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Abstract

We present techniques for obtaining a generating function for the diagonal T2n,n of
the triangle formed from the coefficients of a generating function G(x) raised to the
power k. We obtain some relations between central coefficients and coefficients of the
diagonal T2n,n, and we also give some examples.

1 Introduction

A triangle is a classic object of research in combinatorics. For instance, the Pascal triangle,
the Bernoulli-Euler triangle, the Catalan triangle, and the Motzkin triangle are discussed in
many papers and books [3, 10, 7].
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Let G(x) be an ordinary power series without a constant term, i.e., G(x) =
∑

n>0

gn x
n,

where g0 = 0 and g1 6= 0. In this paper we deal with the triangle Tn,k defined as follows:

[G(x)]k =
∑

n≥k

Tn,kx
n.

Here we assume that G(x)0 = T0,0 = 1.
Then the generating function G(x) raised to the power k gives the following triangle Tn,k

T1,1
T2,1 T2,2

T3,1 T3,2 T3,3
T4,1 T4,2 T4,3 T4,4

...
...

...
...

...
Tn,1 Tn,2 . . . . . . Tn,n−1 Tn,n

The following notation will be used throughout this paper. The authors [4, 5] introduced
the notion of the composita of a given ordinary generating function G(x) =

∑

n>0 g(n)x
n.

Definition 1. The composita is the function of two variables defined by

G∆(n, k) =
∑

πk∈Cn

g(λ1)g(λ2) · · · g(λk), (1)

where n, k,λi are integers that are greater than 0, Cn is the set of all compositions of n, and
πk is the composition into k parts exactly (

∑k

i=1 λi = n).

The generating function of the composita is equal to

[G(x)]k =
∑

n>k

G∆(n, k)xn =
∑

n≥k

Tn,kx
n. (2)

This notation coincides with the concept of Riordan array (1, G(x)) or
(

G(x)
x
, G(x)

)

,

which was given by Shapiro, Getu, Woan, and Woodson [8].
Recently, in [6], we have shown how to find a generating function of the central elements

of such triangles

C(x) =
∑

n>0

T2n−1,nx
n−1 = F ′(x), (3)

where F (x) is the solution of the equation

F (x) = xS(F (x)) (4)

and
xS(x) = G(x).
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For solving (4), one uses the Lagrange inversion formula (LIF), which was proved by
Stanley [10]. In [6], we applied the LIF for the generating functions raised to the k power:

[G(x)]k =
∑

n≥k

G∆(n, k) xn

and
[F (x)]k =

∑

n≥k

F∆(n, k) xn.

We obtained the following relation between two triangles:

F∆(n, k) =
k

n
T2n−k,n.

In this paper we present a method for obtaining the generating function for the diagonal
T2n,n of a triangle Tn,k. The triangle is given by the following expression

[G(x)]k =
∑

n≥k

Tn,k x
n.

2 Main results

The main result of this paper is given in the following theorem.

Theorem 2. Suppose we have the generating function G(x) =
∑

n>0

gn x
n that forms a triangle

Tn,k:

[G(x)]k =
∑

n≥k

Tn,kx
n.

Then the generating function A(x) =
∑

n≥0 T2n,nx
n for the diagonal T2n,n of the triangle is

defined by

A(x) =
xF ′(x)

F (x)
, (5)

where F (x) = xS(F (x)) with S(x) = G(x)
x
.

Proof. Suppose we have the following Laurent series

Φ(z) = ϕ z + ϕ0 +
ϕ1

z
+ · · ·+ ϕn

zn
+ · · ·

Then, raising this generating function to the power k, we get

[Φ(z)]k = Φk(z) + Ek(z),

where Φk(z) contains the nonnegative powers of z and Ek(z) contains the remaining powers
of z. According to Suetin [11], Φk(z) is the Faber polynomial.
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Let us consider the generating function G(z) in terms of Φ(z). That is,

[G(z)]k = [z2 Φ(1/z)]k =
∑

n≥k

Tn,k z
n.

Then we have
[Φ(z)]k = z2k

∑

n≥k

Tn,k z
−n.

After transformation, the Faber polynomial is equal to

Φn(z) =
n
∑

k=0

T2n−k,n z
k, (6)

For the case z = 0, we have
Φn(0) = T2n,n. (7)

According to Curtiss [2] and Suetin [11], the generating function for the Faber polynomials
is equal to

tφ′(t)

φ(t)− z
=
∑

n≥0

Φn(z)t
−n,

where φ(t) is the compositional inverse of Φ(t).
Then the generating function for the case z = 0 is equal to

tφ′(t)

φ(t)
=
∑

n≥0

Φn(0)t
−n.

Next we set t = 1
x
. Taking into account that

(φ(1/x))′ = φ′(1/x) (1/x)′ =
−φ′(1/x)

x2

or
φ′(1/x) = −x2 (φ(1/x))′

we get the generating function for Φn(0)

A(x) = −x(φ(1/x))
′

φ(1/x)
=
∑

n≥0

Φn(0)x
n. (8)

Since φ(t) is the compositional inverse of Φ(t), the following identity holds:

Φ(φ(t)) = t.

If we substitute 1/x for t, then we obtain the following relation:

Φ(φ(1/x)) = 1/x.
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Since
Φ(x) = x2G(1/x) = xS(1/x),

we get

φ(1/x)S(1/φ(1/x)) =
1

x
.

Then
1

φ(1/x)
= xS(1/φ(1/x)).

According to (4), we have
1

φ(1/x)
= F (x)

Therefore, according to (7) and (8), the generating function for the diagonal T2n,n is equal
to

A(x) = −
x( 1

F (x)
)′

1
F (x)

=
xF ′(x)

F (x)
=
∑

n≥0

T2n,n x
n.

The theorem is thus proved.

As applications of Theorem 2, we give the following examples.

Example 3. Let us consider the Pascal triangle. This triangle can be defined by the gener-
ating function

[G(x)]k =

(

x

1− x

)k

=
∑

n≥k

(

n− 1

n− k

)

xn

The solution of the equation

F (x) =
x

1− F (x)

is the generating function

F (x) =
1−

√
1− 4x

2
.

Therefore, the generating function for the diagonal T2n,n with the general term
(

2n−1
n

)

is

A(x) =
xF ′(x)

F (x)
=

2x
(

1−
√
1− 4x

) √
1− 4x

.

Example 4. Let us find the generating function A(x) =
∑

n≥0 T2n,nx
n for the triangle

defined by the following generating function

G(x) = x+ x2 + x3.

Solving the equation
F (x) = x(1 + F (x) + F (x)2),
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we get the generating function for the Motzkin numbers (see the sequence A001006 in [9])

F (x) =
−
√
−3x2 − 2x+ 1− x+ 1

2x
.

Then we have
xF ′(x)

F (x)
=

√
−3x2 − 2x+ 1 + x− 1

(x− 1)
√
−3x2 − 2x+ 1− 3x2 − 2x+ 1

.

After transformation, we obtain

A(x) =
1√

−3x2 − 2x+ 1
.

Example 5. Let us find the generating function A(x) =
∑

n≥0 T2n,nx
n for the triangle

defined by the following expression

[G(x)]k =

[

1−
√
1− 4x

2

]k

=
∑

n≥k

k
(

2n−k−1
n−k

)

n
xn.

The solution of the functional equation (4) for this case is the following generating func-
tion (see sequence A001764 in [9])

F (x) =
2√
3x

sin

(

1

3
arcsin

(√
27x

2

))

.

Therefore, the desired generating function has the form

A(x) =
xF ′(x)

F (x)
= 1 +

∑

n>0

(

3n−1
n

)

2
xn =

√
3x

2
√
4− 27x

cot

(

1

3
arcsin

(√
27x

2

))

+
1

2
.

Example 6. Let us consider the triangle defined by the expression

[G(x)]m = [x2 cot(x)]m =
∑

n≥m

Tn,mx
n,

where

Tn,m = (−1)
n−m

2

m
∑

l=0

2n−2m+l

(n− 2m+ l)!

(

m

l

) n−2m+l
∑

k=0

s (l + k, l) S (n− 2m+ l, k)
(

k+l

l

) .

Here s(n, k) and S(n, k) stand for the Stirling numbers of the first and second kinds, respec-
tively [1, 3].
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This triangle forms the sequence A199542 in [9]. Then we have

T2n,n = (−1)
n

2

n
∑

l=0

2l

(

l
∑

k=0

k!S (l, k) s (l + k, l)

(l + k)!

)

(

n

l

)

.

For the equation F (x) = xF (x) cot(F (x)), the solution is the generating function arctan(x).
Hence,

xF ′(x)

F (x)
=

x

(1 + x2) arctan(x)
= 1− 2x2

3
+

26x4

45
− 502x6

945
+

7102x8

14175
+ · · ·

Therefore, we obtain

A(x) =
x

(1 + x2) arctan(x)
=
∑

n≥0

(−1)
n

2

n
∑

l=0

2l

(

l
∑

k=0

k!S (l, k) s (l + k, l)

(l + k)!

)

(

n

l

)

xn.

Next, we derive some interesting identities between coefficients in triangles.

Theorem 7. Suppose we have the triangle Tn,k, which is generated by G(x)k =
∑

n>k Tn,kx
n.

Then the following identity holds for the central coefficients of the triangle

T2n−1,n =
n
∑

i=1

1

i
T2i−1,i T2(n−i),n−i. (9)

Proof. The result follows from Theorem 2 and the expression (3). We point out that

F (x) =
∑

n>0

1

n
T2n−1,nx

n

and
xF ′(x)

F (x)
=
∑

n>0

T2n,nx
n.

Since

xF ′(x) =

(

xF ′(x)

F (x)

)

F (x),

by applying the multiplication rule for formal power series, we obtain the desired result.

Example 8. Using Theorem 7, we obtain the identities for the Stirling numbers.
The Stirling numbers of the first kind s(n, k) count the number of permutations of n

elements with k disjoint cycles. The Stirling numbers of the first kind are defined by the
following generating function [1]:

ψk(x) =
∑

n≥k

s(n, k)
xn

n!
=

1

k!
lnk(1 + x).
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With the help of (9), we find the following identity for the Stirling numbers of the first
kind:

s(2n− 1, n) =
n
∑

i=1

(

2n−1
2i−1

)

(

n

i

)

s (2i− 1, i) s (2 (n− i) , n− i)

i
.

The Stirling numbers of the second kind S(n, k) count the number of ways to partition
a set of n elements into k nonempty subsets. The Stirling numbers of the second kind are
defined by the following generating function [1]:

Φk(x) =
∑

n≥k

S(n, k)
xn

n!
=

1

k!
(ex − 1)k.

Using Theorem 7, we derive the following identity

S(2n− 1, n) =
n
∑

i=1

(

2n−1
2i−1

)

(

n

i

)

S (2i− 1, i) S (2 (n− i) , n− i)

i
.

Example 9. Suppose we have the triangle defined by the following expression

(x ex)k =
∑

n>k

kn−k

(n− k)!
)xn.

Then, using (9), we get

nn−1

(n− 1)!
=

n
∑

i=1

ii−2 (n− i)n−i

(i− 1)! (n− i)!

or after simple manipulation

nn−1 =
n
∑

i=1

(

n− 1

i− 1

)

ii−2 (n− i)n−i.

Example 10. Suppose we have the triangle defined by the following expression

(

x

(1− x)m

)k

=
∑

n>k

(

n+ (m− 1)k − 1

n− k

)

xn.

Then, according to (9), we obtain

(

(m+ 1)n− 2

n− 1

)

=
n
∑

i=1

1

i

(

im+ i− 2

i− 1

)(

(m+ 1)n− im− i− 1

n− i

)

.

If we put m = 2, we derive the following identity

(

3n− 2

n− 1

)

=
n
∑

i=1

(

3i−2
i−1

) (

3n−3i−1
n−i

)

i
.
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Example 11. Suppose we have the triangle defined by the following expression

[G(x)]k =

(

x2

ex − 1

)k

=
∑

n>k

Tn,kx
n,

where

Tn,m =
m!

(n−m)!

n−m
∑

k=0

k!S1 (m+ k,m) S2 (n−m, k)

(m+ k)!
.

The solution of the equation (4) for this case, that is, F (x) = x F (x)

eF (x)−1
, is the generating

function ln(1 + x) (see the sequence A191578 in [9]).
Then, according to Theorem 2, we have

xF ′(x)

F (x)
=

x

(1 + x) ln(1 + x)
=
∑

n>0

T2n,n x
n.

where

T2n,n =
n
∑

k=0

k!S2 (n, k) S1 (n+ k, n)

(n+ k)!
.

This is reflected in the sequence A002208 in [9].
Using Theorem 7, we obtain the following identity

n−1
∑

m=0

(−1)m

n−m

m
∑

k=0

k!S2 (m, k) S1 (m+ k,m)

(m+ k)!
= 1.
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