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Abstract

In a recent manuscript, Fox studied infinite subtraction games with a finite (ternary)
and aperiodic Sprague-Grundy function. Here we provide an elementary example of a
game with the given properties, namely the game given by the subtraction set {F2n+1−
1}, where Fi is the ith Fibonacci number, and n ranges over the positive integers.
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1 Introduction

In a recent preprint, Fox [2] studied infinite and aperiodic subtraction games [1, p. 84] with
a finite, ternary, Sprague-Grundy function. For an impartial game, the Sprague-Grundy
value is computed recursively as the least nonnegative integer not in the set of values of
the move options, and starting with the terminal position(s) which have Sprague-Grundy
value zero [9, 3]. In this note we provide an elementary example of a game with the given
properties. In particular, this means our game has nim-dimension two2.

Let φ = 1+
√
5

2
denote the golden ratio. Let A(n) = ⌊nφ⌋, B(n) = ⌊nφ2⌋, and AB(n) =

A(B(n)) = A(n) + B(n) = 2⌊nφ⌋ + n for all nonnegative integers n; see also Kimberling’s
paper [4]. Then, define sets A = {A(n)}n>1, B = {B(n)}n>1, and AB = {AB(n)}n>1.
Further, let B0 ⊕ 1 = {B(n) + 1}n>0, and AB ⊕ 1 = {2⌊nφ⌋ + n + 1}n>1. (In general, we
let X0 = X ∪ {0} if X is a set of integers.) It is worth noting that if the sets defined here
are thought of as sequences, they all appear in the OEIS [10]. A appears as A000201, B as
A001950, AB as A003623, B0 ⊕ 1 as A026352, and AB ⊕ 1 as A089910.

Throughout this paper, we will use Fi to denote the ith Fibonacci number (F1 = F2 = 1
and so on). We will frequently use the following famous numeration system: each positive
integer is expressed uniquely as a sum of distinct non-consecutive Fibonacci numbers of
index at least two. Though this representation has been discovered independently many
times [5, 7, 13], it is typically referred to as the Zeckendorf representation. It is well known
that x ∈ A if and only if the smallest Fibonacci term in the Zeckendorf representation of x
has an even index [9]. Let zi = zi(x) denote the ith smallest index of a Fibonacci term in the
Zeckendorf representation of the number x. Then, the set A contains all the numbers with
z1 > 2 even. Further, for all n, B(n) is the left-shift of A(n); that is, the set B contains all
the numbers with z1 > 3 odd. Another well-known Fibonacci-type representation of integers
is the least-odd representation (which Silber [9] calls the second canonical representation),
where the smallest index is odd > 1 and no two consecutive Fibonacci numbers are used.
Let ℓi(x) denote the ith smallest index in the least-odd representation of x. Then ℓ1 is odd.
By using this representation we find that A(n) is the left-shift of n for any positive integer
n. That is, if n = Fℓj + · · ·+ Fℓ1 , then A(n) = Fℓj+1 + · · ·+ Fℓ1+1.

2 Our construction

In this section, we will construct our example of an aperiodic subtraction game. Let S =
{F2n+1 − 1} = {1, 4, 12, . . .}, where n ranges over the positive integers. The two-player
subtraction game S is played as follows. The players alternate in moving. From a given
position, a nonnegative integer, p, the current player moves to a new integer of the form
p − s > 0, where s ∈ S. A player unable to move, because no number in S satisfies the

2The number of power-of-two-components defines the group of nim-values generated by the games; this
group is of order four so the dimension is two. In the classical definition [8], this dimension would have been
one.
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inequality, loses. Our main result states that the sequence of Sprague-Grundy values for this
game is a ternary, aperiodic sequence. First, we need the following lemma.

Lemma 1. The sets B0, B0 ⊕ 1, AB ⊕ 1 partition the nonnegative integers.

Proof. By the work of Wythoff [12], it suffices to prove that the sets B ⊕ 1 and AB ⊕ 1
partition the set A.

Claim: For numbers in AB⊕1, we get z2 > 4 even and z1 = 2. (Hence AB⊕1 ⊂ A.) The
claim is proved by noting that the least-odd representation coincides with the Zeckendorf
representation for numbers of the form B(n). Hence AB(n) is the left-shift of B(n), which
proves the claim, since z1(B(n)) > 3.

We must also show that B0 ⊕ 1 ⊂ A contains all representatives with z1 > 4 even.
This follows, since B contains all representatives with z1 = 3 odd (since F4 = F3 + 1,
F6 = F5 + F3 + 1 and so on). Further, since B contains all representatives with z1 > 5 odd,
B⊕ 1 contains all representatives with z2 > 5 odd and z1 = 2. Finally, this set also contains
the representative with just z1 = 2.

Note that because the golden ratio is an irrational number, the sets in Lemma 1 are
aperiodic when thought of as sequences (in fact they follow a beautiful fractal pattern [6,
Thm. 2.1.13, p. 51] related to the Fibonacci morphism).

We can now prove our main theorem.

Theorem 2. The Sprague-Grundy value of the subtraction game S is g(p) = 0 if p ∈
B0, g(p) = 1 if p ∈ B0 ⊕ 1 and g(p) = 2 if p ∈ AB ⊕ 1.

Proof. We begin by showing that, if p ∈ B0, then no follower of p is in B0, which corresponds
to showing that g(p) = 0. This holds for p = 0. Thus, it suffices to show that x = x(i) =
p−F2i+1+1 ∈ A, for all i > 0 such that p > F2i+1, which is true if and only if the Zeckendorf
representation’s smallest term is even indexed, i.e. z1(x) is even. It holds trivially unless
p−F2i+1 has as the smallest term F3 or F2. In case the former, then we compute F3+F2 and
get F4. Unless F5 is contained in the representation we are done. Continuing this argument
gives the claim in the first case.

We show next that z1(p− F2i+1) > 2. Observe that

z1(p) > 3 is odd. (1)

If z1(p) > 2i + 1, that is, if the smallest Zeckendorf term, say F2j+1, in p has index greater
than 2i+ 1, then

F2j+1 − F2i+1 = F2j + · · ·+ F2i+2. (2)

Hence, in this case, z1(x) > 3, so F2 is not the smallest term. The case i = j is trivial. Hence
j < i, i.e. z1(p) < 2i+ 1, which implies z1(p− F2i+1) > 2j + 1 > 2, by (1).

Suppose next that p ∈ B0 ⊕ 1. We need to show that there is a follower in B0, but no
follower in B0 ⊕ 1. Let b = p − 1 ∈ B0. Then b + 1 − (F2i+1 − 1) = b − F2i+1 + F3 ∈ B
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if i = 1 (which solves the first part). Suppose now, that p has a follower in B0 ⊕ 1. Then
b+ 1− (F2i+1 − 1) ∈ B0 ⊕ 1, that is b− (F2i+1 − 1) ∈ B0, which is contradictory by the first
paragraph.

At last we prove that if p ∈ AB ⊕ 1 then p has both a follower in B0 and in B0 ⊕ 1, but
no follower in AB ⊕ 1. We begin with the latter. Note that z1(p) = 2.

We want to show that p − F2i+1 + 1 6∈ AB ⊕ 1, for all i. Thus, it suffices to show
α = p − F2i+1 6∈ AB. We may assume that there is a smallest k such that Fk > F2i+1, and
where Fk is a term in the Zeckendorf representation of p. Claim: If k is odd, then α ∈ A\AB,
and otherwise α ∈ B ∪ (A \ AB). It suffices to prove this claim to prove this case. For the
first part it is easy to see that z1(α) = 2, since z1(p) = 2 and by (2). If k is even, then we
study the greatest Zeckendorf term in p, smaller than F2i+1, say Fℓ with existence of ℓ 6 2i
clear by definition of p. If ℓ = 2i, then Fk + Fℓ − F2i+1 = y + 2F2i = y + F2i+1 + F2i−2,
where y has no terms smaller than F2i+3. If ℓ = 2i − 1, then similarly Fk + Fℓ − F2i+1 =
y + F2i + F2i−1 = y + F2i+1, and if ℓ < 2i− 1 then Fk + Fℓ − F2i+1 = y + F2i + Fℓ. In these
latter two cases the Zeckendorf representation of α is already clear, and z1(α) = 2 which
gives α ∈ A \AB. In case ℓ = 2i, we may need to repeat the argument, in particular if F2i−2

belongs to the Zeckendorf representation of p, and possibly further repetition of this form
will terminate with a representation of the form y + 2F2 = y + F3 with Zeckendorf indexes
in y greater than 5. This is the unique case where z1(α) is odd and hence α ∈ B. Any other
case will give z1(α) = 2 which gives α ∈ A \ AB.

Next, we find an i such that p − (F2i+1 − 1) ∈ B0 ⊕ 1. Take i = 1. We show that
p−F3 ∈ B0. Write p = a+F2 and show that a−F2 ∈ B0, where z1(a) = 2k > 4 is even, by
the definition of the set AB and by a = p− 1. By the identity F2k − F2 = F2k−1 + · · ·+ F3,
the result follows.

It remains to find an i such that α = p − (F2i+1 − 1) ∈ B0. With a = p − 1, and since
p+1 = a+F3, we may define z1(a) = F2k+2, with k > 1. With the Zeckendorf representation
a = y + F2k+2, we must show that α = y + F2k+2 + F3 − F2i+1 ∈ B0, for some i. If k > 1,
then we let i = k; if k = 2, then α = y + F6 + F3 − F5 = y + F5, so z1(α) = 5 and otherwise
z1(α) = 3. If k = 1, then z1(a + F3) = 2ℓ + 1 > 3. In case a + F3 = F2ℓ+1, then we
choose i = ℓ, and so α = 0 ∈ B0. Otherwise there is a smallest Zeckendorf term in y, say
Fm > F5 > F2k+2. Hence α = y′ +Fm +F5 −F2i+1. If m is odd, we let i = (m− 1)/2, which
gives z1(α) = 5. Suppose m is even, then, if m > 8, we let 2i+1 = m− 1, which gives either
z1(α) = 5 or, in case m = 8, z1(α) = 7 (since the smallest Zeckendorf term in y′ is greater
than m+ 1 = 9).

Note that this example is also studied in Fox’s manuscript [2] but with a less elementary
proof. The sequence of Sprague-Grundy values for the game S appears as sequence A242082
in OEIS.
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