

Journal of Integer Sequences, Vol. 18 (2015), Article 15.9.8

On *q*-Boson Operators and *q*-Analogues of the *r*-Whitney and *r*-Dowling Numbers

Mahid M. Mangontarum Department of Mathematics Mindanao State University – Main Campus Marawi City 9700 Philippines mmangontarum@yahoo.com

mangontarum.mahid@msumain.edu.ph

Jacob Katriel Department of Chemistry Technion – Israel Institute of Technology Haifa 32000 Israel jkatriel@technion.ac.il

Abstract

We define the (q, r)-Whitney numbers of the first and second kinds in terms of the q-Boson operators, and obtain several fundamental properties such as recurrence formulas, orthogonality and inverse relations, and other interesting identities. As a special case, we obtain a q-analogue of the r-Stirling numbers of the first and second kinds. Finally, we define the (q, r)-Dowling polynomials in terms of sums of (q, r)-Whitney numbers of the second kind, and obtain some of their properties.

1 Introduction

The investigation of q-analogues of combinatorial identities has proven to be a rich source of insight as well as of useful generalizations. Some examples of q-analogues are the q-real

number, the q-factorial and the q-falling factorial of order r, respectively, given by

$$[x]_q = \frac{q^x - 1}{q - 1}, \ [n]_q! = \prod_{i=1}^n [i]_q, \ [x]_{q,n} = \prod_{i=0}^{r-1} [x - i]_q,$$

for any real number x and non-negative integers n and r, and the *q*-binomial coefficients (also known as Gaussian polynomials)

$$\binom{n}{r}_{q} = \frac{[n]_{q}!}{[r]_{q}![n-r]_{q}!} = \frac{[n]_{q,r}}{[r]_{q}!}.$$

The formulation of q-analogues is not unique, but some choices appear to allow more productive generalizations than others. In the present paper we apply the properties of the q-boson operators as a framework for the generation of q-deformations of a family of combinatorial identities involving the Whitney numbers.

A lattice L in which every element is the join of elements x and y (in L) such that x and y cover the zero element 0, and is semimodular, is called a *geometric lattice*. Originally, if L is a finite lattice of rank n, then the Whitney numbers w(n, k) and W(n, k) of the first and second kinds of L are defined as the coefficients of the characteristic polynomial and as the number of elements of L of corank k, respectively. Now, Dowling [20] defined a class of these geometric lattices, called *Dowling lattice*, which is a generalization of the partition lattice. Let $Q_n(G)$ be the Dowling lattice of rank n associated to a finite group G of order m > 0. Benoumhani [3] defined the *Whitney numbers of the first and second kind of* $Q_n(G)$, denoted by $w_m(n, k)$ and $W_m(n, k)$, respectively, in terms of the relations

$$m^{n}(x)_{n} = \sum_{k=0}^{n} w_{m}(n,k)(mx+1)^{k}$$
(1)

and

$$(mx+1)^n = \sum_{k=0}^n m^k W_m(n,k)(x)_k,$$
(2)

where $(x)_n = x(x-1)\cdots(x-n+1)$ is the falling factorial of x of order n. Notice that if the group G is the trivial group (m = 1), multiplication of both equations (1) and (2) by (x+1) yields the horizontal generating functions for the well-known Stirling numbers of the first and second kind [29], denoted by $\begin{bmatrix} n \\ k \end{bmatrix}$ and $\begin{Bmatrix} n \\ k \end{Bmatrix}$, respectively. Hence,

$$w_1(n,k) = \begin{bmatrix} n+1\\ k+1 \end{bmatrix}, \ W_1(n,k) = \begin{cases} n+1\\ k+1 \end{cases}.$$

We note that Benoumhani [3, 4] already established the fundamental properties of the numbers $w_m(n,k)$ and $W_m(n,k)$ while Dowling [20] gave a detailed discussion of geometric lattices. Other generalizations of the Stirling numbers $\binom{n}{k}$ and $\binom{n}{k}$ were already considered by several authors. For instance, Broder [5] defined the *r*-Stirling numbers $\widehat{\binom{n+r}{k+r}}_r$ and $\widehat{\binom{n+r}{k+r}}_r$ of the first and second kind whose relation to the Whitney numbers is stated in equations (21) and (22) below. Belbachir and Bousbaa [2] recently introduced the translated Whitney numbers $\widetilde{w}_{(\alpha)}(n,k)$ and $\widetilde{W}_{(\alpha)}(n,k)$ of the first and second kind, which are related to the Stirling numbers via

$$\widetilde{w}_{(\alpha)}(n,k) = \alpha^{n-k} \begin{bmatrix} n \\ k \end{bmatrix}, \ \widetilde{W}_{(\alpha)}(n,k) = \alpha^{n-k} \begin{Bmatrix} n \\ k \end{Bmatrix}.$$

Furthermore, Mező [27] defined the r-Whitney numbers $w_{m,r}(n,k)$ and $W_{m,r}(n,k)$ of the first and second kind as the coefficients in the expressions

$$m^{n}(x)_{n} = \sum_{k=0}^{n} w_{m,r}(n,k)(mx+r)^{k}$$
(3)

and

$$(mx+r)^{n} = \sum_{k=0}^{n} m^{k} W_{m,r}(n,k)(x)_{k}.$$
(4)

respectively. Further development of the numbers $w_{m,r}(n,k)$ and $W_{m,r}(n,k)$ were due to Cheon and Jung [7], Merca [26], Corcino et al. [10], Corcino et al. [19], C. B. Corcino and R. B. Corcino [9], and R. B. Corcino and C. B Corcino [14, 15].

Corcino and Hererra [17] introduced the limit of the differences of the generalized factorial

$$F_{\alpha,\gamma}(n,k) = \lim_{\beta \to 0} \frac{\left[\Delta_t^k \left(\beta t + \gamma | \alpha \right)_n\right]_{t=0}}{k! \beta^k},\tag{5}$$

where

$$\left(\beta t + \gamma | \alpha\right)_n = \prod_{j=0}^{n-1} \left(\beta t + \gamma - j\alpha\right), \ \left(\beta t + \gamma | \alpha\right)_0 = 1,\tag{6}$$

which is a generalization of the Stirling numbers of the first kind. The numbers $F_{\alpha,-\gamma}(n,k)$ are actually the *r*-Whitney numbers of the first kind in (3). That is,

$$F_{\alpha,-\gamma}(n,k) = w_{\alpha,\gamma}(n,k).$$

Similarly, Corcino [11] defined the (r,β) -Stirling numbers $\langle {}^n_k \rangle_{r\beta}$ as coefficients in

$$t^{n} = \sum_{k=0}^{n} {\binom{\frac{t-r}{\beta}}{k}} \beta^{k} k! {\binom{n}{k}}_{r,\beta}.$$
(7)

The numbers ${\binom{n}{k}}_{r,\beta}$ are found to be equivalent to the *r*-Whitney numbers of the second kind in (4). To be precise,

$$\left\langle {n \atop k} \right\rangle_{r,\beta} = W_{\beta,r}(n,k).$$

Corcino et al. [16], and Corcino and Aldema [12] further studied the numbers ${\binom{n}{k}}_{r\,\beta}$.

Recall that the classical Boson operators a and a^{\dagger} satisfy the commutation relation

$$[a, a^{\dagger}] \equiv aa^{\dagger} - a^{\dagger}a = 1.$$
(8)

If we define the Fock space by the basis $\{|s\rangle ; s = 0, 1, 2, ...\}$, to be referred to as Fock states, the relations $a|s\rangle = \sqrt{s}|s-1\rangle$ and $a^{\dagger}|s\rangle = \sqrt{s+1}|s+1\rangle$ form a representation that satisfies the commutation relation (8). The operator $\hat{n} \equiv a^{\dagger}a$, when acting on $|s\rangle$, yields

$$a^{\dagger}a|s\rangle = s|s\rangle$$

and the operator $(a^{\dagger})^k a^k$, when acting on the same state, yields

$$(a^{\dagger})^k a^k |s\rangle = (s)_k |s\rangle.$$

Let $\{\langle s | \equiv (|s\rangle)^{\dagger}; s = 0, 1, 2, ...\}$ denote the Fock basis of the dual space. Requiring the normalization of the scalar product $\langle 0 | 0 \rangle = 1$ we note that

$$\langle s+1|s+1\rangle = \frac{1}{s+1} \langle s|aa^{\dagger}|s\rangle = \frac{1}{s+1} \Big(\langle s|a^{\dagger}a|s\rangle + \langle s|s\rangle \Big) = \langle s|s\rangle.$$

Hence, from the normalization of $|0\rangle$ it follows that all the Fock states are normalized. Moreover, since $\langle s + 1 | a^{\dagger} | s \rangle = \sqrt{s+1} \langle s + 1 | s + 1 \rangle$ and $(a|s+1\rangle)^{\dagger} | s \rangle = \sqrt{s+1} \langle s | s \rangle$, it follows that a^{\dagger} is the Hermitian conjugate of a. That is, $a^{\dagger}a$ is Hermitian. Orthogonality follows from the fact that the Fock states are eigenstates of $a^{\dagger}a$ with distinct eigenvalues.

Hence, the horizontal generating functions of the Stirling numbers $\begin{bmatrix} n \\ k \end{bmatrix}$ and $\begin{bmatrix} n \\ k \end{bmatrix}$,

$$(x)_{n} = \sum_{k=0}^{n} (-1)^{n-k} {n \brack k} x^{k}$$
(9)

and

$$x^n = \sum_{k=0}^n \left\{ \begin{matrix} n \\ k \end{matrix} \right\} (x)_k,$$

can be expressed as

$$(a^{\dagger})^{n}a^{n} = \sum_{k=0}^{n} (-1)^{n-k} {n \brack k} (a^{\dagger}a)^{k}$$

and

$$(a^{\dagger}a)^n = \sum_{k=0}^n \left\{ {n \atop k} \right\} (a^{\dagger})^k a^k,$$

respectively [22].

Now, the defining relations for the r-Whitney numbers, (3) and (4), can be expressed as

$$m^{n}(a^{\dagger})^{n}a^{n} = \sum_{k=0}^{n} w_{m,r}(n,k)(ma^{\dagger}a+r)^{k}$$
(10)

and

$$(ma^{\dagger}a + r)^{n} = \sum_{k=0}^{n} m^{k} W_{m,r}(n,k) (a^{\dagger})^{k} a^{k}.$$
 (11)

Making use of the q-Boson operators [1] that satisfy

$$[a, a^{\dagger}]_q \equiv a a^{\dagger} - q a^{\dagger} a = 1, \qquad (12)$$

we have

$$a|s\rangle = \sqrt{[s]_q}|s-1\rangle, \ a^{\dagger}|s\rangle = \sqrt{[s+1]_q}|s+1\rangle,$$

hence,

$$a^{\dagger}a|s\rangle = [s]_q|s\rangle,$$

and

 $(a^{\dagger})^k a^k |s\rangle = [s]_{q,k} |s\rangle.$

Remark 1. Although we use the same notation for the boson and for the q-boson operators, no confusion should arise because the meaning of these symbols should be clear from the context.

In line with this, the defining relations for Carlitz's [6] q-Stirling numbers of the first and second kind, $\binom{n}{k}_{q}$ and $\binom{n}{k}_{q}$, can be written in the form [22]

$$(a^{\dagger})^{n}a^{n} = \sum_{k=1}^{n} (-1)^{n-k} {n \brack k}_{q} (a^{\dagger}a)^{k}$$
(13)

and

$$(a^{\dagger}a)^{n} = \sum_{k=1}^{n} {n \\ k}_{q} (a^{\dagger})^{k} a^{k}, \qquad (14)$$

respectively.

We define q-analogues for the Whitney numbers $w_{m,r}(n,k)$ and $W_{m,r}(n,k)$ via the same pattern as in (13) and (14).

2 (q, r)-Whitney numbers

Definition 2. For non-negative integers n and k and complex numbers r and m, the (q, r)-Whitney numbers of the first and second kind, denoted by $w_{m,r,q}(n,k)$ and $W_{m,r,q}(n,k)$, respectively, are defined by

$$m^{n}(a^{\dagger})^{n}a^{n} = \sum_{k=0}^{n} w_{m,r,q}(n,k)(ma^{\dagger}a+r)^{k}$$
(15)

and

$$(ma^{\dagger}a + r)^{n} = \sum_{k=0}^{n} m^{k} W_{m,r,q}(n,k) (a^{\dagger})^{k} a^{k}$$
(16)

with initial conditions $w_{m,r,q}(0,0) = W_{m,r,q}(0,0) = 1$ and $w_{m,r,q}(n,k) = W_{m,r,q}(n,k) = 0$ for k > n and for k < 0, where the operators a^{\dagger} and a satisfy the relation in (12).

Before proceeding we note that from (15) and (16),

$$w_{m,0,q}(n,k) = (-m)^{n-k} {n \brack k}_q,$$
 (17)

$$W_{m,0,q}(n,k) = m^{n-k} {n \\ k}_{q}.$$
 (18)

Similarly, the *r*-Stirling numbers $\widehat{\binom{n+r}{k+r}}_r$ and $\widehat{\binom{n+r}{k+r}}_r$ are specified by the horizontal generating functions

$$(x-r)_n = \sum_{k=0}^n (-1)^{n-k} \begin{bmatrix} n+r\\k+r \end{bmatrix}_r x^k,$$

or, equivalently,

$$(x)_n = \sum_{k=0}^n (-1)^{n-k} \widehat{\begin{bmatrix} n+r\\k+r \end{bmatrix}}_r (x+r)^k,$$

and

$$(x+r)^n = \sum_{k=0}^n \left\{ \widehat{\frac{n+r}{k+r}} \right\}_r (x)_r.$$

Hence, $\widehat{[{n+r}]}_{q,r}$ and $\widehat{\{{n+r}\}}_{q,r}$, the *q*-analogues of $\widehat{[{n+r}]}_{k+r}$ and $\widehat{\{{n+r}\}}_r$, respectively, are specified by the horizontal generating functions

$$(a^{\dagger})^{n}a^{n} = \sum_{k=0}^{n} (-1)^{n-k} \left[\overbrace{k+r}^{n+r} \right]_{q,r} (a^{\dagger}a+r)^{k},$$
(19)

$$(a^{\dagger}a+r)^{n} = \sum_{k=0}^{n} \left\{ \widehat{a+r} \atop k+r \right\}_{q,r} (a^{\dagger})^{k} a^{k}.$$
(20)

It follows that

$$w_{1,r,q}(n,k) = (-1)^{n-k} \left[\overbrace{k+r}^{n+r} \right]_{q,r},$$
(21)

$$W_{1,r,q}(n,k) = \left\{ \begin{array}{c} \widehat{n+r} \\ k+r \end{array} \right\}_{q,r}.$$

$$(22)$$

We will refer to the q-analogues in (19) and (20) as the (q, r)-Stirling numbers of the first and second kind, respectively. **Theorem 3.** The (q, r)-Whitney numbers $w_{m,r,q}(n, k)$ and $W_{m,r,q}(n, k)$ satisfy the following identities:

$$w_{m,r,q}(n,k) = (-1)^{n-k} \sum_{i=k}^{n} \binom{i}{k} r^{i-k} m^{n-i} \begin{bmatrix} n\\ i \end{bmatrix}_{q},$$
(23)

$$W_{m,r,q}(n,k) = \sum_{i=k}^{n} \binom{n}{i} r^{n-i} m^{i-k} \begin{Bmatrix} i \\ k \end{Bmatrix}_{q}.$$
(24)

Proof. From Eq. (13), we get

$$\begin{split} m^{n}(a^{\dagger})^{n}a^{n} &= m^{n}\sum_{i=0}^{n}(-1)^{n-i} \begin{bmatrix} n\\ i \end{bmatrix}_{q}(a^{\dagger}a)^{i} \\ &= m^{n}\sum_{i=0}^{n}(-1)^{n-i} \begin{bmatrix} n\\ i \end{bmatrix}_{q}\left(\frac{\hat{z}-r}{m}\right)^{i} \\ &= m^{n}\sum_{i=0}^{n}(-1)^{n-i} \begin{bmatrix} n\\ i \end{bmatrix}_{q}\frac{1}{m^{i}}\sum_{k=0}^{i}\binom{i}{k}\hat{z}^{k}(-r)^{i-k} \\ &= \sum_{k=0}^{n}(-1)^{n-k}\left\{\sum_{i=k}^{n}m^{n-i}\begin{bmatrix} n\\ i \end{bmatrix}_{q}\binom{i}{k}r^{i-k}\right\}\hat{z}^{k}, \end{split}$$

where $\hat{z} = ma^{\dagger}a + r$. Furthermore, comparing the coefficient of \hat{z}^k with that in equation (15) yields equation (23).

To prove equation (24), we write

$$(ma^{\dagger}a+r)^{n} = \sum_{i=0}^{n} \binom{n}{i} r^{n-i} m^{i} (a^{\dagger}a)^{i}$$
$$= \sum_{i=0}^{n} \binom{n}{i} r^{n-i} m^{i} \sum_{k=0}^{i} \left\{ \sum_{k=0}^{n} r^{n-i} m^{i} \left\{ k \right\}_{q}^{i} \binom{n}{i} \right\} (a^{\dagger})^{k} a^{k}.$$
$$= \sum_{k=0}^{n} \left\{ \sum_{i=k}^{n} r^{n-i} m^{i} \left\{ k \right\}_{q}^{i} \binom{n}{i} \right\} (a^{\dagger})^{k} a^{k}.$$

Comparing the coefficient of $(a^{\dagger})^k a^k$ with that in equation (16) gives us (24). Remark 4. (a) As $q \to 1$, we have

$$w_{m,r}(n,k) = \sum_{i=k}^{n} (-1)^{n-k} \binom{i}{k} r^{i-k} m^{n-i} \binom{n}{i};$$
$$W_{m,r}(n,k) = \sum_{i=k}^{n} \binom{n}{i} r^{n-i} m^{i-k} \binom{i}{k}.$$

(b) Note that of all the factors in equations (23) and (24) only the Stirling numbers are q-deformed.

The following corollary is a direct consequence of the previous theorem.

Corollary 5. The (q, r)-Stirling numbers are given by

$$\begin{bmatrix} n+r\\k+r \end{bmatrix}_{q,r} = \sum_{i=k}^{n} \binom{i}{k} r^{i-k} \begin{bmatrix} n\\i \end{bmatrix}_{q};$$
(25)

$$\left\{ \begin{matrix} \widehat{n} + \widehat{r} \\ k + r \end{matrix} \right\}_{q,r} = \sum_{i=k}^{n} \binom{n}{i} r^{n-i} \begin{Bmatrix} i \\ k \end{Bmatrix}_{q}.$$
 (26)

3 Some recurrence relations

In this section, we present some recurrence relations involving the (q, r)-Whitney numbers.

We recall the q-boson identities

$$[a, (a^{\dagger})^{n}]_{q^{n}} = [n]_{q} (a^{\dagger})^{n-1}$$

and

$$[a^n, a^\dagger]_{q^n} = [n]_q a^{n-1},$$

that can be easily established by induction. The latter can also be written in the form

$$a^{\dagger}a^{n} = q^{-n}(a^{n}a^{\dagger} - [n]_{q}a^{n-1}).$$

Theorem 6. The (q, r)-Whitney numbers $w_{m,r,q}(n, k)$ and $W_{m,r,q}(n, k)$ satisfy the following triangular recurrence relations:

$$w_{m,r,q}(n+1,k) = q^{-n} \Big(w_{m,r,q}(n,k-1) - (m[n]_q + r) w_{m,r,q}(n,k) \Big),$$
(27)

$$W_{m,r,q}(n+1,k) = q^{k-1}W_{m,r,q}(n,k-1) + (m[k]_q + r)W_{m,r,q}(n,k).$$
(28)

Proof. From equation (15), $\sum_{k=0}^{n+1} w_{m,r,q}(n+1,k)(ma^{\dagger}a+r)^k = m^{n+1}(a^{\dagger})^n(a^{\dagger}a^n)a$

$$= m^{n+1}(a^{\dagger})^{n}q^{-n}(a^{n}a^{\dagger} - [n]_{q}a^{n-1})a$$

$$= m^{n+1}q^{-n}\left((a^{\dagger})^{n}a^{n}\right)(a^{\dagger}a) - m^{n+1}q^{-n}[n]_{q}(a^{\dagger})^{n}a^{n}$$

$$= q^{-n}\sum_{k=0}^{n} w_{m,r,q}(n,k)(ma^{\dagger}a+r)^{k}(ma^{\dagger}a+r-r) - mq^{-n}[n]_{q}\sum_{k=0}^{n} w_{m,r,q}(n,k)(ma^{\dagger}a+r)^{k}$$

$$= q^{-n}\sum_{k=1}^{n+1} w_{m,r,q}(n,k-1)(ma^{\dagger}a+r)^{k} - q^{-n}(m[n]_{q}+r)\sum_{k=0}^{n} w_{m,r,q}(n,k)(ma^{\dagger}a+r)^{k}$$

$$= q^{-n}\sum_{k=0}^{n+1} \{w_{m,r,q}(n,k-1) - (m[n]_{q}+r)w_{m,r,q}(n,k)\}(ma^{\dagger}a+r)^{k}.$$

Equating coefficients of $(ma^{\dagger}a + r)^k$ gives us (27) and a similar derivation yields equation (28).

Equations (27) and (28) are useful in computing the first few values of $w_{m,r,q}(n,k)$ and $W_{m,r,q}(n,k)$, using the initial values specified above.

Remark 7. (a) From (27) we obtain the explicit expression

$$w_{m,r,q}(n,0) = (-1)^n q^{-\frac{n(n-1)}{2}} \prod_{i=0}^{n-1} (m[i]_q + r)$$

On the other hand, the relation (23) yields

$$w_{m,r,q}(n,0) = (-1)^n \sum_{i=0}^n r^i m^{n-i} \begin{bmatrix} n \\ i \end{bmatrix}_q.$$

Equating these expressions and substituting $x = \frac{r}{m}$ we obtain

$$\sum_{i=0}^{n} {n \brack i}_{q} x^{i} = q^{-\frac{n(n-1)}{2}} \prod_{i=0}^{n-1} ([i]_{q} + x).$$

This is a horizontal generating function for the q-Stirling numbers of the first kind in terms of a q-analogue of the rising factorial. Indeed, replacing x by $-[s]_q$, and noting that

$$[s]_q - [i]_q = q^{-i}[s - i]_q$$

and

$$\prod_{i=0}^{n-1} q^i = q^{\binom{n}{2}},$$

we obtain

$$\sum_{i=0}^{n} {n \brack i}_{q} (-1)^{i} [s]_{q}^{i} = (-1)^{n} \prod_{i=0}^{n-1} [s-i]_{q}.$$

(b) From (28) $W_{m,r,q}(n+1,0) = rW_{m,r,q}(n,0)$, hence $W_{m,r,q}(n,0) = r^n$. The same result is obtained from (24). That is,

$$W_{m,r,q}(n,0) = \sum_{i=0}^{n} \binom{n}{i} r^{n-i} m^{i} \delta_{i,0} = r^{n}$$

(c) As $q \to 1$, we have

$$w_{m,r}(n+1,k) = w_{m,r}(n,k-1) - (mn+r)w_{m,r}(n,k);$$

$$W_{m,r}(n+1,k) = W_{m,r}(n,k-1) + (mk+r)W_{m,r}(n,k)$$

This confirms that $w_{m,r,q}(n,k)$ and $W_{m,r,q}(n,k)$ are proper q-analogues of $w_{m,r}(n,k)$ and $W_{m,r}(n,k)$, respectively.

As a consequence of the previous theorem, when m = 1 we have

Corollary 8. The (q, r)-Stirling numbers satisfy the following triangular recurrence relations:

$$\begin{bmatrix} n+1+r \\ k+r \end{bmatrix}_{q,r} = q^{-n} \begin{bmatrix} n+r \\ k-1+r \end{bmatrix}_{q,r} + ([n]_q+r)q^{-n} \begin{bmatrix} n+r \\ k+r \end{bmatrix}_{q,r},$$

$$\left\{ \widehat{n+1+r} \\ k+r \end{bmatrix}_{q,r} = q^{k-1} \left\{ \widehat{n+r} \\ k-1+r \right\}_{q,r} + ([k]_q+r) \left\{ \widehat{n+r} \\ k+r \right\}_{q,r}.$$

We can use these recurrence relations to compute the first few values of the (q, r)-Stirling numbers of the first and second kind, respectively.

Theorem 9. The (q,r)-Whitney numbers satisfy the following recurrence relations

$$w_{m,r+1,q}(n,\ell) = \sum_{k=\ell}^{n} \binom{k}{\ell} (-1)^{k-\ell} w_{m,r,q}(n,k),$$
(29)

$$W_{m,r+1,q}(n,k) = \sum_{\ell=k}^{n} \binom{n}{\ell} W_{m,r,q}(\ell,k).$$
(30)

Proof. From equation (15), we have

$$m^{n}(a^{\dagger})^{n}a^{n} = \sum_{k=0}^{n} w_{m,r,q}(n,k)(ma^{\dagger}a+r)^{k}$$

$$= \sum_{k=0}^{n} w_{m,r,q}(n,k) \Big((ma^{\dagger}a+r+1)-1 \Big)^{k}$$

$$= \sum_{k=0}^{n} w_{m,r,q}(n,k) \sum_{\ell=0}^{k} \binom{k}{\ell} (-1)^{k-\ell} (ma^{\dagger}a+r+1)^{\ell}$$

$$= \sum_{\ell=0}^{n} (ma^{\dagger}a+r+1)^{\ell} \sum_{k=\ell}^{n} \binom{k}{\ell} (-1)^{k-\ell} w_{m,r,q}(n,k).$$

On the other hand,

$$m^{n}(a^{\dagger})^{n}a^{n} = \sum_{\ell=0}^{n} w_{m,r+1,q}(n,\ell)(ma^{\dagger}a+r+1)^{\ell}.$$

Hence, by comparing the coefficients of $(ma^{\dagger}a + r + 1)^{\ell}$ we obtain equation (29). Similarly, from equation (16)

$$(ma^{\dagger}a + r + 1)^{n} = \sum_{k=0}^{n} m^{k} W_{m,r+1,q}(n,k) (a^{\dagger})^{k} a^{k},$$

and since

$$(ma^{\dagger}a + r + 1)^{n} = \sum_{\ell=0}^{n} \binom{n}{\ell} (ma^{\dagger}a + r)^{\ell}$$
$$= \sum_{\ell=0}^{n} \binom{n}{\ell} \sum_{k=0}^{\ell} m^{k} W_{m,r,q}(\ell,k) (a^{\dagger})^{k} a^{k}$$
$$= \sum_{k=0}^{n} m^{k} (a^{\dagger})^{k} a^{k} \sum_{\ell=k}^{n} \binom{n}{\ell} W_{m,r,q}(\ell,k),$$
on (30).

we obtain equation (30).

When m = 1, the theorem reduces to the recursion formulas for (q, r)-Stirling numbers. That is,

Corollary 10.

$$\left[\begin{array}{c} \widehat{n+r+1} \\ l+r+1 \end{array} \right]_{q,r+1} = \sum_{k=l}^{n} (-1)^{l-k} \binom{k}{l} \left[\begin{array}{c} \widehat{n+r} \\ k+r \end{array} \right]_{q,r}, \\
\left\{ \begin{array}{c} \widehat{n+r+1} \\ k+r+1 \end{array} \right\}_{q,r+1} = \sum_{l=k}^{n} \binom{n}{l} \left\{ \begin{array}{c} \widehat{l+r} \\ k+r \end{array} \right\}_{q,r}.$$

4 Orthogonality and inverse relations

Theorem 11. The (q, r)-Whitney numbers $w_{m,r,q}(n, k)$ and $W_{m,r,q}(k, j)$ satisfy the following orthogonality relations:

$$\sum_{k=j}^{n} W_{m,r,q}(n,k) w_{m,r,q}(k,j) = \delta_{jn},$$
(31)

and

$$\sum_{k=j}^{n} w_{m,r,q}(n,k) W_{m,r,q}(k,j) = \delta_{jn},$$
(32)

where δ_{jn} is the Kronecker delta.

Proof. Using equation (15) we substitute $m^k(a^{\dagger})^k a^k$ in (16), obtaining

$$(ma^{\dagger}a+r)^{n} = \sum_{k=0}^{n} W_{m,r,q}(n,k) \sum_{j=0}^{k} w_{m,r,q}(k,j) (ma^{\dagger}a+r)^{j}$$
$$= \sum_{j=0}^{n} \left\{ \sum_{k=j}^{n} W_{m,r,q}(n,k) w_{m,r,q}(k,j) \right\} (ma^{\dagger}a+r)^{j}.$$

Comparing the coefficients of $(ma^{\dagger}a + r)^{j}$ yields equation (31). Equation (32) is obtained similarly.

The classical *binomial inversion formula* given by

$$f_k = \sum_{j=0}^k \binom{k}{j} g_j \Leftrightarrow g_k = \sum_{j=0}^k (-1)^{k-j} \binom{k}{j} f_j \tag{33}$$

can be a useful tool in deriving the explicit formula of the classical Stirling numbers of the second kind. The q-analogue of (33) is given by [8]

$$f_{k} = \sum_{j=0}^{k} {\binom{k}{j}}_{q} g_{j} \Leftrightarrow g_{k} = \sum_{j=0}^{k} (-1)^{k-j} q^{\binom{k-j}{2}} {\binom{k}{j}}_{q} f_{j},$$
(34)

The next theorem presents an inverse relation for the (q, r)-Whitney numbers $w_{m,r,q}(n, k)$ and $W_{m,r,q}(k, j)$.

Theorem 12. The (q, r)-Whitney numbers $w_{m,r,q}(n, \ell)$ and $W_{m,r,q}(n, \ell)$ satisfy the following inverse relation:

$$f_n = \sum_{\ell=0}^n w_{m,r,q}(n,\ell)g_\ell \Leftrightarrow g_n = \sum_{\ell=0}^n W_{m,r,q}(n,\ell)f_\ell.$$
(35)

Proof. By the hypothesis,

$$\sum_{\ell=0}^{n} W_{m,r,q}(n,\ell) f_{\ell} = \sum_{\ell=0}^{n} W_{m,r,q}(n,\ell) \sum_{k=0}^{\ell} w_{m,r,q}(\ell,k) g_{k}$$
$$= \sum_{k=0}^{n} \left\{ \sum_{\ell=k}^{n} W_{m,r,q}(n,\ell) w_{m,r,q}(\ell,k) \right\} g_{k}$$
$$= \sum_{k=0}^{n} \left\{ \delta_{kn} \right\} g_{k}$$
$$= g_{n}.$$

The converse can be shown similarly.

The next theorem can be deduced in a similar way, from the orthogonality relations

Theorem 13. The (q, r)-Whitney numbers $w_{m,r,q}(n, \ell)$ and $W_{m,r,q}(n, \ell)$ satisfy the following inverse relation:

$$f_{\ell} = \sum_{n=\ell}^{\infty} w_{m,r,q}(n,\ell)g_n \Leftrightarrow g_{\ell} = \sum_{n=\ell}^{\infty} W_{m,r,q}(n,\ell)f_n.$$
(36)

5 (q, r)-Dowling polynomials and numbers

Cheon and Jung [7] defined the *r*-Dowling polynomials, denoted by $D_{m,r}(n,x)$, in terms of sums of *r*-Whitney numbers of the second kind. That is,

$$D_{m,r}(n,x) = \sum_{k=0}^{n} W_{m,r}(n,k) x^{k}.$$
(37)

When x = 1, we obtain the *r*-Dowling numbers $D_{m,r}(n) \equiv D_{m,r}(n, 1)$. The polynomials (37) are actually equivalent to the (r, β) -Bell polynomials $G_{n,\beta,r}(x)$ of R. B. Corcino and C. B. Corcino [13]. That is,

$$D_{\beta,r}(n,x) = G_{n,\beta,r}(x).$$

Moreover,

- when m = 1 and r = 1, we recover the classical Dowling polynomials $D(n, x) \equiv D_{1,1}(n, x)$;
- when m = 1 and r = 0, we recover the classical Bell polynomials $B_n(x) \equiv D_{1,0}(n, x)$;
- when m = 1, we recover Mező's [28] *r*-Bell polynomials $B_{n,r}(x)$. That is, $D_{1,r}(n, x) = B_{n,r}(x)$; and
- when $m = \alpha$ and r = 0, we recover the translated Dowling polynomials $\widetilde{D}_{(\alpha)}(n; x)$ by Mangontarum et al. [25]. That is, $D_{\alpha,0}(n, x) = \widetilde{D}_{(\alpha)}(n; x)$.

Taking these into consideration, the next definition seems to be natural.

Definition 14. For non-negative integers n and k, and complex numbers m and r, the (q, r)-Dowling polynomials, denoted by $D_{m,r,q}(n, x)$, are defined by

$$D_{m,r,q}(n,x) = \sum_{k=0}^{n} W_{m,r,q}(n,k)x^{k}$$
(38)

and the (q, r)-Dowling numbers, denoted by $D_{m,r,q}(n)$, are defined by

$$D_{m,r,q}(n) = D_{m,r,q}(n,1).$$
(39)

The coherent states

$$|\gamma\rangle = \exp\left(-\frac{|\gamma|^2}{2}\right) \sum_{k\geq 0} \frac{\gamma^k}{\sqrt{k!}} |k\rangle,\tag{40}$$

where γ is an arbitrary (complex-valued) constant, satisfy $a|\gamma\rangle = \gamma|\gamma\rangle$ and $\langle\gamma|\gamma\rangle = 1$. Katriel [23] gave an illustration on how (40) can be a very useful tool in the derivation of certain

Dobinski-type formulas. The q-coherent states corresponding to the q-Boson operators were defined as

$$|\gamma\rangle_q = \left(\widehat{e}_q(-|\gamma|^2)\right)^{\frac{1}{2}} \sum_{k\geq 0} \frac{\gamma^k}{\sqrt{[k]_q!}} |k\rangle \tag{41}$$

which satisfy $a|\gamma\rangle = \gamma|\gamma\rangle$. Here, $\hat{e}_q(x)$ is the type 2 q-exponential function given by

$$\widehat{e}_q(x) = \prod_{i=1}^{\infty} (1 + (1-q)q^{i-1}x) = \sum_{i\geq 0} q^{\binom{i}{2}} \frac{x^i}{[i]_q!},\tag{42}$$

which is the inverse of the type 1 q-exponential function

$$e_q(x) = \prod_{i=1}^{\infty} (1 - (1 - q)q^{i-1}x)^{-1} = \sum_{i \ge 0} \frac{x^i}{[i]_q!}.$$
(43)

That is, $e_q(x)\widehat{e}_q(-x) = 1$.

Taking the expectation value of both sides of (16) with respect to $|\gamma\rangle$ yields

$$\langle \gamma | (ma^{\dagger}a + r)^n | \gamma \rangle = \sum_{k=0}^n m^k W_{m,r,q}(n,k) |\gamma|^{2k}.$$
(44)

The left-hand-side can be evaluated using the q-coherent states in (41), yielding

$$\langle \gamma | (ma^{\dagger}a + r)^n | \gamma \rangle = \widehat{e}_q \left(-|\gamma|^2 \right) \sum_{k \ge 0} \frac{|\gamma|^{2k}}{[k]_q!} (m[k]_q + r)^n.$$

$$\tag{45}$$

Defining $x = m |\gamma|^2$ we obtain

$$\sum_{k=0}^{n} W_{m,r,q}(n,k)x^{k} = \widehat{e}_{q}\left(-\frac{x}{m}\right)\sum_{k\geq0}\left(\frac{x}{m}\right)^{k}\frac{(m[k]_{q}+r)^{n}}{[k]_{q}!}.$$
(46)

Using (38), the following theorem is easily observed.

Theorem 15. The (q,r)-Dowling polynomials $D_{m,r,q}(n,x)$ and the (q,r)-Dowling numbers $D_{m,r,q}(n)$ have the following explicit formulas:

$$D_{m,r,q}(n,x) = \hat{e}_q\left(-\frac{x}{m}\right) \sum_{k \ge 0} \left(\frac{x}{m}\right)^k \frac{(m[k]_q + r)^n}{[k]_q!},$$
(47)

and

$$D_{m,r,q}(n) = \widehat{e}_q \left(-m^{-1}\right) \sum_{k \ge 0} \frac{(m[k]_q + r)^n}{m^k [k]_q!}.$$
(48)

Proof. (48) can be obtained by letting x = 1 in (47).

Katriel [23] defined the q-Bell polynomial as

$$\sum_{\ell=0}^{k} {k \\ \ell}_{q} x^{\ell} = \widehat{e}_{q}(x) \sum_{m=1}^{\infty} x^{m} \frac{[m]_{q}^{k}}{[m]_{q}!}.$$
(49)

Expanding the right-hand side using (42) yields

$$\sum_{\ell=0}^{k} {k \atop \ell}_{q} x^{\ell} = \sum_{\ell=0}^{\infty} \frac{x^{\ell}}{[\ell]_{q}!} \sum_{j=0}^{\ell} (-1)^{\ell-j} q^{\binom{\ell-j}{2}} \binom{\ell}{j}_{q} [j]_{q}^{k}.$$
(50)

Equating coefficients of equal powers of x gives us

$$\begin{cases} k \\ \ell \end{cases}_{q} = \frac{1}{[\ell]_{q}!} \sum_{j=0}^{\ell} (-1)^{\ell-j} q^{\binom{\ell-j}{2}} \binom{\ell}{j}_{q} [j]_{q}^{k}.$$
 (51)

Notice that as $q \to 1$, (51) reduces to the well-known explicit formula of ${k \atop j}$. That is

$$\lim_{q \to 1} {\binom{k}{\ell}}_{q} = \frac{1}{\ell!} \sum_{j=0}^{\ell} (-1)^{\ell-j} {\binom{\ell}{j}} j^{k}.$$
(52)

In the following theorem, we will present an expression analogous to (51) for the q-analogue $W_{m,r,q}(n,k)$.

Theorem 16. The (q, r)-Whitney numbers of the second kind, $W_{m,r,q}(n, k)$, have the following explicit formula:

$$W_{m,r,q}(n,\ell) = \frac{1}{m^{\ell}[\ell]_{q}!} \sum_{k=0}^{\ell} (-1)^{\ell-k} q^{\binom{\ell-k}{2}} \binom{\ell}{k}_{q} (m[k]_{q}+r)^{n}.$$
(53)

Proof. Substituting $y = \frac{x}{m}$ in (47) gives us

$$\sum_{k=0}^{n} m^{k} W_{m,r,q}(n,k) y^{k} = \sum_{i \ge 0} q^{\binom{i}{2}} \frac{(-y)^{i}}{[i]_{q}!} \sum_{k \ge 0} y^{k} \frac{(m[k]_{q}+r)^{n}}{[k]_{q}!}$$
$$= \sum_{\ell \ge 0} \frac{y^{\ell}}{[\ell]_{q}!} \sum_{k=0}^{\ell} (-1)^{\ell-k} q^{\binom{\ell-k}{2}} \binom{\ell}{k}_{q} (m[k]_{q}+r)^{n}.$$

Equating the coefficients of equal powers of y on both sides of this equation we obtain equation (53).

Note that as $q \to 1$, we have

$$\lim_{q \to 1} W_{m,r,q}(n,\ell) = \frac{1}{m^{\ell}\ell!} \sum_{k=0}^{\ell} (-1)^{\ell-k} \binom{\ell}{k} (mk+r)^n \\ = W_{m,r}(n,\ell).$$

Furthermore,

$$\lim_{q \to 1} W_{m,1,q}(n,l) = W_m(n,l).$$

Remark 17. We can also prove (53) in the following manner: First, we write (16) as

$$(m[\ell]_{q} + r)^{n} = \sum_{k=0}^{n} m^{k} W_{m,r,q}(n,k)[\ell]_{q,k}$$
$$= \sum_{k=0}^{\ell} {\binom{\ell}{k}}_{q} \left\{ \frac{m^{k} W_{m,r,q}(n,k)[\ell]_{q,k}}{\binom{\ell}{k}_{q}} \right\}$$

Next, we apply the q-binomial inversion formula in (34) which gives us

$$\frac{m^{\ell} W_{m,r,q}(n,\ell)[\ell]_{q,\ell}}{\binom{k}{k}_{q}} = \sum_{k=0}^{\ell} (-1)^{\ell-k} q^{\binom{\ell-k}{2}} \binom{l}{k}_{q} (m[k]_{q}+r)^{n}.$$

This is precisely the explicit formula obtained in the previous theorem.

Now, using (53),

$$\sum_{n\geq 0} W_{m,r,q}(n,k) \frac{t^n}{[n]_q!} = \sum_{n\geq 0} \sum_{j=0}^k \frac{(-1)^{k-j}}{m^k [k]_q!} q^{\binom{k-j}{2}} \binom{k}{j}_q (m[j]_q+r)^n \frac{t^n}{[n]_q!}$$
$$= \frac{1}{m^k [k]_q!} \sum_{j=0}^k (-1)^{k-j} q^{\binom{k-j}{2}} \binom{k}{j}_q e_q \left[(m[j]_q+r)t \right],$$

where $e_q(x)$ is the type 1 q-exponential function in (43). Thus, we have the following theorem.

Theorem 18. The (q, r)-Whitney numbers of the second kind satisfy the following exponential generating function:

$$\sum_{n\geq 0} W_{m,r,q}(n,k) \frac{t^n}{[n]_q!} = \frac{1}{m^k [k]_q!} \sum_{j=0}^n (-1)^{k-j} q^{\binom{k-j}{2}} \binom{k}{j}_q e_q \left[(m[j]_q + r)t \right].$$
(54)

Remark 19. As $q \to 1$, we have

$$\lim_{q \to 1} \sum_{n \ge 0} W_{m,r,q}(n,k) \frac{t^n}{[n]_q!} = \frac{e^{rt}}{k!} \left(\frac{e^{mt}-1}{m}\right)^k,$$

which is the exponential generating function of the r-Whitney numbers of the second kind.

The q-difference operator [24] can be written in the form

$$\Delta_q^k f(x) = \sum_{j=0}^k (-1)^{k-j} q^{\binom{k-j}{2}} \binom{k}{j}_q f(x+j).$$
(55)

We are now ready to state the next theorem.

Theorem 20. The (q, r)-Whitney numbers of the second kind satisfy the following identity:

$$\sum_{n\geq 0} W_{m,r,q}(n,k) \frac{t^n}{[n]_q!} = \left\{ \Delta_q^k \left(\frac{e_q[(m[x]_q + r)t]]}{m^k[k]_q!} \right) \right\}_{x=0}.$$
(56)

Proof. (56) follows directly from (54) and (55).

The next corollary is easily verified.

Corollary 21. The (q,r)-Whitney numbers of the second kind can be expressed explicitly as

$$W_{m,r,q}(n,k) = \left\{ \Delta_q^k \left(\frac{(m[x]_q + r)^n}{m^k [k]_q!} \right) \right\}_{x=0}.$$
(57)

6 Further identities for the (q, r)-Whitney numbers

Graham et al. [21] presented a useful set of Stirling number identities while Katriel [22] presented the q-analogues of all but two of them. Three of these identities are generalized to the (q, r)-Whitney numbers using appropriate modifications of the procedures presented by Katriel [22]. Their derivation requires the following.

Lemma 22. For f(x) a polynomial, the operator identity

$$a^{\dagger}f(1+qa^{\dagger}a)a = a^{\dagger}af(a^{\dagger}a), \tag{58}$$

holds.

Proof. We write the q-commutation relation, equation (12), in the form $aa^{\dagger} = 1 + qa^{\dagger}a$. It follows that

$$(a^{\dagger}a)(a^{\dagger}a)^{k} = a^{\dagger}(aa^{\dagger})^{k}a = a^{\dagger}(1 + qa^{\dagger}a)^{k}a.$$

For $f(x) = \sum_{k} c_k x^k$ we obtain

$$a^{\dagger}af(a^{\dagger}a) = \sum_{k} c_{k}(a^{\dagger}a)(a^{\dagger}a)^{k}$$

= $\sum_{k} c_{k}a^{\dagger}(1+qa^{\dagger}a)^{k}a = a^{\dagger}\left(\sum_{k} c_{k}(1+qa^{\dagger}a)^{k}\right)a$
= $a^{\dagger}f(1+qa^{\dagger}a)a.$

۰.		

Remark 23. The lemma can also be written in the form

$$a^{\dagger}g(a^{\dagger}a)a = a^{\dagger}ag\left(\frac{1}{q}(a^{\dagger}a-1)\right),\tag{59}$$

where g(x) is a polynomial.

Theorem 24 (Identity 1). The (q, r)-Whitney numbers of the second kind satisfy

$$W_{m,r,q}(n+1,k) - rW_{m,r,q}(n,k) = \sum_{\ell=k-1}^{n} \binom{n}{\ell} q^{\ell} (m+r(1-q))^{n-\ell} W_{m,r,q}(\ell,k-1).$$

Proof. In terms of the identity (58) and with the aid of (16)

$$a^{\dagger} \Big(m(1+qa^{\dagger}a)+r \Big)^{n} a = a^{\dagger}a(ma^{\dagger}a+r)^{n}$$

= $\frac{1}{m}(ma^{\dagger}a+r-r)(ma^{\dagger}a+r)^{n}$
= $\frac{1}{m}(ma^{\dagger}a+r)^{n+1} - \frac{r}{m}(ma^{\dagger}a+r)^{n}$
= $\sum_{k=0}^{n+1} m^{k-1}(a^{\dagger})^{k}a^{k} \Big(W_{m,r,q}(n+1,k) - rW_{m,r,q}(n,k) \Big).$

On the other hand, defining $\alpha = m + r(1-q)$ (which will hold throught the present section),

$$\begin{aligned} a^{\dagger} \Big(m(1+qa^{\dagger}a)+r \Big)^{n} a &= a^{\dagger} \Big(q(ma^{\dagger}a+r)+\alpha \Big)^{n} a \\ &= a^{\dagger} \left(\sum_{\ell=0}^{n} \binom{n}{\ell} q^{\ell} \alpha^{n-\ell} (ma^{\dagger}a+r)^{\ell} \right) a \\ &= \sum_{\ell=0}^{n} \binom{n}{\ell} q^{\ell} \alpha^{n-\ell} \sum_{k=0}^{\ell} m^{k} W_{m,r,q}(\ell,k) (a^{\dagger})^{k+1} a^{k+1} \\ &= \sum_{k=1}^{n+1} m^{k-1} (a^{\dagger})^{k} a^{k} \sum_{\ell=k-1}^{n} \binom{n}{\ell} q^{\ell} \alpha^{n-\ell} W_{m,r,q}(\ell,k-1). \end{aligned}$$

Equating coefficients of $m^{k-1}(a^{\dagger})^k a^k$ the theorem follows.

For r = 0 this identity reduces to the q-Stirling numbers identity [22, identity 1]

$$W_{m,0,q}(n+1,k) = \sum_{\ell=k-1}^{n} \binom{n}{\ell} q^{\ell} m^{n-\ell} W_{m,0,q}(\ell,k-1).$$

The following corollary is an immediate consequence of the previous theorem.

Corollary 25. As $q \rightarrow 1$,

$$W_{m,r}(n+1,k) - rW_{m,r}(n,k) = \sum_{\ell=k-1}^{n} \binom{n}{\ell} m^{n-\ell} W_{m,r}(\ell,k-1).$$

Theorem 26 (Identity 2). The (q, r)-Whitney numbers of the first kind satisfy

$$w_{m,r,q}(n+1,\ell) = \sum_{k=\ell-1}^{n} \frac{1}{q^k} w_{m,r,q}(n,k) \Big(-(m+r(1-q))^{k-\ell} \\ \cdot \left(\binom{k}{\ell-1} (-(m+r(1-q))) - r\binom{k}{\ell} \right) \Big).$$

Proof. We note that from (15),

$$m^{n+1}(a^{\dagger})^{n+1}a^{n+1} = \sum_{\ell=0}^{n+1} w_{m,r,q}(n+1,\ell)(ma^{\dagger}a+r)^{\ell}.$$

On the other hand, using (59),

$$\begin{split} m^{n+1}(a^{\dagger})^{n+1}a^{n+1} &= ma^{\dagger} \left(m^{n}(a^{\dagger})^{n}a^{n} \right) a \\ &= ma^{\dagger} \left(\sum_{k=0}^{n} w_{m,r,q}(n,k)(ma^{\dagger}a+r)^{k} \right) a \\ &= ma^{\dagger}a \sum_{k=0}^{n} w_{m,r,q}(n,k) \left(\frac{m}{q}(a^{\dagger}a-1)+r \right)^{k} \\ &= ma^{\dagger}a \sum_{k=0}^{n} w_{m,r,q}(n,k) \frac{1}{q^{k}} \left((ma^{\dagger}a+r)-\alpha \right)^{k} \\ &= ((ma^{\dagger}a+r)-r) \sum_{k=0}^{n} w_{m,r,q}(n,k) \frac{1}{q^{k}} \sum_{\ell=0}^{k} \binom{k}{\ell} (ma^{\dagger}a+r)^{\ell} (-\alpha)^{k-\ell} \\ &= \sum_{k=0}^{n} w_{m,r,q}(n,k) \frac{1}{q^{k}} \sum_{\ell=0}^{n} \binom{k}{\ell} (ma^{\dagger}a+r)^{\ell-1} (-\alpha)^{k-\ell} \\ &-r \sum_{k=0}^{n} w_{m,r,q}(n,k) \frac{1}{q^{k}} \sum_{\ell=0}^{n} \binom{k}{\ell} (ma^{\dagger}a+r)^{\ell} (-\alpha)^{k-\ell} \\ &= \sum_{\ell=0}^{n+1} (ma^{\dagger}a+r)^{\ell} \sum_{k=\ell-1}^{n} \frac{1}{q^{k}} w_{m,r,q}(n,k) (-\alpha)^{k-\ell} \\ &\cdot \left(\binom{k}{\ell-1} (-\alpha) - r\binom{k}{\ell} \right) \right). \end{split}$$

Equating the coefficients of equal powers of $ma^{\dagger}a + r$ we obtain the theorem.

For r = 0, we recover the q-Stirling numbers identity [22, identity 2]

$$w_{m,0,q}(n+1,\ell) = \sum_{k=\ell-1}^{n} \frac{1}{q^k} w_{m,0,q}(n,k) (-m)^{k-\ell+1} \binom{k}{\ell-1},$$

Moreover, we have the following corollary:

Corollary 27. As $q \rightarrow 1$,

$$w_{m,r}(n+1,\ell) = -\sum_{k=\ell-1}^{n} w_{m,r}(n,k)(-m)^{k-\ell} \left(m \binom{k}{\ell-1} + r \binom{k}{\ell} \right).$$

Theorem 28 (Identity 3). The (q, r)-Whitney numbers of the second kind satisfy

$$W_{m,r,q}(n,k-1) = \frac{1}{q^n} \sum_{\ell=k}^{n+1} (-m-r(1-q))^{n-\ell} \left(\binom{n}{\ell-1} (-m-r(1-q)) - \binom{n}{\ell} r \right) W_{m,r,q}(\ell,k).$$

Proof. Note that

$$a^{\dagger}(ma^{\dagger}a+r)^{n}a = \sum_{k=0}^{n} m^{k}W_{m,r,q}(n,k)(a^{\dagger})^{k+1}a^{k+1}$$
$$= \sum_{k=1}^{n+1} m^{k-1}W_{m,r,q}(n,k-1)(a^{\dagger})^{k}a^{k},$$

and on the other hand, using (59),

$$\begin{aligned} a^{\dagger}(ma^{\dagger}a+r)^{n}a &= a^{\dagger}a \Big(\frac{m}{q}(a^{\dagger}a-1)+r\Big)^{n} = a^{\dagger}a\frac{1}{q^{n}}(ma^{(\dagger}a+r)-\alpha)^{n} \\ &= \frac{1}{m}((ma^{\dagger}a+r)-r)\frac{1}{q^{n}}\sum_{\ell=0}^{n}\binom{n}{\ell}(ma^{\dagger}a+r)^{\ell}(-\alpha))^{n-\ell} \\ &= \frac{1}{mq^{n}}\sum_{\ell=1}^{n+1}(ma^{\dagger}a+r)^{\ell}(-\alpha)^{n-\ell}\cdot\left(\binom{n}{\ell-1}(-\alpha)-r\binom{n}{\ell}\right) \\ &= \frac{1}{mq^{n}}\sum_{k=0}^{n+1}m^{k}(a^{\dagger})^{k}a^{k}\sum_{\ell=k}^{n+1}(-\alpha)^{n-\ell}\left(\binom{n}{\ell-1}(-\alpha)-\binom{n}{\ell}r\right)W_{m,r,q}(\ell,k). \end{aligned}$$

Equating the coefficients of $(a^{\dagger})^k a^k$ we obtain the theorem.

For r = 0 this theorem reduces to

$$W_{m,0,q}(n,k-1) = \frac{1}{q^n} \sum_{\ell=k}^{n+1} (-m)^{n+1-\ell} \binom{n}{\ell-1} W_{m,0,q}(\ell,k).$$

Using equation (18), we can verify that this is just the q-Stirling numbers identity [22, identity 3]. The next corollary is easily verified.

Corollary 29. As $q \rightarrow 1$,

$$W_{m,r}(n,k-1) = \sum_{\ell=k}^{n+1} (-m)^{n-\ell} \left[\binom{n}{\ell-1} (-m) - \binom{n}{\ell} r \right] W_{m,r}(\ell,k).$$

Presently, much is yet to be learnt regarding the (q, r)-Whitney numbers. The classical r-Whitney and Stirling numbers are known to have various applications in different fields. It is tempting to explore applications for the (q, r)-Whitney numbers.

To close this section, Corcino and Hererra [17] defined the q-analogue of the limit of the differences of the generalized factorial $F_{\alpha,\gamma}(n,k)$ in (5), denoted by $\phi_{\alpha,\gamma}[n,k]_q$. $\phi_{\alpha,\gamma}[n,k]_q$ can be defined in terms of the relation

$$\sum_{k=0}^{n} \phi_{\alpha,\gamma}[n,k]_q t^k = \langle t + [\gamma]_q | [\alpha]_q \rangle_n^q , \qquad (60)$$

where

$$\langle t + [\gamma]_q | [\alpha]_q \rangle_n^q = \prod_{j=0}^{n-1} \left(t + [\gamma]_q - [j\alpha]_q \right).$$
 (61)

The numbers $\phi_{\alpha,\gamma}[n,k]_q$ are actually q-analogues of the numbers $w_{m,r}(n,k)$. Similarly, Corcino and Montero [18] defined the q-analogue $\sigma[n,k]_q^{\beta,r}$ of the Rucinski-Voigt numbers in terms of the recourse relation

$$\sigma[n,k]_q^{\beta,r} = \sigma[n-1,k-1]_q^{\beta,r} + ([k\beta]_q + [r]_q)\,\sigma[n-1,k]_q^{\beta,r}.$$
(62)

 $\sigma[n,k]_q^{\beta,r}$ is also a q-analogue of the numbers $\langle {n \atop k} \rangle_{r,\beta}$ and $W_{m,r}(n,k)$. However, by comparing the defining relations for $\phi_{\alpha,\gamma}[n,k]_q$ and $\sigma[n,k]_q^{\beta,r}$ with those of the(q,r)-Whitney numbers $w_{m,r,q}(n,k)$ and $W_{m,r,q}(n,k)$, respectively, we note that they represent distinctly motivated q-analogues that cannot be simply related to one another.

7 Acknowledgments

The authors would like to thank the editor-in-chief for his helpful comments and suggestions, and the referee for carefully reading the manuscript and giving invaluable recommendations which helped improve this paper.

References

 M. Arik and D. Coon, Hilbert spaces of analytic functions and generalized coherent states, J. Math. Phys., 17 (1976), 524–527. DOI: doi:10.1063/1.522937.

- [2] H. Belbachir and I. Bousbaa, Translated Whitney and r-Whitney numbers: a combinatorial approach, J. Integer Seq., 16 (2013), Article 13.8.6.
- [3] M. Benoumhani, On Whitney numbers of Dowling lattices, *Discrete Math.*, 159 (1996), 13–33.
- [4] M. Benoumhani, On some numbers related to the Whitney numbers of Dowling lattices, Adv. Appl. Math., 19 (1997), 106–116.
- [5] A. Broder, The *r*-Stirling numbers, *Discrete Math.* **49** (1984), 241–259.
- [6] L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987–1000.
- [7] G.-S. Cheon and J.-H. Jung, The r-Whitney numbers of Dowling lattices, Discrete Math., 15 (2012), 2337–2348.
- [8] L. Comtet, Advanced Combinatorics, D. Reidel Publishing Co., 1974.
- [9] C. B. Corcino and R. B. Corcino, Asymptotic estimates for second kind generalized Stirling numbers, J. Appl. Math., 2013, Article ID 918513, 7 pages, (2013). DOI: doi:10.1155/2013/918513.
- [10] C. B. Corcino, R. B. Corcino, and N. Acala, Asymptotic estimates for r-Whitney numbers of the second kind, J. Appl. Math., 2014, Article ID 354053, 7 pages, (2014). DOI: doi:10.1155/2014/354053.
- [11] R. B. Corcino, The (r, β) -Stirling numbers, The Mindanao Forum, 14 (1999), 91–99.
- [12] R. B. Corcino and R. M. Aldema, Some combinatorial and statistical applications of (r, β)-Stirling numbers, *Matimyás Mat.*, **25** (2002), 19–29.
- [13] R. B. Corcino and C. B. Corcino, On generalized Bell polynomials, *Discrete Dyn. Nat. Soc.*, **2011**, Article ID 623456, 21 pages, (2011). DOI: doi:10.1155/2011/623456.
- [14] R. B. Corcino and C. B Corcino, On the maximum of generalized Stirling numbers, Util. Math., 86 (2011), 241–256.
- [15] R. B. Corcino and C. B Corcino, The Hankel transform of the generalized Bell numbers and its q-analogue, Util. Math., 89 (2012), 297–309.
- [16] R. B. Corcino, C. B. Corcino, and R. M. Aldema, Asymptotic normality of the (r, β) -Stirling numbers, Ars Combin., **81** (2006), 81–96.
- [17] R. B. Corcino and M. Hererra, The limit of the differences of the generalized factorial, its q- and p, q-analogue, Util. Math., 72 (2007), 33–49.

- [18] R. B. Corcino and C. B. Montero, A q-analogue of Rucinski-Voigt numbers, *ISRN Discrete Math.*, **2012**, Article ID 592818, 18 pages, (2012). DOI: doi:10.5402/2012/592818.
- [19] R. B. Corcino, M. B. Montero, and S. Ballenas, Schlomilch-type formula for r-Whitney numbers of the first kind, *Matimyás Mat.*, 37 (2014), 1–10.
- [20] T. A. Dowling, A class of geometric lattices based on finite groups, J. Combin. Theory, Ser. B, 15 (1973), 61–86.
- [21] R. L. Graham, D. E. Knuth, and O. Patashnik, *Concrete Mathematics*, Addison-Wesley, Reading, 1990.
- [22] J. Katriel, Stirling number identities: interconsistency of q-analogues, J. Phys. A: Math. Gen., 31 (1998), 3559–3572.
- [23] J. Katriel, Bell numbers and coherent states, *Phys. Letters A*, **273** (2000), 159–161.
- [24] M.-S. Kim and J.-W. Son, A note on q-difference operators, Commun. Korean Math. Soc., 17 (2002), 432–430.
- [25] M. M. Mangontarum, A. P.-M. Ringia, and N. S. Abdulcarim, The translated Dowling polynomials and numbers, *International Scholarly Research Notices*, **2014**, Article ID 678408, 8 pages, (2014). DOI: doi:10.1155/2014/678408.
- [26] M. Merca, A new connection between r-Whitney numbers and Bernoulli polynomials, Integral Transforms Spec. Funct., 25 (2014), 937–942.
- [27] I. Mező, A new formula for the Bernoulli polynomials, Results Math., 58 (2010), 329– 335.
- [28] I. Mező, The r-Bell Numbers, J. Integer Seq., 14 (2011), Article 11.1.1.
- [29] J. Stirling, Methodus Differentialissme Tractus de Summatione et Interpolatione Serierum Infinitarum, London, 1730.

2010 Mathematics Subject Classification: Primary 11B83; Secondary 11B73, 05A30. Keywords: Whitney number, Stirling number, Boson operator, q-analogue.

(Concerned with sequences <u>A000110</u>, <u>A003575</u>, <u>A008275</u>, and <u>A008277</u>.)

Received May 13 2015; revised version received, September 1 2015. Published in *Journal of Integer Sequences*, September 7 2015.

Return to Journal of Integer Sequences home page.