Journal of Integer Sequences, Vol. 18 (2015), Article 15.10.8

Rectangles Of Nonvisible Lattice Points

Shanta Laishram
Stat-Math Unit
Indian Statistical Institute
7 S. J. S. Sansanwal Marg
New Delhi, 110016
India
shanta@isid.ac.in
Florian Luca
School of Mathematics
University of the Witwatersrand
P. O. Box X3, Wits 2050
South Africa
florian.luca@wits.ac.za

Abstract

A lattice point $(0,0) \neq(x, y) \in \mathbb{Z}^{2}$ is called visible (from the origin) if $\operatorname{gcd}(x, y)=1$ and nonvisible otherwise. Given positive integers a, b, define $M:=M(a, b)$ and $N:=$ $N(a, b)$ to be the positive integers M and N having the least value of $\max (M, N)$ with the property that $\operatorname{gcd}(M-i, N-j)>1$ for all $1 \leq i \leq a$ and $1 \leq j \leq b$. We give upper and lower bounds for M, N.

1 Introduction

A lattice point $(0,0) \neq(x, y) \in \mathbb{Z}^{2}$ is called visible (from the origin) if $\operatorname{gcd}(x, y)=1$ and nonvisible otherwise (see Herzog and Stewart [2]). In other words, (r, s) is visible iff $\frac{r}{s}$ is in lowest terms.

In [4], Pighizzini and Shallit defined, for a positive integer n, the function $S(n)$, which is the least positive integer r such that there exists $m \in\{0,1, \ldots, r\}$ with $\operatorname{gcd}(r-i, m-j)>1$ for $0 \leq i, j<n$. This is equivalent to finding the square of side n, nearest to the origin in the first quadrant of the real $x y$ plane, where all its lattice points are nonvisible from the origin. It was shown in [4] that

$$
\begin{equation*}
S(n)<e^{(2+o(1)) n^{2} \log n} \quad \text { as } \quad n \rightarrow \infty \tag{1}
\end{equation*}
$$

and computed $S(n)$ and the corresponding m 's for $n=1,2,3$. This function was also studied by Wolfram [6, pp. 613, 1093] who computed $S(4)$.

Here, we generalize the function $S(n)$. Given positive integers a, b, let $(M(a, b), N(a, b))$ be a minimal pair of positive integers such that $\operatorname{gcd}(M-i, N-j)>1$ for all $1 \leq i \leq a$ and $1 \leq j \leq b$. More precisely, given positive integers a, b, define $M:=M(a, b)$ and $N:=N(a, b)$ to be the positive integers M and N having the least value of $\max (M, N)$ with the property that $\operatorname{gcd}(M-i, N-j)>1$ for all $1 \leq i \leq a$ and $1 \leq j \leq b$. This is equivalent to finding the rectangle with sides a, b, nearest to the origin in the first quadrant of real $x y$ plane, where all its lattice points are nonvisible from the origin.

Without loss of generality, we assume that $a \geq b$. In this note, we prove the following result. We always write p for a prime number.
Theorem 1. If $a \geq b$, we then have
(i) $\max \{M(a, b), N(a, b)\} \leq \exp \left(\left(6 / \pi^{2}+o(1)\right) a b \log a b\right)$ as $b \rightarrow \infty$.
(ii) $\max \{M(a, b), N(a, b)\} \leq \exp (0.721521 a b \log a b)$ if $b>100$.
(iii) We have

$$
M(a, b) \geq \exp \left(\left(c_{1}+o(1)\right) b \log a b\right) \quad \text { and } \quad N(a, b) \geq \exp \left(\left(c_{1}+o(1)\right) a \log a b\right)
$$

where

$$
c_{1}=1-\sum_{p \geq 2} \frac{1}{p^{2}}=0.547753 \cdots
$$

provided $b \rightarrow \infty$ in such a way that $\log \log a=o(b)$.
Taking $a=b=n$, (i) above shows that

$$
S(n) \leq \exp \left(\left(12 / \pi^{2}+o(1)\right) n^{2} \log n\right) \quad \text { as } \quad n \rightarrow \infty
$$

which improves (1). We also give a lower bound for $S(n)$. We prove
Theorem 2. For $n>1$, we have

$$
S(n) \geq \exp (.82248 n \log n)
$$

We also give an algorithm for computing M and N for a given a and b. This is stated in Section 3 and values of M and N are computed for some small values of a, b. The proof of Theorem 2 is given in Section 4.

2 Preliminaries

For a positive integer i, let p_{i} denote the i-th prime. Thus $p_{1}=2, p_{2}=3, \ldots$. For real $x>1$, let

$$
\pi(x)=\sum_{p \leq x} 1 \text { and } \theta(x)=\sum_{p \leq x} \log p .
$$

From the prime number theorem, we have $\pi(x) \leq s_{1} x / \log x$ and $\theta\left(p_{\ell}\right) \leq s_{2} \ell \log \ell$ for positive constants s_{1}, s_{2}. The following results give explicit values of s_{1} and s_{2}.

Lemma 3. Let x be real and positive and ℓ be a positive integer. We have
(i) $\pi(x) \leq \frac{x}{\log x}\left(1+\frac{1.2762}{\log x}\right)$ for $x>1$.
(ii) $p_{\ell} \geq \ell \log \ell$ for $\ell \geq 1$.
(iii) $\theta\left(p_{\ell}\right) \leq \ell(\log \ell+\log \log \ell-.75)$ for $\ell \geq 8$.
(iv) $\theta(x) \geq x\left(1-\frac{1}{\log x}\right)$ for $x \geq 41$.
(v) $\sum_{p \leq x} \frac{1}{p} \leq \log \log x+0.2615+\frac{1}{\log ^{2} x}$ for $x>1$.

The estimates $(i i),(i v)$ and (v) are Rosser and Schoenfeld [5, (3.12), (3.16), (3.20)], respectively. The estimate (i) is due to Dusart [1] and (iii) is derived from estimates in [1].

For given integers $j \geq r \geq 1$, let

$$
r^{\prime}:=r^{\prime}(j):=\#\{i: 1 \leq i \leq r \text { and } \operatorname{gcd}(i, j)=1\} .
$$

Let

$$
R_{j}:=\max \left\{r^{\prime}-\frac{r \varphi(j)}{j}: 1 \leq r<j\right\}
$$

where $\varphi(j)$ is the Euler phi-function. It is easy to see that $R_{p}=1-1 / p$. For a real number x, let $\{x\}$ denote the fractional part of x; i.e., $\{x\}=x-\lfloor x\rfloor$. We prove the following estimate.

Lemma 4. If $n>100$, then

$$
\sum_{j=1}^{n} R_{j} \leq .375 n \log n-.432 n-10
$$

Proof. For $1 \leq r<j$, we have

$$
r^{\prime}(j) \leq r-\sum_{p \mid j}\left\lfloor\frac{r}{p}\right\rfloor+\sum_{p q \mid j}\left\lfloor\frac{r}{p q}\right\rfloor-\sum_{p q r \mid j}\left\lfloor\frac{r_{j}}{p q r}\right\rfloor+\cdots,
$$

where p, q, r, \ldots are primes dividing j. Since

$$
\frac{\varphi(j)}{j}=1-\sum_{p \mid j} \frac{1}{p}+\sum_{p q \mid j} \frac{1}{p q}-\sum_{p q r \mid j} \frac{1}{p q r}+\cdots
$$

we get

$$
r^{\prime}-\frac{r \varphi(j)}{j} \leq \sum_{p \mid j}\left\{\frac{r_{j}}{p}\right\}-\sum_{p q \mid j}\left\{\frac{r_{j}}{p q}\right\}+\sum_{p q r \mid j}\left\{\frac{r_{j}}{p q r}\right\}-\cdots
$$

Since $r / s \leq\lfloor r / s\rfloor+1-1 / s$ holds for positive integers r, s, we get

$$
R_{j} \leq \sum_{p \mid j}\left(1-\frac{1}{p}\right)+\sum_{p q r \mid j}\left(1-\frac{1}{p q r}\right)+\cdots
$$

Let $\omega(j)$ be the number of distinct prime divisors of j and put $\omega_{t}=\binom{j}{t}$. Then

$$
R_{j} \leq \sum_{t \text { odd }} \omega_{t}-\sum_{p \mid j} \frac{1}{p}=2^{\omega(j)-1}-\sum_{p \mid j} \frac{1}{p} .
$$

Thus, for $n>100$, we have

$$
\begin{align*}
\sum_{j=1}^{n} R_{j} & \leq \sum_{j=1}^{100} R_{j}+\frac{1}{2} \sum_{j>100}^{n} 2^{\omega(j)}-\sum_{j>100}^{b} \sum_{p \mid j} \frac{1}{p} \\
& =\sum_{j=1}^{100}\left(R_{j}-2^{\omega(j)-1}-\sum_{p \mid j} \frac{1}{p}\right)+\frac{1}{2} \sum_{j=1}^{n} 2^{\omega(j)}-\sum_{j=2}^{n} \sum_{p \mid j} \frac{1}{p} \\
& \leq-130.4778+\frac{1}{2} \sum_{j=1}^{n} 2^{\omega(j)}-\sum_{p \leq n}\left\lfloor\frac{n}{p}\right\rfloor \frac{1}{p} \tag{2}
\end{align*}
$$

Assuming $n>100$, we have

$$
\begin{align*}
\sum_{p \leq n}\left\lfloor\frac{n}{p}\right\rfloor \frac{1}{p} & \geq \sum_{p \leq n}\left(\frac{n+1}{p^{2}}-\frac{1}{p}\right) \geq(n+1) \sum_{p \leq b}\left(\frac{1}{p^{2}}-\frac{1}{p(n+1)}\right) \\
& \geq(n+1) \sum_{p \leq 101}\left(\frac{1}{p^{2}}-\frac{1}{101 p}\right) \geq .432(n+1) \tag{3}
\end{align*}
$$

As in the proof of [3, Lemma 9] for $n \geq 248$, and using exact computations for $n \in[101,247]$, we obtain

$$
\begin{equation*}
\sum_{j=2}^{n} 2^{\omega(j)}-120 \leq .375 n \log n \quad \text { for all } \quad n>100 \tag{4}
\end{equation*}
$$

Combining the estimates (2), (3) and (4) above, we get the assertion of the lemma.
Lemma 5. For a positive integer n, we have

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{\varphi(j)}{j} \leq \frac{6 n}{\pi^{2}}+\log n+1 \tag{5}
\end{equation*}
$$

Proof. We have

$$
\sum_{j=1}^{n} \frac{\varphi(j)}{j}=\sum_{j=1}^{b} \frac{\mu(j)}{j}\left\lfloor\frac{n}{j}\right\rfloor=\sum_{j=1}^{n} \frac{\mu(j)}{j}\left(\frac{n}{j}-\left\{\frac{n}{j}\right\}\right)=n \sum_{j=1}^{b} \frac{\mu(j)}{j^{2}}-\sum_{j=1}^{n} \frac{\mu(j)}{j}\left\{\frac{n}{j}\right\}
$$

Hence, inequality (5) follows from

$$
\sum_{j=1}^{n} \frac{\mu(j)}{j^{2}}=\sum_{j=1}^{\infty} \frac{\mu(j)}{j^{2}}-\sum_{j>n} \frac{\mu(j)}{j^{2}}<\frac{6}{\pi^{2}}+\sum_{j>n} \frac{1}{j^{2}} \leq \frac{6}{\pi^{2}}+\int_{n}^{\infty} \frac{d u}{u^{2}}=\frac{6}{\pi^{2}}+\frac{1}{n}
$$

and

$$
-\sum_{j=1}^{n} \frac{\mu(j)}{j}\left\{\frac{n}{j}\right\} \leq \sum_{j=2}^{n} \frac{1}{j}<\int_{1}^{n} \frac{d u}{u}=\log n .
$$

We now define two functions f and g on \mathbb{N} with values in the positive real numbers given by

$$
f(n)= \begin{cases}\sum_{j=1}^{n} \varphi(j) / j, & \text { if } n \leq 100 \\ 6 n / \pi^{2}+\log n+1, & \text { if } n>100\end{cases}
$$

and

$$
g(n)= \begin{cases}\sum_{j=1}^{n} R_{j}, & \text { if } n \leq 100 \\ .375 n \log n-.432 n-10, & \text { if } n>100\end{cases}
$$

We observe from Lemmas 4 and 5 that inequalities $f(n) \leq 6 n / \pi^{2}+\log n+1$ for $n \geq 1$ and $g(n) \leq .375 n \log n$ hold for all $n \geq 7$.

3 Proof of Theorem 1

3.1 Proof of the upper bounds (i) and (ii) in Theorem 1

Let a and b be positive integers with $a \geq b$. If $p \mid M$ and $p \mid N$ for each $p \leq b$, then

$$
\operatorname{gcd}(M-i, N-j)>1 \quad \text { for } \quad 1 \leq i \leq a, 1 \leq j \leq b \quad \text { and } \quad \operatorname{gcd}(i, j) \neq 1
$$

If $p \mid M$ and $N \equiv 1(\bmod p)$ for every $b<p \leq a$, then

$$
\operatorname{gcd}(M-i, N-1)>1 \quad \text { for } \quad b<i \leq a
$$

Let

$$
T:=T(a, b):=\{(i, j): 1 \leq i \leq a, 1 \leq j \leq b, \operatorname{gcd}(i, j)=1\} \backslash\{(i, 1): b<i \leq a\}
$$

and let $t=\# T$. We label the elements of $T(a, b)$ as

$$
T(a, b)=\left\{\left(i_{l}, j_{l}\right): 1 \leq l \leq t\right\}
$$

in lexicographic order. Hence $\left(i_{1}, j_{1}\right)=(1,1),\left(i_{2}, j_{2}\right)=(1,2), \ldots$.
We consider the system of congruences

$$
\begin{aligned}
M, N & \equiv 0 \quad(\bmod p) \quad \text { for } \quad p \leq b ; \\
M & \equiv 0 \quad(\bmod p) \quad \text { and } \quad N \equiv 1 \quad(\bmod p) \quad \text { for } \quad b<p \leq a
\end{aligned}
$$

and

$$
M \equiv i_{\ell} \quad\left(\bmod p_{\pi(b)+\ell)} \quad \text { and } \quad N \equiv j_{l} \quad \bmod p_{\pi(b)+\ell}\right) \quad \text { for } \quad 1 \leq \ell \leq t
$$

By the Chinese remainder theorem, we get

$$
\begin{equation*}
\max (M, N) \leq \prod_{\ell \leq \pi(a)+t} p_{\ell} \tag{6}
\end{equation*}
$$

We now estimate $\pi(a)+t$. For every $1 \leq j \leq b$, write $a=j q_{j}+r_{j}$ where $0 \leq r_{j}<j$. By dividing a into intervals of length j, we obtain

$$
\begin{aligned}
t+a-b & =\sum_{j=1}^{b}\left(q_{j} \varphi(j)+r_{j}^{\prime}\right)=a \sum_{j=1}^{b} \frac{\varphi(j)}{j}+\sum_{j=1}^{b}\left(r_{j}^{\prime}-\frac{r_{j} \varphi(j)}{j}\right) \\
& \leq a \sum_{j=1}^{b} \frac{\varphi(j)}{j}+\sum_{j=1}^{b} R_{j}
\end{aligned}
$$

which gives

$$
t+\pi(a) \leq a b\left(\frac{\sum_{j=1}^{b} \varphi(j) / j-1}{b}+\frac{b+\pi(a)+\sum_{j=1}^{b} R_{j}}{a b}\right)
$$

Assume that $b>100$. By Lemmas 4, 5, $3(i)$ and the fact that $a \geq b$, we obtain

$$
\begin{align*}
& \frac{\sum_{j=1}^{b} \varphi(j) / j-1}{b}+\frac{b+\pi(a)+\sum_{j=1}^{b} R_{j}}{a b} \\
\leq & \frac{6}{\pi^{2}}+\frac{\log b}{b}+\frac{b+.375 b \log b-.432 b-10+\pi(a)}{a b} \\
\leq & \frac{6}{\pi^{2}}+\frac{\log b}{b}+\frac{.568+\frac{3}{8} \log b}{a}+\frac{a(1+1.2762 / \log a)-10}{a b \log a} \\
\leq & \frac{6}{\pi^{2}}+\frac{11 \log b}{8 b}+\frac{1}{b \log b}\left(1+\frac{1.2762}{\log b}\right)-\frac{10}{b^{2}} \tag{7}
\end{align*}
$$

In particular,

$$
\begin{equation*}
t+\pi(a) \leq\left(\frac{6}{\pi^{2}}+o(1)\right) a b \quad \text { when } \quad b \rightarrow \infty \tag{8}
\end{equation*}
$$

Additionally, since the last expression (7) is a decreasing function of b, we obtain

$$
t+\pi(a) \leq .67252 a b \quad \text { for } \quad b>100
$$

Define $h_{0}(b)=.67252$ if $b>100$ and for $b \leq 100$ let this function be defined in the following way:

$$
\begin{aligned}
h_{0}(b) & :=\frac{\sum_{j=1}^{b} \varphi(j) / j-1}{b} \\
& +\max _{b \leq a \leq 100}\left\{\frac{b+\sum_{j=1}^{b} R_{j}+\pi(a)}{a b}, \frac{b+\sum_{j=1}^{b} R_{j}}{101 b}+\frac{1}{b \log 101}\left(1+\frac{1.2762}{\log 101}\right)\right\}
\end{aligned}
$$

We then obtain from $a \geq b$ and Lemma 3 (i) that $t+\pi(a) \leq h_{0}(b) a b$.
If $\pi(a)+t \leq 7$, then $\max (M, N) \leq 510510$. In fact, $b \leq a \leq 4$ in that case. Hence, we now assume that $\pi(a)+t \geq 8$. By Lemma 3 (i) and (iii) and from the fact that $a \geq b$, we have

$$
\begin{aligned}
\prod_{\ell \leq \pi(a)+t} p_{\ell} & \leq \exp \left(a b h_{0}(b)\left(\log h_{0}(b) a b+\log \log h_{0}(b) a b-.75\right)\right. \\
& \leq \exp \left(a b h_{0}(b) \log a b\left(1+\frac{\log h_{0}(b)+\log \log h_{0}(b) a b-.75}{\log a b}\right)\right) \\
& \leq \exp \left(a b h_{0}(b) \log a b\left(1+\frac{\log h_{0}(b)+\log \log h_{0}(b) b^{2}-.75}{\log b^{2}}\right)\right) \\
& :=\exp \left(h_{1}(b) a b \log b\right)
\end{aligned}
$$

Here,

$$
h_{1}(b)=h_{0}(b)\left(1+\frac{\log h_{0}(b)+\log \log h_{0}(b) b^{2}-.75}{\log b^{2}}\right) .
$$

Making $b \rightarrow \infty$, we get (i) of Theorem 1 from (8). For $b>100$, since $h_{0}(b)=.67252$, we get

$$
h_{1}(b) \leq h_{0}(b)\left(1+\frac{\log h_{0}(b)+\log \log h_{0}(b) \cdot 101^{2}-.75}{\log 101^{2}}\right) \leq .721521:=c_{1},
$$

which proves (ii) of Theorem 1. Our arguments give upper bounds for $M(a, b)$ and $N(a, b)$ in smaller ranges of b as well. That is, for $b \leq 100$, we get $h_{1}(b) \leq c_{1}(b)$, where the values of c_{1} are given by:

b	c_{1}								
2	9432	3	1.1429	4	.9344	5	.99964	6	.8587
7	.9074	8	.8448	9	.8279	10	.7813	11	.8186
12	.7718	13	.8034	14	.7752	15	.7608	16	.7435
17	.7689	18	.7419	19	.7646	20	.7454	≥ 21	.7463

3.2 Proof of the lower bound (iii) of Theorem 1

Let M, N satisfy the conditions of Theorem 1. For each pair (i, j) with $1 \leq i \leq a$ and $1 \leq j \leq b$, let $p_{i, j}$ be the least prime dividing $\operatorname{gcd}(M-i, N-j)$. We consider the set

$$
\mathcal{P}=\left\{p_{i, j}: 1 \leq i \leq a, 1 \leq j \leq b\right\} .
$$

Suppose that $p \in \mathcal{P}$. If $p \mid \operatorname{gcd}(M-i, N-j)$ and $p \mid \operatorname{gcd}\left(M-i^{\prime}, N-j^{\prime}\right)$ for some $1 \leq i, i^{\prime} \leq a$ and $1 \leq j, j^{\prime} \leq b$ with $(i, j) \neq\left(i^{\prime}, j^{\prime}\right)$. Then $p \mid\left(i-i^{\prime}\right)$ and $p \mid\left(j-j^{\prime}\right)$. In particular, $p \leq a$. Thus, given $p \in \mathcal{P}$, let $\left(i_{0}, j_{0}\right)$ be the least pair with $1 \leq i_{0} \leq a$ and $1 \leq j_{0} \leq b$ such that $p \mid \operatorname{gcd}(M-i, N-j)$. Then every other pair (i, j) with $1 \leq i \leq a$ and $1 \leq j \leq b$ such that $p \mid \operatorname{gcd}(M-i, N-j)$ has the property that $i=i_{0}+u p$ and $j=j_{0}+v p$ for some non-negative integers u, v with $0 \leq u \leq\lfloor(a-1) / p\rfloor$ and $0 \leq v \leq\lfloor(b-1) / p\rfloor$. Thus, for a fixed p, the number of pairs (i, j) for which $p=p_{i, j}$ is at most

$$
\begin{equation*}
\left(1+\left\lfloor\frac{a-1}{p}\right\rfloor\right)\left(1+\left\lfloor\frac{b-1}{p}\right\rfloor\right)=1+\left\lfloor\frac{a-1}{p}\right\rfloor+\left\lfloor\frac{b-1}{p}\right\rfloor+\left\lfloor\frac{a-1}{p}\right\rfloor\left\lfloor\frac{b-1}{p}\right\rfloor . \tag{9}
\end{equation*}
$$

Putting also

$$
T=T(a, b)=\{(i, j): 1 \leq i \leq a, 1 \leq j \leq b\}
$$

and summing up the above inequality (9) over all the possible primes $p \in \mathcal{P}$, we get that

$$
\begin{equation*}
\# T=a b \leq \sum_{p \in \mathcal{P}}\left(1+\frac{a+b}{p}+\frac{a b}{p^{2}}\right) \leq \# \mathcal{P}+(a+b) \sum_{p \leq a} \frac{1}{p}+a b \sum_{p \leq a} \frac{1}{p^{2}} . \tag{10}
\end{equation*}
$$

By the prime number theorem, in the right, the second sum is

$$
(a+b)(\log \log a+O(1))=o(a b)
$$

because of the assumption that $\log \log t=o(b)$ as $b \rightarrow \infty$. Put

$$
c_{2}=\sum_{p \geq 2} \frac{1}{p^{2}}=1-c_{1}
$$

and $P=\# \mathcal{P}$. We then get that

$$
a b \leq P+\left(c_{2}+o(1)\right) a b \quad \text { or } \quad P \geq\left(c_{1}+o(1)\right) a b \quad(b \rightarrow \infty) .
$$

Now it is clear that

$$
\begin{aligned}
M^{a} & >\prod_{1 \leq i \leq a}(M-i) \geq \prod_{p \in \mathcal{P}} p \\
& \geq \prod_{k \leq P} p_{k}=\exp ((1+o(1)) P \log P)=\exp \left(\left(c_{1}+o(1)\right) a b \log a b\right)
\end{aligned}
$$

implying the desired inequality (iii) on M. A similar argument proves the inequality for N. Hence, part (iii) of Theorem 1 is proved.

4 Proof of Theorem 2

We now prove Theorem 2 by computing $M(a, a)$ for $a>1$. We follow the same arguments as in Section 3.2 with $a=b$ and arrive at

$$
\# T=a^{2} \leq \# \mathcal{P}+2 \sum_{p \leq a}\left\lfloor\frac{a-1}{p}\right\rfloor+\sum_{p \leq a}\left\lfloor\frac{a-1}{p}\right\rfloor^{2}
$$

giving

$$
\begin{equation*}
\# \mathcal{P} \geq a^{2}-2 \sum_{p \leq a}\left\lfloor\frac{a-1}{p}\right\rfloor-\sum_{p \leq a}\left\lfloor\frac{a-1}{p}\right\rfloor^{2} \geq a^{2}-2 a \sum_{p \leq a} \frac{1}{p}-a^{2} \sum_{p \leq a} \frac{1}{p^{2}} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
M^{a}>\prod_{p \in \mathcal{P}} p \geq \prod_{i=1}^{\# \mathcal{P}} p_{i}=\exp \left(\theta\left(p_{\# \mathcal{P}}\right)\right) \tag{12}
\end{equation*}
$$

Let $a \leq 100$. We explicitly compute the integral part of the middle term of (11), which we call it P_{a}, and compute $\left(\prod_{i=1}^{P_{a}} p_{i}\right)^{\frac{1}{a}}$ to get a lower bound of M giving the assertion for $a \leq 100$. In fact we get $M \geq \exp (a \log a)$ for $a \geq 2$. Now we take $a \geq 101$. Then from Lemma $3(v)$ and

$$
\sum_{p \geq a} \frac{1}{p^{2}} \leq \zeta(2)-\sum_{i=1}^{100} \frac{1}{i^{2}}+\sum_{p \leq 100} \frac{1}{p^{2}} \leq .4604,
$$

we get

$$
\begin{aligned}
\# \mathcal{P} & \geq a^{2}-.4604 a^{2}-2 a\left(\log \log a+.2615+\frac{1}{\log ^{2} a}\right) \\
& \geq a^{2}\left\{.5396-\frac{2 \log \log a+.523+\frac{2}{\log ^{2} a}}{a}\right\} \geq .5032 a^{2}
\end{aligned}
$$

since $a \geq 101$. This together with (12) and Lemma 3 (ii) and (iv) gives

$$
\begin{aligned}
M^{a} & >\exp \left(.5032 a^{2} \log \left(.5032 a^{2}\right)\left(1-\frac{1}{\log \left(.5032 a^{2}\right)}\right)\right) \\
& >\exp \left(.5032 a^{2}(\log a)\left(2+\frac{\log .5032}{\log a}\right)\left(1-\frac{1}{\log \left(.5032 a^{2}\right)}\right)\right) \\
& >\exp \left(.82248 a^{2} \log a\right)
\end{aligned}
$$

since $a \geq 101$. The proof is now complete.

5 Acknowledgments

We thank the referee for comments which improved the quality of this paper. The work was done during the visit of S. L. to UNAM Morelia, Mexico in December 2013 under an Indo-Mexican Joint Project. The authors thank DST and CONACyT for their support. The authors also thank Jeffrey Shallit for suggesting the problem studied in the present paper to S. L. and for his helpful comments and suggestions along with some references in an earlier draft of the paper.

References

[1] P. Dusart, Inégalitiés explicites pour $\psi(X), \theta(X), \pi(X)$ et les nombres premiers, C. R. Math. Rep. Acad. Sci. Canada 21 (1999), 53-59.
[2] F. Herzog and B. M. Stewart, Patterns of visible and nonvisible lattice points, Amer. Math. Monthly 78 (1971), 487-496.
[3] S. Laishram, An estimate for the length of an arithmetic progression the product of whose terms is almost square, Pub. Math. Debrecen 68 (2006), 451-475.
[4] G. Pighizzini and J. Shallit, Unary language operations, state complexity and Jacobsthal's function, Int. J. Found. Comput. Sci. 13 (2002), 145-159.
[5] B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94.
[6] S. Wolfram, A New Kind of Science, Wolfram Media, 2002.

2010 Mathematics Subject Classification: Primary 11N37; Secondary 11P21, 11H06.
Keywords: prime number, Chinese remainder theorem, lattice point, visibility, greatest common divisor.
(Concerned with sequence A052157.)

Received May 7 2015; revised versions received October 12 2015; October 24 2015; October 27 2015. Published in Journal of Integer Sequences, October 292015.

Return to Journal of Integer Sequences home page.

