Journal of Integer Sequences, Vol. 18 (2015), Article 15.8.3

Counting Toroidal Binary Arrays, II

S. N. Ethier ${ }^{1}$
Department of Mathematics
University of Utah
155 South 1400 East
Salt Lake City, UT 84112
USA
ethier@math.utah.edu
Jiyeon Lee ${ }^{2}$
Department of Statistics
Yeungnam University
214-1 Daedong, Kyeongsan
Kyeongbuk 712-749
South Korea
leejy@yu.ac.kr

Abstract

We derive formulas for (i) the number of distinct toroidal $n \times n$ binary arrays, allowing rotation of rows and/or columns as well as matrix transposition, and (ii) the number of distinct toroidal $n \times n$ binary arrays, allowing rotation and/or reflection of rows and/or columns as well as matrix transposition.

[^0]
1 Introduction

A previous paper [1] found the number of (distinct) toroidal $m \times n$ binary arrays, allowing rotation of rows and/or columns, to be

$$
\begin{equation*}
a(m, n):=\frac{1}{m n} \sum_{c \mid m} \sum_{d \mid n} \varphi(c) \varphi(d) 2^{m n / \operatorname{lcm}(c, d)} \tag{1}
\end{equation*}
$$

where φ is Euler's phi function and lcm stands for least common multiple. This is A184271 in the On-Line Encyclopedia of Integer Sequences [2]. The main diagonal is A179043. It was also shown that, allowing rotation and/or reflection of rows and/or columns, the number becomes

$$
\begin{equation*}
b(m, n):=b_{1}(m, n)+b_{2}(m, n)+b_{3}(m, n)+b_{4}(m, n), \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& b_{1}(m, n):=\frac{1}{4 m n} \sum_{c \mid m} \sum_{d \mid n} \varphi(c) \varphi(d) 2^{m n / \operatorname{ccm}(c, d)}, \\
& b_{2}(m, n):=\frac{1}{4 n} \sum_{d \mid n} \varphi(d) 2^{m n / d} \\
&
\end{aligned}+ \begin{cases}(4 n)^{-1} \sum^{\prime} \varphi(d)\left(2^{(m+1) n /(2 d)}-2^{m n / d}\right), & \text { if } m \text { is odd; } \\
(8 n)^{-1} \sum^{\prime} \varphi(d)\left(2^{m n /(2 d)}+2^{(m+2) n /(2 d)}-2 \cdot 2^{m n / d}\right), & \text { if } m \text { is even, }\end{cases}
$$

with $\sum^{\prime}:=\sum_{d \mid n: d \text { is odd }}$,

$$
b_{3}(m, n):=b_{2}(n, m),
$$

and

$$
b_{4}(m, n):= \begin{cases}2^{(m n-3) / 2}, & \text { if } m \text { and } n \text { are odd; } \\ 3 \cdot 2^{m n / 2-3}, & \text { if } m \text { and } n \text { have opposite parity; } \\ 7 \cdot 2^{m n / 2-4}, & \text { if } m \text { and } n \text { are even. }\end{cases}
$$

(The formula for $b_{2}(m, n)$ given in [1] is simplified here.) This is A222188 in the OEIS [2]. The main diagonal is A209251.

Our aim here is to derive the corresponding formulas when $m=n$ and we allow matrix transposition as well. More precisely, we show that the number of (distinct) toroidal $n \times n$ binary arrays, allowing rotation of rows and/or columns as well as matrix transposition, is

$$
\begin{equation*}
\alpha(n)=\frac{1}{2} a(n, n)+\frac{1}{2 n} \sum_{d \backslash n} \varphi(d) 2^{n(n+d-2\lfloor d / 2\rfloor) /(2 d)}, \tag{3}
\end{equation*}
$$

where $a(n, n)$ is from (1). When we allow rotation and/or reflection of rows and/or columns as well as matrix transposition, the number becomes

$$
\beta(n)=\frac{1}{2} b(n, n)+\frac{1}{4 n} \sum_{d \mid n} \varphi(d) 2^{n(n+d-2\lfloor d / 2\rfloor) /(2 d)}+ \begin{cases}2^{\left(n^{2}-5\right) / 4}, & \text { if } n \text { is odd; } \tag{4}\\ 5 \cdot 2^{n^{2} / 4-3}, & \text { if } n \text { is even }\end{cases}
$$

where $b(n, n)$ is from (2). These are the sequences A255015 and A255016, respectively, recently added to the OEIS [2].

For an alternative description, we could define a group action on the set of $n \times n$ binary arrays, which has $2^{n^{2}}$ elements. If the group is generated by σ (row rotation) and τ (column rotation), then the number of orbits is given by $a(n, n)$; see [1]. If the group is generated by σ, τ, and ζ (matrix transposition), then the number of orbits is given by $\alpha(n)$; see Theorem 1 below. If the group is generated by σ, τ, ρ (row reflection), and θ (column reflection), then the number of orbits is given by $b(n, n)$; see [1]. If the group is generated by $\sigma, \tau, \rho, \theta$, and ζ, then the number of orbits is given by $\beta(n)$; see Theorem 2 below.

Both theorems are proved using Pólya's enumeration theorem (actually, the simplified unweighted version; see, e.g., van Lint and Wilson [3, Theorem 37.1, p. 524]).

To help clarify the distinction between the various group actions, we consider the case of 3×3 binary arrays as in [1]. When the group is generated by σ and τ (allowing rotation of rows and/or columns), there are 64 orbits, which were listed in [1]. When the group is generated by σ, τ, and ζ (allowing rotation of rows and/or columns as well as matrix transposition), there are 44 orbits, which are listed in Table 1 below. When the group is generated by σ, τ, ρ, and θ (allowing rotation and/or reflection of rows and/or columns), there are 36 orbits, which were listed in [1]. When the group is generated by $\sigma, \tau, \rho, \theta$, and ζ (allowing rotation and/or reflection of rows and/or columns as well as matrix transposition), there are 26 orbits, which are listed in Table 2 below.

Table 3 provides numerical values for $\alpha(n)$ and $\beta(n)$ for small n.
We take this opportunity to correct a small gap in the proof of Theorem 2 in [1]. The proof assumed implicitly that $m, n \geq 3$. The theorem is correct as stated for $m, n \geq 1$, so the proof is incomplete if m or n is 1 or 2 . Following the proof of Theorem 2 below, we supply the missing steps.

2 Rotation of rows and columns, and matrix transposition

Let $X_{n}:=\{0,1\}^{\{0,1, \ldots, n-1\}^{2}}$ be the set of $n \times n$ matrices of 0 s and 1 s , which has $2^{n^{2}}$ elements. Let $\alpha(n)$ denote the number of orbits of the group action on X_{n} by the group of order $2 n^{2}$ generated by σ (row rotation), τ (column rotation), and ζ (matrix transposition). (Exception: If $n=1$, the group is of order 1.)

Informally, $\alpha(n)$ is the number of (distinct) toroidal $n \times n$ binary arrays, allowing rotation of rows and/or columns as well as matrix transposition.

Theorem 1. With $a(n, n)$ defined using (1), $\alpha(n)$ is given by (3).
Proof. Let us assume that $n \geq 2$. By Pólya's enumeration theorem,

$$
\begin{equation*}
\alpha(n)=\frac{1}{2 n^{2}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1}\left(2^{A_{i j}}+2^{E_{i j}}\right) \tag{5}
\end{equation*}
$$

Table 1: A list of the 44 orbits of the group action in which the group generated by σ, τ, and ζ acts on the set of 3×3 binary arrays. (Rows and/or columns can be rotated and matrices can be transposed.) Each orbit is represented by its minimal element in 9-bit binary form. Subscripts indicate orbit size. Bars separate different numbers of 1 s.

$$
\begin{aligned}
& \left.\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)_{1}\left|\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)_{9}\right|\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right)_{18}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)_{9}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \right\rvert\, \\
& \left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 1
\end{array}\right)_{6}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)_{9}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{array}\right)_{18}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)_{18}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right)_{9}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)_{18}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)_{3} \\
& \left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)_{3} \left\lvert\,\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right)_{18}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)_{9}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)_{18}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)_{18}\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)_{18}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)_{9}\right. \\
& \left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)_{9}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right)_{9}\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right)_{18} \left\lvert\,\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)_{18}\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)_{18}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right)_{9}\right. \\
& \left.\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)_{18}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)_{9}\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}\right)_{18}\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)_{18}\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)_{9}\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 0
\end{array}\right) \right\rvert\, \\
& \left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)_{6}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)_{9}\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right)_{18}\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)_{18}\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)_{9}\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)_{18}\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)_{3} \\
& \left.\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)_{3}\left|\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)_{18}\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right)_{9}\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)_{9}\right|\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)_{9} \right\rvert\,\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)_{1}
\end{aligned}
$$

where $A_{i j}$ (resp., $E_{i j}$) is the number of cycles in the permutation $\sigma^{i} \tau^{j}$ (resp., $\sigma^{i} \tau^{j} \zeta$); here σ rotates the rows (row 0 becomes row 1 , row 1 becomes row $2, \ldots$, row $n-1$ becomes row $0), \tau$ rotates the columns, and ζ transposes the matrix. We know from [1] that

$$
\begin{equation*}
a(n, n)=\frac{1}{n^{2}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} 2^{A_{i j}} \tag{6}
\end{equation*}
$$

so it remains to find $E_{i j}$. The permutation ζ has n fixed points and $\binom{n}{2}$ transpositions, so $E_{00}=n(n+1) / 2$.

Notice that σ and τ commute, whereas $\sigma \zeta=\zeta \tau$ and $\tau \zeta=\zeta \sigma$. Let $(i, j) \in\{0,1, \ldots, n-$

Table 2: A list of the 26 orbits of the group action in which the group generated by σ, τ, ρ, θ, and ζ acts on the set of 3×3 binary arrays. (Rows and/or columns can be rotated and/or reflected and matrices can be transposed.) Each orbit is represented by its minimal element in 9-bit binary form. Subscripts indicate orbit size. Bars separate different numbers of 1s.

$$
\left.\left.\begin{array}{c}
\left.\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left|\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)_{9}\right|\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right)_{18}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)_{18} \right\rvert\,\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 1
\end{array}\right)_{6}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)_{36} \\
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)_{36}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)_{6}\left|\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right)_{36}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)_{9}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)_{36}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)_{9}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)_{36}\right| \\
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)_{36}
\end{array}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right)_{9}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)_{36}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)_{36}\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 0
\end{array}\right)_{9} \right\rvert\,\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)_{6}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)_{36}\right)
$$

Table 3: The values of $\alpha(n)$ and $\beta(n)$ for $n=1,2, \ldots, 12$.

n	$\alpha(n)$	$\beta(n)$
1	2	2
2	6	6
3	44	26
4	2209	805
5	674384	172112
6	14415192471496836	239123150
7	14925010120653819583840	1436120190288
8	6338253001142965335834871200	36028817512382026
9	10985355337065423791175013899922368	3731252531904348833632
10		2746338834263250300891724601560272
11		
12	77433143050453552587418968170813573149024	1935828576261338835267121489231123956672

$1\}^{2}-\{(0,0)\}$ be arbitrary. Then

$$
\left(\sigma^{i} \tau^{j} \zeta\right)^{2}=\left(\sigma^{i} \tau^{j} \zeta\right)\left(\zeta \tau^{i} \sigma^{j}\right)=\sigma^{i+j} \tau^{i+j}
$$

hence

$$
\begin{aligned}
\left(\sigma^{i} \tau^{j} \zeta\right)^{2 d} & =\sigma^{(i+j) d} \tau^{(i+j) d}=\left((\sigma \tau)^{i+j}\right)^{d}, \\
\left(\sigma^{i} \tau^{j} \zeta\right)^{2 d+1} & =\sigma^{(i+j) d+i} \tau^{(i+j) d+j} \zeta .
\end{aligned}
$$

Clearly, $\left(\sigma^{i} \tau^{j} \zeta\right)^{2 d+1}$ cannot be the identity permutation, so $\sigma^{i} \tau^{j} \zeta$ is of even order. Using the fact that, in the cyclic group $\left\{a, a^{2}, \ldots, a^{n-1}, a^{n}=e\right\}$ of order n, a^{k} is of order $n / \operatorname{gcd}(k, n)$, we find that the permutation $\sigma^{i} \tau^{j} \zeta$ is of order $2 d$, where $d:=n / \operatorname{gcd}(i+j, n)$. Therefore, every cycle of this permutation must have length that divides $2 d$.

We claim that all cycles have length d or $2 d$. Accepting that for now, let us determine how many cycles have length d. A cycle that includes entry (k, l) has length d if (k, l) is a fixed point of $\left(\sigma^{i} \tau^{j} \zeta\right)^{d}$. For this to hold we must have d odd (otherwise there would be no fixed points because we have excluded the case $i=j=0$ and $(i+j) d / 2=\operatorname{lcm}(i+j, n) / 2$ is not a multiple of n). Since

$$
\left(\sigma^{i} \tau^{j} \zeta\right)^{d}=\sigma^{(i+j)(d-1) / 2+i} \tau^{(i+j)(d-1) / 2+j} \zeta,
$$

we must also have

$$
\begin{equation*}
(k, l)=([l+(i+j)(d-1) / 2+j],[k+(i+j)(d-1) / 2+i]), \tag{7}
\end{equation*}
$$

where $d:=n / \operatorname{gcd}(i+j, n)$ and, for simplicity, $[r]:=(r \bmod n) \in\{0,1, \ldots, n-1\}$. For each $k \in\{0,1, \ldots, n-1\}$, there is a unique l (namely, $l:=[k+(i+j)(d-1) / 2+i])$ such that (7) holds; indeed,

$$
\begin{aligned}
{[l+(i+j)(d-1) / 2+j] } & =[[k+(i+j)(d-1) / 2+i]+(i+j)(d-1) / 2+j] \\
& =[k+(i+j)(d-1) / 2+i+(i+j)(d-1) / 2+j] \\
& =[k+(i+j) d] \\
& =[k+(i+j)(n / \operatorname{gcd}(i+j, n))] \\
& =[k+\operatorname{lcm}(i+j, n)] \\
& =k .
\end{aligned}
$$

This shows that there are n fixed points of $\left(\sigma^{i} \tau^{j} \zeta\right)^{d}$. Each cycle of length d of $\sigma^{i} \tau^{j} \zeta$ will account for d such fixed points, hence there are n / d such cycles. All remaining cycles will have length $2 d$, and so there are $n(n-1) /(2 d)$ of these. The total number of cycles is therefore $n(n+1) /(2 d)$.

The other possibility is that d is even and all cycles have the same length, $2 d$, so there are $n^{2} /(2 d)$ of them. Notice that d is a divisor of n, so the contribution to

$$
\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} 2^{E_{i j}}
$$

from odd d is

$$
\begin{equation*}
\sum_{d \mid n: d \text { is odd }} n \varphi(d) 2^{n(n+1) /(2 d)} \tag{8}
\end{equation*}
$$

and from even d is

$$
\begin{equation*}
\sum_{d \mid n: d \text { is even }} n \varphi(d) 2^{n^{2} /(2 d)} \tag{9}
\end{equation*}
$$

The reason for the coefficient $n \varphi(d)$ is that, if $d \mid n$, then the number of elements of the cyclic group $\left\{e, \sigma \tau,(\sigma \tau)^{2}, \ldots,(\sigma \tau)^{n-1}\right\}$ that are of order d is $\varphi(d)$. And for a given $(i, j) \in$ $\{0,1, \ldots, n-1\}^{2}$, there are n pairs $(k, l) \in\{0,1, \ldots, n-1\}^{2}$ such that $[k+l]=[i+j]$. Putting (8) and (9) together, we obtain

$$
\begin{equation*}
\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} 2^{E_{i j}}=\sum_{d \mid n} n \varphi(d) 2^{n(n+d-2\lfloor d / 2\rfloor) /(2 d)} \tag{10}
\end{equation*}
$$

which, together with (5) and (6), yields (3).
It remains to prove our claim that, for $(i, j) \in\{0,1, \ldots, n-1\}^{2}-\{(0,0)\}$, the permutation $\sigma^{i} \tau^{j} \zeta$ cannot have any cycles whose length is a proper divisor of $d:=n / \operatorname{gcd}(i+j, n)$. Let $c \mid d$ with $1 \leq c<d$. We must show that $\left(\sigma^{i} \tau^{j} \zeta\right)^{c}$ has no fixed points. We can argue as above with c in place of d. For (k, l) to be a fixed point of $\left(\sigma^{i} \tau^{j} \zeta\right)^{c}$ we must have $(i+j) c$ a multiple of n. But $d:=n / \operatorname{gcd}(i+j, n)$ is the smallest integer c such that $(i+j) c$ is a multiple of n because $(i+j) n / \operatorname{gcd}(i+j, n)=\operatorname{lcm}(i+j, n)$.

Finally, we excluded the case $n=1$ at the beginning of the proof, but we notice that the formula (3) gives $\alpha(1)=2$, which is correct.

3 Rotation and reflection of rows and columns, and matrix transposition

Let $X_{n}:=\{0,1\}^{\{0,1, \ldots, n-1\}^{2}}$ be the set of $n \times n$ matrices of 0 s and 1 s , which has $2^{n^{2}}$ elements. Let $\beta(n)$ denote the number of orbits of the group action on X_{n} by the group of order $8 n^{2}$ generated by σ (row rotation), τ (column rotation), ρ (row reflection), θ (column reflection), and ζ (matrix transposition). (Exceptions: If $n=2$, the group is of order 8 ; if $n=1$, the group is of order 1.)

Informally, $\beta(n)$ is the number of (distinct) toroidal $n \times n$ binary arrays, allowing rotation and/or reflection of rows and/or columns as well as matrix transposition.

Theorem 2. With $b(n, n)$ defined using (2), $\beta(n)$ is given by (4).
Proof. Let us assume that $n \geq 3$. (We will treat the cases $n=1$ and $n=2$ later.) By Pólya's enumeration theorem,

$$
\beta(n)=\frac{1}{8 n^{2}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1}\left(2^{A_{i j}}+2^{B_{i j}}+2^{C_{i j}}+2^{D_{i j}}+2^{E_{i j}}+2^{F_{i j}}+2^{G_{i j}}+2^{H_{i j}}\right)
$$

where $A_{i j}$ (resp., $B_{i j}, C_{i j}, D_{i j}, E_{i j}, F_{i j}, G_{i j}, H_{i j}$) is the number of cycles in the permutation $\sigma^{i} \tau^{j}$ (resp., $\sigma^{i} \tau^{j} \rho, \sigma^{i} \tau^{j} \theta, \sigma^{i} \tau^{j} \rho \theta, \sigma^{i} \tau^{j} \zeta, \sigma^{i} \tau^{j} \rho \zeta, \sigma^{i} \tau^{j} \theta \zeta, \sigma^{i} \tau^{j} \rho \theta \zeta$); here σ rotates the rows (row 0 becomes row 1 , row 1 becomes row $2, \ldots$, row $n-1$ becomes row 0), τ rotates the columns, ρ reflects the rows (rows 0 and $n-1$ are interchanged, rows 1 and $n-2$ are interchanged, \ldots, rows $\lfloor n / 2\rfloor-1$ and $n-\lfloor n / 2\rfloor$ are interchanged), θ reflects the columns, and ζ transposes the matrix. The order of the group generated by $\sigma, \tau, \rho, \theta$, and ζ is $8 n^{2}$, using the assumption that $n \geq 3$.

We have already evaluated

$$
\begin{gathered}
a(n, n)=\frac{1}{n^{2}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} 2^{A_{i j}}, \\
\alpha(n)=\frac{1}{2 n^{2}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1}\left(2^{A_{i j}}+2^{E_{i j}}\right),
\end{gathered}
$$

and

$$
b(n, n)=\frac{1}{4 n^{2}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1}\left(2^{A_{i j}}+2^{B_{i j}}+2^{C_{i j}}+2^{D_{i j}}\right)
$$

so

$$
\begin{equation*}
\beta(n)=\frac{1}{2} b(n, n)+\frac{1}{4}\left(\alpha(n)-\frac{1}{2} a(n, n)\right)+\frac{1}{8 n^{2}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1}\left(2^{F_{i j}}+2^{G_{i j}}+2^{H_{i j}}\right) . \tag{11}
\end{equation*}
$$

Let us begin with

$$
\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} 2^{H_{i j}}
$$

Here we are concerned with the permutations $\sigma^{i} \tau^{j} \rho \theta \zeta$ for $(i, j) \in\{0,1, \ldots, n-1\}^{2}$. We will need some multiplication rules for the permutations $\sigma, \tau, \rho, \theta$, and ζ, specifically

$$
\sigma \tau=\tau \sigma, \quad \sigma \theta=\theta \sigma, \quad \tau \rho=\rho \tau, \quad \rho \theta=\theta \rho, \quad \sigma \rho=\rho \sigma^{-1}, \quad \tau \theta=\theta \tau^{-1}
$$

and

$$
\sigma \zeta=\zeta \tau, \quad \tau \zeta=\zeta \sigma, \quad \rho \zeta=\zeta \theta, \quad \theta \zeta=\zeta \rho
$$

It follows that (with $\left.\tau^{-i}:=\left(\tau^{-1}\right)^{i}\right)$

$$
\sigma^{i} \tau^{j} \rho \theta \zeta=\sigma^{i} \tau^{j} \zeta \theta \rho=\zeta \tau^{i} \sigma^{j} \theta \rho=\zeta \theta \tau^{-i} \sigma^{j} \rho=\zeta \theta \rho \tau^{-i} \sigma^{-j},
$$

and hence

$$
\begin{equation*}
\left(\sigma^{i} \tau^{j} \rho \theta \zeta\right)^{2}=\left(\sigma^{i} \tau^{j} \rho \theta \zeta\right)\left(\zeta \theta \rho \tau^{-i} \sigma^{-j}\right)=\sigma^{i-j} \tau^{-i+j}=\left(\sigma \tau^{-1}\right)^{i-j}=\left(\sigma^{-1} \tau\right)^{-i+j} \tag{12}
\end{equation*}
$$

In particular, if $i \in\{0,1, \ldots, n-1\}$, then the permutation $\sigma^{i} \tau^{i} \rho \theta \zeta$ is of order 2. Furthermore, under this permutation, the entry in position (k, l) moves to position $(n-1-[l+$ $i], n-1-[k+i])$, where, as before, $[r]:=(r \bmod n) \in\{0,1, \ldots, n-1\}$. Thus, (k, l) is a fixed point if and only if

$$
\begin{equation*}
(k, l)=(n-1-[l+i], n-1-[k+i]) . \tag{13}
\end{equation*}
$$

For each $k \in\{0,1, \ldots, n-1\}$ there is a unique $l \in\{0,1, \ldots, n-1\}$ (namely $l:=n-1-[k+i])$ such that (13) holds; indeed,

$$
\begin{aligned}
n-1-[l+i] & =n-1-[n-1-[k+i]+i]=n-1-[n-1-(k+i)+i] \\
& =n-1-[n-1-k]=n-1-(n-1-k)=k .
\end{aligned}
$$

Thus, $\sigma^{i} \tau^{i} \rho \theta \zeta$ with $i \in\{0,1, \ldots, n-1\}$ is of order 2 and has exactly n fixed points, hence $\binom{n}{2}$ transpositions. This implies that $H_{i i}=n(n+1) / 2$ for such i.

Now we let $(i, j) \in\{0,1, \ldots, n-1\}^{2}$ be arbitrary but with $i \neq j$. Let us generalize (12) to

$$
\begin{aligned}
\left(\sigma^{i} \tau^{j} \rho \theta \zeta\right)^{2 d} & =\sigma^{(i-j) d} \tau^{(-i+j) d}=\left(\left(\sigma \tau^{-1}\right)^{i-j}\right)^{d}=\left(\left(\sigma^{-1} \tau\right)^{-i+j}\right)^{d}, \\
\left(\sigma^{i} \tau^{j} \rho \theta \zeta\right)^{2 d+1} & =\sigma^{(i-j) d+i} \tau^{(-i+j) d+j} \rho \theta \zeta .
\end{aligned}
$$

The proof proceeds much like the proof of Theorem 1. Specifically, $\sigma^{i} \tau^{j} \rho \theta \zeta$ is of order $2 d$, where $d:=n / \operatorname{gcd}(|i-j|, n)$. All cycles have length d or $2 d$. In fact, if d is odd, there are n / d cycles of length d and $n(n-1) /(2 d)$ cycles of length $2 d$. If d is even, there are $n^{2} /(2 d)$ cycles, all of length $2 d$. And for a given $(i, j) \in\{0,1, \ldots, n-1\}^{2}$, there are n pairs $(k, l) \in\{0,1, \ldots, n-1\}^{2}$ such that $[k-l]=[|i-j|]$. We arrive at the conclusion that

$$
\begin{equation*}
\frac{1}{8 n^{2}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} 2^{H_{i j}}=\frac{1}{8 n^{2}} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} 2^{E_{i j}}=\frac{1}{4}\left(\alpha(n)-\frac{1}{2} a(n, n)\right) . \tag{14}
\end{equation*}
$$

Next we evaluate

$$
\begin{equation*}
\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} 2^{F_{i j}}=\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} 2^{G_{i j}}, \tag{15}
\end{equation*}
$$

where the equality holds by symmetry. We consider the permutations $\sigma^{i} \tau^{j} \rho \zeta$ for $(i, j) \in$ $\{0,1, \ldots, n-1\}^{2}$. From the multiplication rules, it follows that

$$
\sigma^{i} \tau^{j} \rho \zeta=\zeta \theta \tau^{-i} \sigma^{j}
$$

and hence

$$
\begin{equation*}
\left(\sigma^{i} \tau^{j} \rho \zeta\right)^{2}=\left(\sigma^{i} \tau^{j} \rho \zeta\right)\left(\zeta \theta \tau^{-i} \sigma^{j}\right)=\sigma^{i} \tau^{j} \rho \theta \tau^{-i} \sigma^{j}=\sigma^{i-j} \tau^{i+j} \rho \theta=\theta \rho \sigma^{-i+j} \tau^{-i-j} \tag{16}
\end{equation*}
$$

which implies

$$
\left(\sigma^{i} \tau^{j} \rho \zeta\right)^{4}=\left(\sigma^{i-j} \tau^{i+j} \rho \theta\right)\left(\theta \rho \sigma^{-i+j} \tau^{-i-j}\right)=e .
$$

So the permutation $\sigma^{i} \tau^{j} \rho \zeta$ is of order 4. The entry in position (k, l) moves to position $([l+j], n-1-[k+i])$ under this permutation. Thus, $(k, l) \in\{0,1, \ldots, n-1\}^{2}$ is a fixed point of $\sigma^{i} \tau^{j} \rho \zeta$ if and only if

$$
(k, l)=([l+j], n-1-[k+i]) .
$$

There is a solution (k, l) if and only if there exists $l \in\{0,1, \ldots, n-1\}$ such that, with $k:=[l+j]$, we have $n-1-[k+i]=l$ or, equivalently,

$$
\begin{equation*}
[l+i+j]=n-1-l . \tag{17}
\end{equation*}
$$

When $i+j \leq n-1$, (17) is equivalent to

$$
l+i+j=n-1-l \quad \text { or } \quad l+i+j-n=n-1-l
$$

or to

$$
l=(n-1-i-j) / 2 \quad \text { or } \quad l=(2 n-1-i-j) / 2 .
$$

If n is odd and $i+j$ is odd, then there is one fixed point, $(k, l)=([(2 n-1-i+j) / 2],[(2 n-$ $1-i-j) / 2])$. If n is odd and $i+j$ is even, then there is one fixed point, $(k, l)=([(n-1-$ $i+j) / 2],[(n-1-i-j) / 2])$. If n is even and $i+j$ is odd, then there are two fixed points, namely

$$
\begin{aligned}
& (k, l)=([(n-1-i+j) / 2],[(n-1-i-j) / 2]), \\
& (k, l)=([(2 n-1-i+j) / 2],[(2 n-1-i-j) / 2]) .
\end{aligned}
$$

Finally, if n is even and $i+j$ is even, then there is no fixed point.
When $i+j \geq n$, (17) is equivalent to

$$
l+i+j-n=n-1-l \quad \text { or } \quad l+i+j-2 n=n-1-l
$$

or to

$$
l=(2 n-1-i-j) / 2 \quad \text { or } \quad l=(3 n-1-i-j) / 2
$$

If n is odd and $i+j$ is odd, then there is one fixed point, $(k, l)=([(2 n-1-i+j) / 2],[(2 n-$ $1-i-j) / 2])$. If n is odd and $i+j$ is even, then there is one fixed point, $(k, l)=([(3 n-$ $1-i+j) / 2],[(3 n-1-i-j) / 2])=([(n-1-i+j) / 2],[(n-1-i-j) / 2])$. If n is even and $i+j$ is odd, then there are two fixed points, namely

$$
\begin{aligned}
& (k, l)=([(2 n-1-i+j) / 2],[(2 n-1-i-j) / 2]), \\
& (k, l)=([(n-1-i+j) / 2],[(n-1-i-j) / 2]) .
\end{aligned}
$$

Finally, if n is even and $i+j$ is even, then there is no fixed point. Notice that the results are the same for $i+j \geq n$ as for $i+j \leq n-1$.

Using (16), under the permutation $\left(\sigma^{i} \tau^{j} \rho \zeta\right)^{2}$, the entry in position (k, l) moves to position $(n-1-[k+i-j], n-1-[l+i+j])$. Thus, $(k, l) \in\{0,1, \ldots, n-1\}^{2}$ is a fixed point of $\left(\sigma^{i} \tau^{j} \rho \zeta\right)^{2}$ if and only if

$$
(k, l)=(n-1-[k+i-j], n-1-[l+i+j]) .
$$

A necessary and sufficient condition on (k, l) is (17) together with $[k+i-j]=n-1-k$. Solutions have l as before. On the other hand, k must satisfy

$$
k+i-j-n=n-1-k, \quad k+i-j=n-1-k, \quad \text { or } \quad k+i-j+n=n-1-k,
$$

or equivalently,

$$
k=[(n-1-i+j) / 2] \quad \text { or } \quad k=[(2 n-1-i+j) / 2] .
$$

If n is odd, the only fixed points of $\left(\sigma^{i} \tau^{j} \rho \zeta\right)^{2}$ are those already shown to be fixed points of $\sigma^{i} \tau^{j} \rho \zeta$. If n is even and $i+j$ is odd, there are two fixed points of $\left(\sigma^{i} \tau^{j} \rho \zeta\right)^{2}$ that are not fixed points of $\sigma^{i} \tau^{j} \rho \zeta$, namely

$$
\begin{aligned}
& (k, l)=([(n-1-i+j) / 2],[(2 n-1-i-j) / 2]), \\
& (k, l)=([(2 n-1-i+j) / 2],[(n-1-i-j) / 2]) .
\end{aligned}
$$

Finally, there are no fixed points when n is even and $i+j$ is even.
Consequently, if n is odd, then the permutation $\sigma^{i} \tau^{j} \rho \zeta$, which is of order 4 , has only one fixed point. Therefore, it has one cycle of length 1 and $\left(n^{2}-1\right) / 4$ cycles of length 4 . Thus,

$$
\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} 2^{F_{i j}}=n^{2} 2^{\left(n^{2}+3\right) / 4}
$$

For even n, if $i+j$ is odd, then the permutation $\sigma^{i} \tau^{j} \rho \zeta$ has two cycles of length 1 and one cycle of length 2 , and the remaining cycles are of length 4 . If $i+j$ is even, then all cycles of the permutation $\sigma^{i} \tau^{j} \rho \zeta$ are of length 4 , hence there are $n^{2} / 4$ of them. Thus,

$$
\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} 2^{F_{i j}}=\frac{1}{2} n^{2} 2^{\left(n^{2}-4\right) / 4+3}+\frac{1}{2} n^{2} 2^{n^{2} / 4}=5 n^{2} 2^{n^{2} / 4-1}
$$

These results, together with (3), (10), (11), (14), and (15), yield (4).
Finally, recall that we have assumed that $n \geq 3$. We notice that the formula (4) gives $\beta(1)=2$ and $\beta(2)=6$, which are correct, as we can see by direct enumeration.

In the derivation of (2) in [1], the proof requires $m, n \geq 3$ because the group $D_{m} \times D_{n}$ used in the application of Pólya's enumeration theorem (D_{m} being the dihedral group of order $2 m$), is incorrect if m or n is 1 or 2 . If $m=2$, row rotation and row reflection are the same, so the latter is redundant. Thus, D_{2} should be replaced by C_{2}, the cyclic group
of order 2. The reason (2) is still valid is that $b_{1}(2, n)=b_{2}(2, n)$ and $b_{3}(2, n)=b_{4}(2, n)$, as is easily verified. If $m=1$, again row reflection is redundant, so D_{1} should be replaced by C_{1}. Here (2) remains valid because $b_{1}(1, n)=b_{2}(1, n)$ and $b_{3}(1, n)=b_{4}(1, n)$. A similar remark applies to $n=2$ and $n=1$, except that here $b_{1}(m, 2)=b_{3}(m, 2), b_{2}(m, 2)=b_{4}(m, 2)$, $b_{1}(m, 1)=b_{3}(m, 1)$, and $b_{2}(m, 1)=b_{4}(m, 1)$.

References

[1] S. N. Ethier, Counting toroidal binary arrays, J. Integer Sequences 16 (2013), Article 13.4.7.
[2] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org/, 2015.
[3] J. H. van Lint and R. M. Wilson, A Course in Combinatorics, 2nd ed., Cambridge University Press, 2001.

2010 Mathematics Subject Classification: Primary 05A05.
Keywords: toroidal array, Euler's phi function, group action, orbit, Pólya's enumeration theorem.
(Concerned with sequences A040076, A179043, A184271, A209251, A222188, A255015, and A255016.)

Received February 19 2015; revised version received June 3 2015. Published in Journal of Integer Sequences, July 162015.

Return to Journal of Integer Sequences home page.

[^0]: ${ }^{1}$ Partially supported by a grant from the Simons Foundation (209632).
 ${ }^{2}$ Supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT \& Future Planning (No. 2013R1A1A3A04007670).

