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Abstract

We study two sums involving the Stirling numbers and binomial coefficients. We

find their closed forms, and discuss the connection between these sums.

Dedicated to the memory of our mentors,

Professors Leonard Carlitz and Albert Nijenhuis

1

mailto:henrygou@gmail.com
mailto:kwong@fredonia.edu
mailto:jocelynq@seas.upenn.edu


1 Introduction

Stirling numbers of the first and second kind, denoted by s(n, k) and S(n, k) respectively, in
Riordan’s [8] popular notation, have long fascinated mathematicians. They were named for
James Stirling [13] who used them in 1730. In 1852 Schläfli [10] studied relations between
s(n, k) and S(n, k). Then in 1960 Gould [3] extended Schläfli’s work by discovering the pair
of dual relations

(−1)nS(m,m− n) =
n∑

k=0

(
n+m

n− k

)(
n−m

n+ k

)
s(n+ k, k),

(−1)ns(m,m− n) =
n∑

k=0

(
n+m

n− k

)(
n−m

n+ k

)
S(n+ k, k).

Prompted by a recent problem [7] in the Amer. Math. Monthly that asked the readers to
find a closed form expression for

∑n

k=0(−1)k
(

2n
n+k

)
s(n+ k, k), Gould tried to relate this sum

to the first of his dual sums. By choosing m = n+ 1 and noting that
(

−1
n−k

)
= (−1)n+k, the

first of Gould’s relations yields

n∑

k=0

(−1)k
(
2n+ 1

n− k

)
s(n+ k, k) = S(n+ 1, 1) = 1,

which is not quite the proposed result but suggested that we study a wider range of sums.
Motivated by this and other experiments using Maple, we study the following sums:

fm(n) =
n+m∑

k=0

(−1)k
(
2n+m

n+ k

)
s(n+ k, k),

Fm(n) =
n+m∑

k=0

(−1)k
(
2n+m

n+ k

)
S(n+ k, k),

gm(n) =
n∑

k=0

(−1)k
(
2n+m

n− k

)
s(n+ k, k),

Gm(n) =
n∑

k=0

(−1)k
(
2n+m

n− k

)
S(n+ k, k).

For m ≥ 0, the closed forms for fm(n) and Fm(n) are easy to obtain, but the sums gm(n) and
Gm(n) are more complicated. We also study the case of m < 0. We shall derive formulas for
these sums, and discuss their connections. To simplify the notation, define

f̂m(n) = f−m(n), F̂m(n) = F−m(n), ĝm(n) = g−m(n), and Ĝm(n) = G−m(n).

Consequently, throughout this paper, unless otherwise stated, m will denote a nonnegative
integer, and n a positive integer.

2



2 Closed forms for fm(n) and Fm(n)

We start with f0(n) and determine its value using a combinatorial argument.

Theorem 1. For any positive integer,

f0(n) =
n∑

k=0

(−1)k
(

2n

n+ k

)
s(n, k) = (2n− 1)!!,

where (2n− 1)!! denotes the double factorial (2n− 1)(2n− 3) · · · 3 · 1.

Proof. Recall that the unsigned Stirling number of the first kind c(n, k) = (−1)n−ks(n, k)
counts the number of n-permutations with k disjoint cycles. Then

f0(n) =
n∑

k=0

(−1)k
(

2n

n+ k

)
s(n+ k, k)

=
n∑

k=0

(−1)n−k

(
2n

n− k

)
c(n+ k, k)

=
n∑

j=0

(−1)j
(
2n

j

)
c(2n− j, n− j).

Let S be the set of 2n-permutations with n cycles, and Ai be the subset of permutations of
S with i as a fixed point. Then

∣∣Ai1 ∩ Ai2 ∩ · · · ∩ Aij | = c(2n− j, n− j).

It follows from the principle of inclusion-exclusion that f0(n) is precisely the number of 2n-
permutations without fixed points. Notice that if a permutation in S has no fixed point, it
must be a permutation with exactly n transpositions (that is, 2-cycles). After lining up 2n
objects, we can take the elements two at a time to form n transpositions. Since the order
within each transposition does not matter, it is just a matter of calculating the order among
the transpositions; hence, there are

(2n)!

n! 2n
= (2n− 1)(2n− 3) · · · 3 · 1 = (2n− 1)!!

permutations of 2n with exactly n transpositions. Thus, f0(n) = (2n− 1)!!.

The proof suggests we should examine the combinatorial interpretation of fm(n). Let
c∗(n, k) denote the number of n-permutations with k cycles and no fixed points. It is called
the unsigned associated Stirling number of the first kind ([2, p. 256] and [8, p. 73]). In a
similar fashion, we can define S∗(n, k) as the number of partitions of an n-set into k subsets
with no singleton subset as any part. The number S∗(n, k) is the associated Stirling number

of the second kind ([2, p. 221] and [8, p. 77]). See [6] for a more thorough discussion of the
associated Stirling numbers.
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Lemma 2. The identity fm(n) = (−1)mc∗(2n +m,n +m) holds for any integers m and n
such that n+m ≥ 1.

Proof. Let S be the set of (2n +m)-permutations with n +m cycles, and Ai be the subset
of permutations of S with i as a fixed point. Then

∣∣Ai1 ∩ Ai2 ∩ · · · ∩ Aij

∣∣ = c(2n+m− j, n+m− j).

Therefore, according to the principle of inclusion-exclusion,

c∗(2n+m,n+m) =
n+m∑

j=0

(−1)j
(
2n+m

j

)
c(2n+m− j, n+m− j)

=
0∑

k=n+m

(−1)n+m−k

(
2n+m

n+m− k

)
c(n+ k, k)

= (−1)m
n+m∑

k=0

(−1)k
(
2n+m

n+ k

)
s(n+ k, k).

Therefore, c∗(2n+m,n+m) = (−1)mfm(n).

By using an almost identical argument, we obtain a similar result for the associated
Stirling numbers of the second kind.

Lemma 3. The identity Fm(n) = (−1)n+mS∗(2n+m,n+m) holds for any integers m and

n such that n+m ≥ 1.

These combinatorial interpretations allow us to determine the exact values of fm(n) and
Fm(n) for m ≥ 0. Again, due to their similarity, we shall only prove the first result.

Theorem 4. For any integer n ≥ 1, f0(n) = (2n− 1)!!, and fm(n) = 0 if m > 0.

Proof. Lemma 2 states that fm(n) = (−1)mc∗(2n + m,n + m). If m > 0, it is clear that
2n+m < 2(n+m), hence c∗(2n+m,n+m) = 0. When m = 0, we have f0(n) = c∗(2n, n),
which counts the number of permutations with exactly n transpositions. Hence, f0(n) =
(2n− 1)!!.

Theorem 5. For any integer n ≥ 1, F0(n) = (−1)n(2n− 1)!!, and Fm(n) = 0 if m > 0.

The same conclusions can be drawn from generating functions.

Lemma 6. Let T be a nonempty set of positive integers. Define cT (n, k) as the number of

n-permutations with k disjoint cycles whose lengths belong to T . Then

cT (x, y) :=
∑

n,k≥0

cT (n, k)
xn

n!
yk = exp

(
y
∑

j∈T

xj

j

)
.
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Proof. The result follows easily from the exponential formula [15]. Alternatively, we can
prove it directly as follows. For any n-permutation, let nj denotes the number of j-cycles.
It is a routine exercise to show that

cT (n, k) =
∑

T

n!∏
j∈T nj! jnj

,

where the summation
∑

T is taken over all nj ≥ 0, where j ∈ T , such that
∑

j∈T nj = k,
and

∑
j∈T jnj = n. Then

∑

n,k≥0

cT (n, k)
xn

n!
yk =

∑

n,k≥0

∑
T

∏

j∈T

xjnjynj

nj! jnj

=
∑

n,k≥0

∑
T

∏

j∈T

1

nj!

(
xjy

j

)nj

.

Noting that this is in the form of a convolution, we determine that

cT (x, y) =
∏

j∈T

∑

nj≥0

1

nj!

(
xjy

j

)nj

=
∏

j∈T

exp

(
xjy

j

)
= exp

(
y
∑

j∈T

xj

j

)
.

Lemma 7. Let T be a nonempty set of positive integers. Define ST (n, k) as the number of

ways to partition an n-set into k subsets with cardinalities belonging to T . Then

ST (x, y) :=
∑

n,k≥0

ST (n, k)
xn

n!
yk = exp

(
y
∑

j∈T

xj

j!

)
.

Proof. The proof is identical to that of Lemma 6, except that

ST (n, k) =
∑

T

n!∏
j∈T nj! (j!)nj

.

For our purpose, we need T = N− {1}. We find

c∗(x, y) :=
∑

n,k≥0

c∗(n, k)
xn

n!
yk = exp

(
y
∑

j≥2

xj

j

)
= (1− x)−ye−xy, (1)

and

S∗(x, y) :=
∑

n,k≥0

S∗(n, k)
xn

n!
yk = exp

(
y
∑

j≥2

xj

j!

)
= ey(e

x−1−x). (2)

From the generating function c∗(x, y), it is clear that the coefficient of xryt is zero if r < 2t.
Hence, fm(n) = (−1)mc∗(2n+m,n+m) = 0 if m > 0. For m = 0, the coefficient of x2n

(2n)!
yn

is (2n)!
n! 2n

= (2n− 1)!!. The argument for Fm(n) is similar.
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3 Formulas for f̂m(n) and F̂m(n)

Lemma 2 shows that fm(n) = (−1)mc∗(2n + m,n + m). Its combinatorial interpretation
implies that fm(n) is nonzero if 1− n ≤ m ≤ 0. We obtain the following result.

Theorem 8. For any integer m that satisfies 0 < m ≤ n− 1,

f̂m(n) =
∑ (−1)m(2n−m)!∏

i≥2 ni! ini
,

where the summation is taken over all integers n2, n3, n4, . . . ≥ 0 such that
∑

i≥2 ni = n−m,

and
∑

i≥2 ini = 2n−m.

We shall present an analytic proof as well as a combinatorial proof.

Proof. Since fm(n) = (−1)mc∗(2n + m,n + m), we gather from the generating function
c∗(x, y) that fm(n) is (−1)m(2n+m)! times the coefficient of x2n+myn+m in the power series
expansion of

exp

[
y

(
x2

2
+

x3

3
+

x4

4
+ · · ·

)]
=

∞∑

k=0

yk

k!

(
x2

2
+

x3

3
+

x4

4
+ · · ·

)k

.

We conclude that fm(n) is (−1)m(2n + m)!/(n + m)! times the coefficient of x2n+m in the
power series expansion of (

x2

2
+

x3

3
+

x4

4
+ · · ·

)n+m

.

For m < 0, replace m with −m. Then f̂m(n) is (−1)m(2n−m)!/(n−m)! times the coefficient
of x2n−m in the expansion of the polynomial

(
x2

2
+

x3

3
+

x2

4
+ · · ·

)n−m

.

Applying the multinomial theorem yields the result immediately.

Here is an alternate proof.

Proof. Since f̂m(n) = f−m(n) = (−1)mc∗(2n − m,n − m), it suffices to find a formula for
the number of permutations of 2n−m with exactly n−m cycles none of which is a 1-cycle.
Assume there are ni cycles of length i, then n2, n3, n4, . . . ≥ 0, and

n2 + n3 + n4 + · · · = n−m,

2n2 + 3n3 + 4n4 + · · · = 2n−m,

and there are
(2n−m)!∏

i≥2 ni! ini

such permutations. This, when combined with the addition principle, completes the proof.
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An almost identical argument leads to the next result.

Theorem 9. For any integer m that satisfies 0 < m ≤ n− 1,

F̂m(n) =
∑ (−1)n+m(2n−m)!∏

i≥2 ni! (i!)ni
,

where the summation is taken over all integers n2, n3, n4, . . . ≥ 0 such that
∑

i≥2 ni = n−m,

and
∑

i≥2 ini = 2n−m.

In order to use these two results effectively, take note that the two conditions on the ni’s
imply that

n3 + 2n4 + 3n5 + 4n6 + · · · = m.

The possible solutions for 0 ≤ m ≤ 4 are summarized below.

m 2n−m n2 n3 n4 n5 n6
(2n−m)!∏
i≥2

ni! ini

(2n−m)!∏
i≥2

ni! (i!)ni

0 2n n 0 0 0 0 (2n)!
n! 2n

(2n)!
n! 2n

1 2n− 1 n− 2 1 0 0 0 (2n−1)!
3(n−2)! 2n−2

(2n−1)!
6(n−2)! 2n−2

2 2n− 2 n− 3 0 1 0 0 (2n−2)!
4(n−3)! 2n−3

(2n−2)!
24(n−3)! 2n−3

n− 4 2 0 0 0 (2n−2)!
18(n−4)! 2n−4

(2n−2)!
72(n−4)! 2n−4

3 2n− 3 n− 4 0 0 1 0 (2n−3)!
5(n−4)! 2n−4

(2n−3)!
120(n−4)! 2n−4

n− 5 1 1 0 0 (2n−3)!
12(n−5)! 2n−5

(2n−3)!
144(n−5)! 2n−5

n− 6 3 0 0 0 (2n−3)!
162(n−6)! 2n−6

(2n−3)!
1296(n−6)! 2n−6

4 2n− 4 n− 5 0 0 0 1 (2n−4)!
6(n−5)! 2n−5

(2n−4)!
720(n−5)! 2n−5

n− 6 1 0 1 0 (2n−4)!
15(n−6)! 2n−6

(2n−4)!
720(n−6)! 2n−6

n− 6 0 2 0 0 (2n−4)!
32(n−6)! 2n−6

(2n−4)!
1152(n−6)! 2n−6

n− 7 2 1 0 0 (2n−4)!
72(n−7)! 2n−7

(2n−4)!
1728(n−7)! 2n−7

n− 8 4 0 0 0 (2n−4)!
1944(n−8)! 2n−8

(2n−4)!
31104(n−8)! 2n−8
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Theorem 8 asserts that

f̂1(n) = −
(2n− 1)!

3(n− 2)! 2n−2
,

f̂2(n) =
(2n− 2)!

4(n− 3)! 2n−3
+

(2n− 2)!

18(n− 4)! 2n−4
,

f̂3(n) = −
(2n− 3)!

5(n− 4)! 2n−4
−

(2n− 3)!

12(n− 5)! 2n−5
−

(2n− 3)!

162(n− 6)! 2n−6
,

f̂4(n) =
(2n− 4)!

6(n− 5)! 2n−5
+

47(2n− 4)!

480(n− 6)! 2n−6
+

(2n− 4)!

72(n− 7)! 2n−7
+

(2n− 4)!

1944(n− 8)! 2n−8
.

The first few absolute values of each of these four sequences are tabulated in Table 1. All
of them appear in the OEIS [12]. More information about these sequences, including their
combinatorial meanings, can be found in OEIS.

n 1 2 3 4 5 6 7 8 OEIS #
∣∣f̂1(n)

∣∣ 0 2 20 210 2520 34650 540540 9459450 A000906
∣∣f̂2(n)

∣∣ 0 0 6 130 2380 44100 866250 18288270 A000907
∣∣f̂3(n)

∣∣ 0 0 0 24 924 26432 705320 18858840 A001784
∣∣f̂4(n)

∣∣ 0 0 0 0 120 7308 303660 11098780 A001785

Table 1: The first eight values of f̂m(n) for m = 1, 2, 3, 4.

Likewise, Theorem 9 yields

F̂1(n) =
(−1)n+1(2n− 1)!

6(n− 2)! 2n−2
,

F̂2(n) =
(−1)n(2n− 2)!

24(n− 3)! 2n−3
+

(−1)n(2n− 2)!

72(n− 4)! 2n−4
,

F̂3(n) =
(−1)n+1(2n− 3)!

120(n− 4)! 2n−4
+

(−1)n+1(2n− 3)!

144(n− 5)! 2n−5
+

(−1)n+1(2n− 3)!

1296(n− 6)! 2n−6
,

F̂4(n) =
(−1)n(2n− 4)!

720(n− 5)! 2n−5
+

(−1)n13(2n− 4)!

5760(n− 6)! 2n−6
+

(−1)n(2n− 4)!

1728(n− 7)! 2n−7
+

(−1)n(2n− 4)!

31104(n− 8)! 2n−8
.

See Table 2. The last sequence does not appear in the OEIS. Note that |f̂1(n)| = 2|F̂1(n)|.
We leave it as an exercise to the readers to find a combinatorial explanation.
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n 1 2 3 4 5 6 7 8 OEIS #
∣∣F̂1(n)

∣∣ 0 1 10 105 1260 17325 270270 4729725 A000457
∣∣F̂2(n)

∣∣ 0 0 1 25 490 9450 190575 4099095 A000497
∣∣F̂3(n)

∣∣ 0 0 0 1 56 1918 56980 1636635 A000504
∣∣F̂4(n)

∣∣ 0 0 0 0 1 119 6825 302995 —

Table 2: The first eight values of F̂m(n) for m = 1, 2, 3, 4.

4 Formulas for ĝm(n) and Ĝm(n)

Next, we study the combinatorial significance of the two sums

ĝm(n) =
n∑

k=0

(−1)k
(
2n−m

n− k

)
s(n+ k, k),

Ĝm(n) =
n∑

k=0

(−1)k
(
2n−m

n− k

)
S(n+ k, k),

where m is a nonnegative integer, an n a positive integer such that 2n ≥ m.
Recall that the unsigned Stirling number of the first kind c(n, k) = (−1)n−ks(n, k) counts

the number of n-permutations with k disjoint cycles. We find

ĝm(n) =
n∑

k=0

(−1)k
(
2n−m

n− k

)
s(n+ k, k)

=
n∑

k=0

(−1)k
(

2n−m

n+ k −m

)
s(n+ k, k)

=
n∑

k=0

(−1)n−k

(
2n−m

2n− k −m

)
s(2n− k, n− k)

=
n∑

k=0

(−1)n−k

(
2n−m

k

)
s(2n− k, n− k)

=
n∑

k=0

(−1)k
(
2n−m

k

)
c(2n− k, n− k).

Similarly, we have

Ĝm(n) = (−1)n
n∑

k=0

(−1)k
(
2n−m

k

)
S(2n− k, n− k),
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where the Stirling number of the second kind S(n, k) counts the number of ways to partition
an n-set into k nonempty subsets.

For any positive integer m, define [m] = {1, 2, . . . ,m}. Let n be a fixed positive integer.
For any nonnegative integer m, define Sm as the set of permutations of [2n] with n cycles
and no fixed points among [2n−m]. Recall that if a permutation in Sm has no fixed point,
it must be a permutation with exactly n transpositions (that is, 2-cycles). In addition, the
fixed points in any permutation from Sm must belong to [2n] \ [2n − m]; this implies that
the permutations in Sm has at most m fixed points.

In an analogous manner, define S̃m as the set of partitions of [2n] into n nonempty subsets

none of which is a singleton subset of [2n−m]. If a partition in S̃m has no singleton subset,

it must have n parts, each of which a 2-subset. If a partition in S̃m has a singleton subset,
its element must be among [2n] \ [2n −m], hence it has at most m singleton subsets as its
parts.

We first us the same argument in Theorem 1 to derive two preliminary results about |Sm|

and
∣∣S̃m

∣∣.

Lemma 10. For positive integers m and n that satisfy 2n ≥ m,

ĝm(n) =
n∑

k=0

(−1)k
(
2n−m

n− k

)
s(n+ k, k) = |Sm|.

Proof. In light of our earlier discussion, it suffices to show that

|Sm| =
n∑

k=0

(−1)k
(
2n−m

k

)
c(2n− k, n− k).

Let S be the set of all permutations of [2n] with n cycles, without any restriction. For each
j ∈ [2n − m], define Aj to be the set of permutations of [2n] with j as a fixed point. If a
permutation belongs to Ai1 ∩ Ai2 ∩ · · · ∩ Aik , it still has n − k cycles whose elements come
from [2n] \ {i1, i2, . . . , ik}. Thus,

∣∣Ai1 ∩ Ai2 ∩ · · · ∩ Aik

∣∣ = c(2n− k, n− k),

and there are
(
2n−m

k

)
choices for {i1, i2, . . . , ik}. Since the permutations in S comprise of n

cycles, we obviously need 0 ≤ k ≤ n. The result now follows from the principle of inclusion-
exclusion.

It is clear that a similar result for
∣∣S̃m

∣∣ also holds.

Lemma 11. For positive integers m and n that satisfy 2n ≥ m,

Ĝm(n) =
n∑

k=0

(−1)k
(
2n−m

n− k

)
S(n+ k, k) = (−1)n

∣∣S̃m

∣∣.
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Theorem 12. For positive integers m and n that satisfy 2n ≥ m,

ĝm(n) =
m∑

j=0

(
m

j

)
c∗(2n− j, n− j) =

m∑

j=0

(
m

j

)∑ (2n− j)!∏
i≥2 ni! ini

,

where the inner sum
∑

is taken over all integers n2, n3, n4, . . . ≥ 0 such that
∑

i≥2 ni = n−j,
and

∑
i≥2 ini = 2n− j.

Proof. We need to determine |Sm|. Let j be the number of fixed points in a permutation
from Sm. Since the fixed points come from [2n] \ [2n − m], there are

(
m

j

)
ways to choose

these fixed points. The other 2n − j elements form n − j cycles, all with length at least 2.
Assume there are ni cycles of length i, then n2, n3, . . . ≥ 0, and

n2 + n3 + n4 + · · · = n− j,

2n2 + 3n3 + 4n4 + · · · = 2n− j,

and there are
(2n− j)!∏
i≥2 ni! ini

such permutations. The proof is completed by applying the addition principle, and recalling
that 0 ≤ j ≤ m.

Notice that the sum
∑

(2n− j)!/
∏

i≥2 ni! i
ni also appeared in the last section. It is equal

to c∗(2n− j, n− j). Then, according to Theorem 12,

ĝ1(n) =
(2n)!

n! 2n
+

(2n− 1)!

3(n− 2)! 2n−2
,

ĝ2(n) =
(2n)!

n! 2n
+

2(2n− 1)!

3(n− 2)! 2n−2
+

(2n− 2)!

4(n− 3)! 2n−3
+

(2n− 2)!

18(n− 4)! 2n−4
,

ĝ3(n) =
(2n)!

n! 2n
+

(2n− 1)!

(n− 2)! 2n−2
+

3(2n− 2)!

4(n− 3)! 2n−3
+

(2n− 2)!

6(n− 4)! 2n−4

+
(2n− 3)!

5(n− 4)! 2n−4
+

(2n− 3)!

12(n− 5)! 2n−5
+

(2n− 3)!

162(n− 6)! 2n−6
,

ĝ4(n) =
(2n)!

n! 2n
+

4(2n− 1)!

3(n− 2)! 2n−2
+

3(2n− 2)!

2(n− 3)! 2n−3
+

(2n− 2)!

3(n− 4)! 2n−4

+
4(2n− 3)!

5(n− 4)! 2n−4
+

(2n− 3)!

3(n− 5)! 2n−5
+

2(2n− 3)!

81(n− 6)! 2n−6

+
(2n− 4)!

6(n− 5)! 2n−5
+

47(2n− 4)!

480(n− 6)! 2n−6
+

(2n− 4)!

72(n− 7)! 2n−7

+
(2n− 4)!

1944(n− 8)! 2n−8
.
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It is easy to verify that

ĝ1(n) =
(2n+ 1)!!

3
.

Since ĝ0(n) = (2n− 1)!!, we find

3ĝ1(n) = ĝ0(n+ 1).

We invite the readers to find a combinatorial proof of this simple identity. We also find

ĝ2(n) =
1

9
(4n3 + 9n2 − n− 3)(2n− 3)!!

=
1

18
(2n+ 3)!! +

1

12
(2n+ 1)!!−

1

12
(2n− 3)!!.

It becomes clear that ĝm(n) can be written as a linear combination of the double falling
factorials of the form m!! for some odd integers m. We invite the readers to devise a
combinatorial argument to find its coefficients.

The sequence {ĝ1(n)}n≥1 appears in the OEIS [12] as Sequence A051577, but the other
sequences {ĝ2(n)}n≥1, {ĝ3(n)}n≥1, and {ĝ4(n)}n≥1 do not appear in the OEIS. Their numeric
values for n ≤ 8 are listed in Table 3.

n 1 2 3 4 5 6 7 8 OEIS #

ĝ1(n) 1 5 35 315 3465 45045 675675 11486475 A051577

ĝ2(n) 1 7 61 655 8365 123795 2082465 39234195 —

ĝ3(n) 1 9 93 1149 16569 273077 5060825 104129025 —

ĝ4(n) 1 11 131 1821 29121 526631 10619735 236128585 —

Table 3: The first eight values of ĝm(n) for m = 1, 2, 3, 4.

A similar argument yields the next result.

Theorem 13. For positive integers m and n that satisfy 2n ≥ m,

Ĝm(n) =
m∑

j=0

(−1)n
(
m

j

)
S∗(2n− j, n− j) =

m∑

j=0

(
m

j

)∑ (−1)n(2n− j)!∏
i≥2 ni! (i!)ni

,

where the inner sum
∑

is taken over all integers n2, n3, n4, . . . ≥ 0 such that
∑

i≥2 ni = n−j,
and

∑
i≥2 ini = 2n− j.

12



Theorem 13 yields the following:

Ĝ1(n) =
(−1)n(2n)!

n! 2n
+

(−1)n(2n− 1)!

6(n− 2)! 2n−2
,

Ĝ2(n) =
(−1)n(2n)!

n! 2n
+

(−1)n(2n− 1)!

3(n− 2)! 2n−2
+

(−1)n(2n− 2)!

24(n− 3)! 2n−3
+

(−1)n(2n− 2)!

72(n− 4)! 2n−4
,

Ĝ3(n) =
(−1)n(2n)!

n! 2n
+

(−1)n(2n− 1)!

2(n− 2)! 2n−2
+

(−1)n(2n− 2)!

8(n− 3)! 2n−3
+

(−1)n(2n− 2)!

24(n− 4)! 2n−4

+
(−1)n(2n− 3)!

120(n− 4)! 2n−4
+

(−1)n(2n− 3)!

144(n− 5)! 2n−5
+

(−1)n(2n− 3)!

1296(n− 6)! 2n−6
,

Ĝ4(n) =
(−1)n(2n)!

n! 2n
+

(−1)n2(2n− 1)!

3(n− 2)! 2n−2
+

(−1)n(2n− 2)!

4(n− 3)! 2n−3
+

(−1)n(2n− 2)!

12(n− 4)! 2n−4

+
(−1)n(2n− 3)!

30(n− 4)! 2n−4
+

(−1)n(2n− 3)!

36(n− 5)! 2n−5
+

(−1)n(2n− 3)!

324(n− 6)! 2n−6

+
(−1)n(2n− 4)!

720(n− 5)! 2n−5
+

(−1)n13(2n− 4)!

5760(n− 6)! 2n−6
+

(−1)n(2n− 4)!

1728(n− 7)! 2n−7

+
(−1)n(2n− 4)!

31104(n− 8)! 2n−8
.

The first eight absolute values of each sequence are tabulated in Table 4. None of these
sequences appear in the OEIS.

n 1 2 3 4 5 6 7 8 OEIS #
∣∣Ĝ1(n)

∣∣ 1 4 25 210 2205 27720 405405 6756750 —
∣∣Ĝ2(n)

∣∣ 1 5 36 340 3955 54495 866250 15585570 —
∣∣Ĝ3(n)

∣∣ 1 6 48 496 6251 92638 1574650 30150120 —
∣∣Ĝ4(n)

∣∣ 1 7 61 679 9150 144186 2594410 52390030 —

Table 4: The first eight values of Ĝm(n) for m = 1, 2, 3, 4.
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5 Connections between the sums

Theorem 12 states that ĝm(n) =
∑m

j=0

(
m

j

)
c∗(2n− j, n− j). Together with Lemma 2 which

implies c∗(2n− j, n− j) = (−1)j f̂j(n), we immediately obtain the identity

ĝm(n) =
m∑

j=0

(−1)j
(
m

j

)
f̂j(n).

Likewise, we also have

Ĝm(n) =
m∑

j=0

(−1)j
(
m

j

)
F̂j(n).

Using the binomial inversion formula (see, for example, [1]), we also obtain

f̂m(n) =
m∑

j=0

(−1)j
(
m

j

)
ĝj(n),

F̂m(n) =
m∑

j=0

(−1)j
(
m

j

)
Ĝj(n).

Symbolically, we can apply the idea from umbral calculus [9] to abbreviate these results
as

ĝm(n) = L
((

1− f̂(n)
)m)

,

Ĝm(n) = L
((

1− F̂ (n)
)m)

,

f̂m(n) = L
((

1− ĝ(n)
)m)

,

F̂m(n) = L
((

1− Ĝ(n)
)m)

.

where L is the linear operator that maps t(n)j to tj(n).

6 Formulas for gm(n) and Gm(n)

Let S1(n, k) denote the sum of the
(
n

k

)
products composed of k distinct factors from [n], and

S2(n, k) the sum of the
(
n−k+1

k

)
possible products (repetition allowed) of k factors from [n].

It is obvious that

∞∑

k=0

S1(n, k) x
k =

n∏

j=1

(1 + jx), and
∞∑

k=0

S2(n, k) x
k =

n∏

j=1

1

1− jx
.
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Comparing them to the well-known identities

∞∑

k=0

s(n, k) xk =
n−1∏

j=0

(x− j), and
∞∑

n=k

S(n, k) xn =
k∏

j=1

x

1− jx
,

it is not difficult to see that

S1(n, k) = (−1)ks(n+ 1, n+ 1− k), (3)

and
S2(n, k) = S(n+ k, n). (4)

Their equivalent forms also appear on [4, pages 71 and 72].
Gould obtained [3, Equation 1.9]

n∑

k=0

(
n− ℓ

n+ k

)(
n+ ℓ

n− k

)
S1(n+ k − 1, n) = S2(ℓ− n, n),

and proved the following identity [3, Equation 1.4] from [10]:

n∑

k=0

(
n− ℓ

n+ k

)(
n+ ℓ

n− k

)
S2(k, n) = S1(ℓ− 1, n).

Applying (3) and (4) to them yields the identities

n∑

k=0

(
n− ℓ

n+ k

)(
n+ ℓ

n− k

)
s(n+ k, k) = (−1)nS(ℓ, ℓ− n),

and
n∑

k=0

(
n− ℓ

n+ k

)(
n+ ℓ

n− k

)
S(n+ k, k) = (−1)ns(ℓ, ℓ− n).

These are the two identities mentioned in the Introduction. Sun recently derived similar
results [14, Theorem 2.3] that relate the Stirling numbers of the same kind. We note that
his results are implied by those found in [3].

Setting ℓ = n+m leads to the next key result.

Lemma 14. The following identities

n∑

k=0

(
−m

n+ k

)(
2n+m

n− k

)
s(n+ k, k) = (−1)nS(n+m,m), (5)

n∑

k=0

(
−m

n+ k

)(
2n+m

n− k

)
S(n+ k, k) = (−1)ns(n+m,m), (6)

hold for all positive integers m.
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Since
(

−1
n+k

)
= (−1)n+k, S(n+1, 1) = 1, and s(n+1, 1) = (−1)nn!, Lemma 14 immediately

yields the formulas for g1(n) and G1(n).

Theorem 15. For all positive integers n,

g1(n) =
n∑

k=0

(−1)k
(
2n+ 1

n− k

)
s(n+ k, k) = 1,

and

G1(n) =
n∑

k=0

(−1)k
(
2n+ 1

n− k

)
S(n+ k, k) = (−1)nn!.

For m > 1, the simplification becomes more complicated.

Theorem 16. For all positive integers n,

g2(n) =
n∑

k=0

(−1)k
(
2n+ 2

n− k

)
s(n+ k, k) = 2n+ 3− 2n+1.

Proof. Since
(

−2
n+k

)
= (−1)n+k(n + k + 1), and S(n + 2, 2) = 2n+1 − 1, we deduce from (5)

that
n∑

k=0

(−1)k(n+ k + 1)

(
2n+ 2

n− k

)
s(n+ k, k) = 2k+1 − 1.

From (n+ k + 2)
(
2n+2
n−k

)
= (2n+ 2)

(
2n+1
n−k

)
, we obtain

(n+ k + 1)

(
2n+ 2

n− k

)
= (2n+ 2)

(
2n+ 1

n− k

)
−

(
2n+ 2

n− k

)
.

Thus, we can further reduce the previous identity to

(2n+ 2)g1(n)− g2(n) = 2n+1 − 1,

which completes the proof because g1(n) = 1.

Encouraged by what we found, we used a computer algebra system to compute the value
of gm(n) for m = 1, 2, 3, 4, 5. This led us to the following conclusion:

Theorem 17. For any positive integer m,

gm(n) =
m∑

j=1

(−1)j−1

(
2n+m

m− j

)
S(n+ j, j).
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Proof. It follows from (5) that, for j ≥ 1,

S(n+ j, j) = (−1)n
n∑

k=0

(
−j

n+ k

)(
2n+ j

n− k

)
s(n+ k, k)

=
n∑

k=0

(−1)k
(
n+ k + j − 1

n+ k

)(
2n+ j

n− k

)
s(n+ k, k).

Therefore,

m∑

j=1

(−1)j−1

(
2n+m

m− j

)
S(n+ j, j)

=
m∑

j=1

(−1)j−1

(
2n+m

m− j

) n∑

k=0

(−1)k
(
n+ k + j − 1

n+ k

)(
2n+ j

n− k

)
s(n+ k, k)

=
n∑

k=0

(−1)k
(
2n+m

n− k

)
s(n+ k, k)

m∑

j=1

(−1)j−1

(
n+m+ k

m− j

)(
n+ k + j − 1

n+ k

)
.

Using Vandermonde convolution (see, for example, [5, Equation 3.1]), the inner sum simplifies
to

m∑

j=1

(−1)j−1

(
n+m+ k

m− j

)(
n+ k + j − 1

n+ k

)
=

m∑

j=1

(−1)j−1

(
n+m+ k

m− j

)(
n+ k + j − 1

j − 1

)

=
m∑

j=1

(
n+m+ k

m− j

)(
−n− k − 1

j − 1

)

=

(
m− 1

m− 1

)
,

from which the desired result follows.

When m = 1, 2, the formulas reduce to those in Theorems 15 and 16. We also find

g3(n) =

(
2n+ 3

2

)
S(n+ 1, 1)− (2n+ 3)S(n+ 2, 2) + S(n+ 3, 3).

Using an analogous argument, we obtain the following result.

Theorem 18. For any positive integer m,

Gm(n) =
m∑

j=1

(−1)j−1

(
2n+m

m− j

)
s(n+ j, j).
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Accordingly,

G2(n) = (2n+ 2) s(n+ 1, 1)− s(n+ 2, 2),

G3(n) =

(
2n+ 3

2

)
s(n+ 1, 1)− (2n+ 3) s(n+ 2, 2) + s(n+ 3, 3).

While the similarity between the formulas for gm(n) and Gm(n) is striking, there is an
important difference between them. It is well-known (see, for example, [4, Equation 77])
that

S(n, k) =
1

k!

k∑

j=0

(−1)k−j

(
k

j

)
jn.

This suggests that it is possible to find a closed form for gm(n) without any reference to
S(n, k). For example, after simplification,

g3(n) = 2n2 + 7n+ 4− 2n+1(2n− 5)−
3n

2
.

The same cannot be said of Gm(n), because there does not exist a simple summation formula
for s(n, k).

We invite interested readers to find alternative combinatorial and/or generating function
proofs which provide closed forms for gm(n) and Gm(n) for m > 0.
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