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Abstract

In a recent manuscript, Fox studied infinite subtraction games with a finite (ternary)
and aperiodic Sprague-Grundy function. Here we provide an elementary example of a
game with the given properties, namely the game given by the subtraction set { F5,,+1 —
1}, where Fj is the ith Fibonacci number, and n ranges over the positive integers.

'Supported by the Killam Trust.


file:urban031@gmail.com
file:fox@math.rutgers.edu

1 Introduction

In a recent preprint, Fox [2] studied infinite and aperiodic subtraction games [1, p. 84] with
a finite, ternary, Sprague-Grundy function. For an impartial game, the Sprague-Grundy
value is computed recursively as the least nonnegative integer not in the set of values of
the move options, and starting with the terminal position(s) which have Sprague-Grundy
value zero [9, 3]. In this note we provide an elementary example of a game with the given
properties. In particular, this means our game has nim-dimension two?.

Let ¢ = %‘F’ denote the golden ratio. Let A(n) = |n¢|, B(n) = |n¢?|, and AB(n) =
A(B(n)) = A(n) + B(n) = 2|n¢] + n for all nonnegative integers n; see also Kimberling’s
paper [4]. Then, define sets A = {A(n)},>1, B = {B(n)}.>1, and AB = {AB(n)}u>1-
Further, let By & 1 = {B(n) + 1},50, and AB & 1 = {2|n¢| + n+ 1},>1. (In general, we
let Xo = X U{0} if X is a set of integers.) It is worth noting that if the sets defined here
are thought of as sequences, they all appear in the OEIS [10]. A appears as A000201, B as
A001950, AB as A003623, By @ 1 as A026352, and AB & 1 as A089910.

Throughout this paper, we will use F; to denote the ith Fibonacci number (F; = Fy =1
and so on). We will frequently use the following famous numeration system: each positive
integer is expressed uniquely as a sum of distinct non-consecutive Fibonacci numbers of
index at least two. Though this representation has been discovered independently many
times [5, 7, 13], it is typically referred to as the Zeckendorf representation. It is well known
that x € A if and only if the smallest Fibonacci term in the Zeckendorf representation of x
has an even index [9]. Let z; = z;(z) denote the ith smallest index of a Fibonacci term in the
Zeckendorf representation of the number x. Then, the set A contains all the numbers with
z1 = 2 even. Further, for all n, B(n) is the left-shift of A(n); that is, the set B contains all
the numbers with z; > 3 odd. Another well-known Fibonacci-type representation of integers
is the least-odd representation (which Silber [9] calls the second canonical representation),
where the smallest index is odd > 1 and no two consecutive Fibonacci numbers are used.
Let ¢;(x) denote the ith smallest index in the least-odd representation of x. Then ¢; is odd.
By using this representation we find that A(n) is the left-shift of n for any positive integer
n. That is, if n = Fy, +--- + Fy,, then A(n) = Fy 41+ -+ + Fp 41

2 Our construction

In this section, we will construct our example of an aperiodic subtraction game. Let S =
{Fons1 — 1} = {1,4,12,...}, where n ranges over the positive integers. The two-player
subtraction game S is played as follows. The players alternate in moving. From a given
position, a nonnegative integer, p, the current player moves to a new integer of the form
p—s > 0, where s € S. A player unable to move, because no number in S satisfies the

2The number of power-of-two-components defines the group of nim-values generated by the games; this
group is of order four so the dimension is two. In the classical definition [8], this dimension would have been
one.
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inequality, loses. Our main result states that the sequence of Sprague-Grundy values for this
game is a ternary, aperiodic sequence. First, we need the following lemma.

Lemma 1. The sets By, By @ 1, AB @& 1 partition the nonnegative integers.

Proof. By the work of Wythoff [12], it suffices to prove that the sets B & 1 and AB & 1
partition the set A.

Claim: For numbers in AB® 1, we get z5 > 4 even and z; = 2. (Hence AB®1 C A.) The
claim is proved by noting that the least-odd representation coincides with the Zeckendorf
representation for numbers of the form B(n). Hence AB(n) is the left-shift of B(n), which
proves the claim, since z;(B(n)) > 3.

We must also show that By @ 1 C A contains all representatives with z; > 4 even.
This follows, since B contains all representatives with z; = 3 odd (since Fy = F3 + 1,
Fs = F5 + F5 + 1 and so on). Further, since B contains all representatives with z; > 5 odd,
B @1 contains all representatives with z, > 5 odd and z; = 2. Finally, this set also contains
the representative with just z; = 2. O]

Note that because the golden ratio is an irrational number, the sets in Lemma 1 are
aperiodic when thought of as sequences (in fact they follow a beautiful fractal pattern [6,
Thm. 2.1.13, p. 51] related to the Fibonacci morphism).

We can now prove our main theorem.

Theorem 2. The Sprague-Grundy value of the subtraction game S is g(p) = 0 if p €
Bo,g(p)=1ifpe Bo® 1 and g(p) =2 if p € AB® 1.

Proof. We begin by showing that, if p € By, then no follower of p is in By, which corresponds
to showing that g(p) = 0. This holds for p = 0. Thus, it suffices to show that x = z(i) =
p—Fo1+1 € A, foralli > 0such that p > Fb; 1, which is true if and only if the Zeckendorf
representation’s smallest term is even indexed, i.e. zj(x) is even. It holds trivially unless
p— F5;11 has as the smallest term F3 or F5. In case the former, then we compute F;+ F5 and
get Fy. Unless Fj is contained in the representation we are done. Continuing this argument
gives the claim in the first case.
We show next that z1(p — Fb11) > 2. Observe that

z1(p) = 3 is odd. (1)

If z1(p) > 2i + 1, that is, if the smallest Zeckendorf term, say Fh;;1, in p has index greater
than 27 4+ 1, then

Fojpr — Foipn = Foj+ -+ + Fopo. (2)

Hence, in this case, z1(z) = 3, so F; is not the smallest term. The case i = j is trivial. Hence
Jj <i,ie. z1(p) < 2i+ 1, which implies z;(p — Fy;11) = 25 +1 > 2, by (1).

Suppose next that p € By & 1. We need to show that there is a follower in By, but no
follower in By 6@ 1. Let b = p—1¢€ By. Then b+ 1 — (F2i+1 — ].) =b— F2i+1 + 5 € B
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if i = 1 (which solves the first part). Suppose now, that p has a follower in By & 1. Then
b+1—(Fyy1—1) € By@ 1, that is b — (Fy1 — 1) € By, which is contradictory by the first
paragraph.

At last we prove that if p € AB @ 1 then p has both a follower in By and in By & 1, but
no follower in AB @& 1. We begin with the latter. Note that z(p) = 2.

We want to show that p — Fy .y +1 € AB & 1, for all i. Thus, it suffices to show
a=p— Fy1 & AB. We may assume that there is a smallest k such that Fy > Fy;,1, and
where Fy, is a term in the Zeckendorf representation of p. Claim: If k is odd, then o € A\ AB,
and otherwise « € BU (A \ AB). It suffices to prove this claim to prove this case. For the
first part it is easy to see that z;(«) = 2, since z;(p) = 2 and by (2). If k is even, then we
study the greatest Zeckendorf term in p, smaller than Fy;,q, say F, with existence of ¢ < 27
clear by definition of p. If ¢ = 2¢, then Fy + Fy — Fyi1 = y + 2Fy; = y + Foq + Foio,
where y has no terms smaller than Fy;. 3. If ¢ = 2i — 1, then similarly Fy + F) — Fyy1 =
y+ Foy + Fop 1 =y + Fyyq, and if £ < 20 — 1 then Fy, + Fy — Fy; 1 =y + Fy + Fy. In these
latter two cases the Zeckendorf representation of « is already clear, and z;(a) = 2 which
gives @ € A\ AB. In case ¢ = 2i, we may need to repeat the argument, in particular if Fy;
belongs to the Zeckendorf representation of p, and possibly further repetition of this form
will terminate with a representation of the form y + 2F, = y + F3 with Zeckendorf indexes
in y greater than 5. This is the unique case where z;(«) is odd and hence o € B. Any other
case will give z1(a) = 2 which gives a € A\ AB.

Next, we find an ¢ such that p — (Fyyqy — 1) € By @ 1. Take i = 1. We show that
p— F3 € By. Write p = a+ F» and show that a — F;, € By, where z(a) = 2k > 4 is even, by
the definition of the set AB and by a = p — 1. By the identity For, — F5 = Fop_1 +--- + F3,
the result follows.

It remains to find an i such that & = p — (Fy; 11 — 1) € By. With a = p — 1, and since
p+1 = a+ F3, we may define zy(a) = Fyyo, with & > 1. With the Zeckendorf representation
a =y + Fopio, we must show that a = y + Fopio + F5 — Fyq € By, for some 2. If £ > 1,
then we let ¢« = k; if k = 2, then o = y + Fg + F3 — F5 = y + F5, so z1(«) = 5 and otherwise
z1(a) = 3. If k =1, then z(a + F3) = 20 +1 > 3. In case a + Fy = Fy, then we
choose 7 = ¢, and so a = 0 € By. Otherwise there is a smallest Zeckendorf term in y, say
F,, > F5 > Fy, 9. Hence a =y + F,, + F5 — Fyq1. If mis odd, we let ¢ = (m — 1) /2, which
gives z1(a) = 5. Suppose m is even, then, if m > 8, we let 2i + 1 = m — 1, which gives either
z1(a) = 5 or, in case m = 8, z1(«) = 7 (since the smallest Zeckendorf term in ' is greater
than m+1=29). O

Note that this example is also studied in Fox’s manuscript [2] but with a less elementary
proof. The sequence of Sprague-Grundy values for the game S appears as sequence A242082
in OEIS.
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