
where
25 T gnemal N 2T (1 k1) S (n— 2m + 1K)
T ’ RS
" lZ:n—Qm—i—l (l) kZ:; (kl“)

Here s(n, k) and S(n, k) stand for the Stirling numbers of the first and second kinds, respec-
tively [1, 3].
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This triangle forms the sequence A199542 in [9]. Then we have

sy (= ES LK) sU+EDY (n

For the equation F(z) = x F'(x) cot(F(x)), the solution is the generating function arctan(z).
Hence,

rF'(x) x 222 N 26zt 50228 N 71022 N
F(x) (14 x2) arctan(z) 3 45 945 14175
Therefore, we obtain

l

B x B n = k'S (L k) s(l+ k1) n\
Alz) = (1 + 22) arctan(z) Z(_l) ZZZ (Z I+ k)! ) (l) v

n>0 =0 k=0

Next, we derive some interesting identities between coefficients in triangles.

Theorem 7. Suppose we have the triangle T, 1, which is generated by G(x)* = Z@k T k™.
Then the following identity holds for the central coefficients of the triangle

"1
T2n—1,n - Z zTQi—l,i T2(n—i),n—i- (9)
=1

Proof. The result follows from Theorem 2 and the expression (3). We point out that

1
F(z) = Z ETZn—l,nmn

n>0

and

Since

by applying the multiplication rule for formal power series, we obtain the desired result. [J

Example 8. Using Theorem 7, we obtain the identities for the Stirling numbers.

The Stirling numbers of the first kind s(n, k) count the number of permutations of n
elements with k disjoint cycles. The Stirling numbers of the first kind are defined by the
following generating function [1]:

" 1.
Y(x) =Y s(n, h)— = (1 +2).

n>k
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With the help of (9), we find the following identity for the Stirling numbers of the first
kind: -
Cen—tn) =3 Gioa) s@i-19)s@m—i)n—4)
i=1 (z) ¢

The Stirling numbers of the second kind S(n, k) count the number of ways to partition
a set of n elements into k£ nonempty subsets. The Stirling numbers of the second kind are
defined by the following generating function [1]:

@@g:§jsmmﬁ§:£ﬂa—1w

n>k

Using Theorem 7, we derive the following identity

S(2n —1,n) :Z (2(1;)1) S(2i—1,1) S(;(n_i)7n_i)-

Example 9. Suppose we have the triangle defined by the following expression

k kn—k’ n
(xe®)" = Z m)x .

Then, using (9), we get ’
n =2 (n o Z-)TL*%

(n—1l & (-1 (n—1)

or after simple manipulation
e i n—1 2 (n . Z)n—z
— 1—1
Example 10. Suppose we have the triangle defined by the following expression
k
x B n+(m-0k-1\ ,
((1—x>m> Z< n—k )0
n=k

Then, according to (9), we obtain

<(m21_)rf—2) :i%(im;—if?) ((m+1)nn—_i;n—z’—1)‘

If we put m = 2, we derive the following identity

(?_—f) - (D) (j”;iz—l)_

i=1




Example 11. Suppose we have the triangle defined by the following expression

Ga)]* = (_ 1)k = T,

n=k
where
T k!5 ( m—l—k:m)Sg(n—mk)
T (= m)! e (m+ k)! '

The solution of the equation (4) for this case, that is, F(x) = x%, is the generating
function In(1 4 z) (see the sequence A191578 in [9]).
Then, according to Theorem 2, we have

vF'(xz) ZTznniU

F(x) (1—|—xln1+x

where
Zn: k!'Sy (n, k) Sy (n+k,n)
— (n 4+ k)! .

This is reflected in the sequence A002208 in [9].
Using Theorem 7, we obtain the following identity

T2n,n -

1

3
|

1)mzm:k'52 m, k) Si(m+km)
‘n—m < (m+k)! )

3
I
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