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Abstract

A positive integer d is called special if every integer m can be expressed as a2+b2−
dc2 for some nonzero integers a, b, c. A necessary condition for special numbers was

recently given by Nowicki, and in this paper we prove its sufficiency. Thus, we give a

complete characterization for special numbers.

1 Introduction

Many problems in number theory are concerned with the representation of integers by mul-
tivariate polynomials with integral coefficients and variables. For example, the well-known
theorem of Lagrange asserts that every positive integer is the sum of four squares. Ramanu-
jan [3] gave a complete list of general quadratic forms with four variables,

Q(x, y, z, w) = ax2 + by2 + cz2 + dw2,

that represent all positive integers, where a, b, c, d ∈ N. Note that it is not possible to
represent all positive integers if we reduce one variable in Q(x, y, z, w); in fact, it cannot even
represent all integers from 1 to 10 by a very elementary argument. However, three variables
are sufficient if we use indefinite quadratic forms. For example, the form Q(x, y, z) = x2 +
y2− z2 can represent all integers with integral x, y, z since x2− z2 represents all odd integers
and one can pick y = 0, 1. To generalize this, Nowicki [2] defined special numbers and proved
a necessary condition for them, which is stated in Theorem 2:
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Definition 1. A positive integer d is special if for every integerm there exist nonzero integers
a, b, c such that m = a2 + b2 − dc2.

Theorem 2. Every special number d is of the form q or 2q, where either q = 1 or q is a

product of primes of the form 4m+ 1.

Nowicki [2] further verified that the converse is true when d ≤ 50 through various iden-
tities. For example, when d = 13, we have

(2k − 4)2 + (3k − 10)2 − 13(k − 3)2 = (2k − 30)2 + (3k − 36)2 − 13(k − 13)2 = 2k − 1,

(2k − 3)2 + (3k − 2)2 − 13(k − 1)2 = (2k − 29)2 + (3k − 54)2 − 13(k − 17)2 = 2k.

We need two identities for each parity since we require a, b, c to be nonzero. Similarly, when
d = 34, we have

(3k − 7)2 + (5k − 16)2 − 34(k − 3)2 = (3k − 24)2 + (5k − 33)2 − 34(k − 7)2 = 2k − 1,

(3k − 11)2 + (5k − 27)2 − 34(k − 5)2 = (3k − 45)2 + (5k − 61)2 − 34(k − 13)2 = 4k,

(3k − 1)2 + (5k + 1)2 − 34(k)2 = (3k − 69)2 + (5k − 135)2 − 34(k − 26)2 = 4k + 2.

In this paper, we prove the converse of Theorem 2, and hence give a complete characterization
of special numbers:

Theorem 3. If d is of the form q or 2q, where either q = 1 or q is a product of primes of

the form 4m+ 1, then d is special.

2 Proof of Theorem 3

First, we invoke the following well-known lemma, where the proof is given in [1, Theorem
3.20]:

Lemma 4. A positive integer n can be expressed as the form q or 2q where q is a product of

primes of the form 4m + 1 if and only if n can be expressed as the form n = x2 + y2 where

x, y ∈ N and gcd(x, y) = 1.

Proof of Theorem 3. In what follows, we assume d > 1, since d = 1 is already known to be
special.

Suppose d is odd. Then all prime factors of d are of the form 4m+ 1. By Lemma 4, we
can write d = x2+y2 where gcd(x, y) = 1, and x 6≡ y (mod 2). Now let a = xk+α, b = yk+β

and c = k, where α and β are integers which will be chosen later. It follows that

a2 + b2 − dc2 = (xk + α)2 + (yk + β)2 − (x2 + y2)(k)2

= 2(xα + yβ)k + α2 + β2.
(1)

We consider the solution pairs (α, β) to the equation

xα + yβ = 1. (2)
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It suffices to show that α2 + β2 cover both parities. Note that (2) must have an integral
solution (α0, β0) since gcd(x, y) = 1. If we define α1 = α0 + y and β1 = β0 − x, then (α1, β1)
is another solution of (2). Now observe

α2

1
+ β2

1
= (α0 + y)2 + (β0 − x)2

= (α2

0
+ β2

0
) + x2 + y2 + 2(α0y + β0x)

≡ (α2

0
+ β2

0
) + x2 + y2 (mod 2).

Since x2 + y2 = d is odd, α2

0
+ β2

0
6≡ α2

1
+ β2

1
(mod 2). The two identities given by

(xk + αi)
2 + (yk + βi)

2 − (x2 + y2)(k)2 = 2k + α2

i
+ β2

i
,

where i = 0, 1, cover both odd and even integers, and hence every integer can be expressed
as the form a2 + b2 − dc2 for some integers a, b, c.

However, one of the variables a, b, c becomes zero in the representations of

m = α2

i
+ β2

i
,−

2αi

x
+ α2

i
+ β2

i
,−

2βi

y
+ α2

i
+ β2

i
(3)

for i = 0, 1. To fix this problem, we can simply set αn = α0+ny and βn = β0−nx to generate
more identities, where n ∈ N. As n → ∞, the absolute values of αn and βn approach infinity.
Thus for sufficiently large n, the new exceptional cases do not overlap with the original ones,
and the values in (3) can be represented using the new identities.

Now suppose d is even. Then d = 2q where q is a product of primes of the form 4m+ 1.
Again by Lemma 4, we can write d = x2 + y2 where gcd(x, y) = 1, but this time x ≡ y ≡ 1
(mod 2). We have a similar expansion as (1), and if xα + yβ = 1, then α 6≡ β (mod 2) and
α2 + β2 ≡ 1 (mod 2). Therefore we have an identity that generates all odd integers.

But in this case, shifting the solution (α, β) of (2) does not produce an identity for even
integers. Therefore in (1) we consider the linear equation

xα + yβ = 2. (4)

Now we pick a pair of solution (α0, β0), and construct the second solution pair (α1, β1) in a
similar manner, and then

α2

1
+ β2

1
= (α0 + y)2 + (β0 − x)2

= (α2

0
+ β2

0
) + x2 + y2 + 2(α0y + β0x)

≡ (α2

0
+ β2

0
) + 2 + 2(α0y + β0x) (mod 4).

Since x and y are odd, and the right hand side of (4) is even, we deduce that α0 ≡ β0 (mod
2). Therefore 2 | (α0y + β0x) and

α2

1
+ β2

1
≡ α2

0
+ β2

0
+ 2 (mod 4).
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Also note that α2

0
+ β2

0
≡ 0 (mod 2). Thus, the two identities given by

(xk + αi)
2 + (yk + βi)

2 − (x2 + y2)(k)2 = 2k + α2

i
+ β2

i
,

where i = 0, 1, cover both integers of the form 4m and 4m+ 2, and hence every integer can
be expressed as the form a2 + b2 − dc2 for some integers a, b, c. The exceptional cases can be
handled similarly as in the d = q case.
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