On q-Boson Operators and q-Analogues of the r-Whitney and r-Dowling Numbers

Mahid M. Mangontarum
Department of Mathematics
Mindanao State University - Main Campus
Marawi City 9700
Philippines
mmangontarum@yahoo.com
mangontarum.mahid@msumain.edu.ph
Jacob Katriel
Department of Chemistry
Technion - Israel Institute of Technology
Haifa 32000
Israel
jkatriel@technion.ac.il

Abstract

We define the (q, r)-Whitney numbers of the first and second kinds in terms of the q-Boson operators, and obtain several fundamental properties such as recurrence formulas, orthogonality and inverse relations, and other interesting identities. As a special case, we obtain a q-analogue of the r-Stirling numbers of the first and second kinds. Finally, we define the (q, r)-Dowling polynomials in terms of sums of (q, r) Whitney numbers of the second kind, and obtain some of their properties.

1 Introduction

The investigation of q-analogues of combinatorial identities has proven to be a rich source of insight as well as of useful generalizations. Some examples of q-analogues are the q-real
number, the q-factorial and the q-falling factorial of order r, respectively, given by

$$
[x]_{q}=\frac{q^{x}-1}{q-1},[n]_{q}!=\prod_{i=1}^{n}[i]_{q},[x]_{q, n}=\prod_{i=0}^{r-1}[x-i]_{q},
$$

for any real number x and non-negative integers n and r, and the q-binomial coefficients (also known as Gaussian polynomials)

$$
\binom{n}{r}_{q}=\frac{[n]_{q}!}{[r]_{q}![n-r]_{q}!}=\frac{[n]_{q, r}}{[r]_{q}!}
$$

The formulation of q-analogues is not unique, but some choices appear to allow more productive generalizations than others. In the present paper we apply the properties of the q-boson operators as a framework for the generation of q-deformations of a family of combinatorial identities involving the Whitney numbers.

A lattice L in which every element is the join of elements x and y (in L) such that x and y cover the zero element 0 , and is semimodular, is called a geometric lattice. Originally, if L is a finite lattice of rank n, then the Whitney numbers $w(n, k)$ and $W(n, k)$ of the first and second kinds of L are defined as the coefficients of the characteristic polynomial and as the number of elements of L of corank k, respectively. Now, Dowling [20] defined a class of these geometric lattices, called Dowling lattice, which is a generalization of the partition lattice. Let $Q_{n}(G)$ be the Dowling lattice of rank n associated to a finite group G of order $m>0$. Benoumhani [3] defined the Whitney numbers of the first and second kind of $Q_{n}(G)$, denoted by $w_{m}(n, k)$ and $W_{m}(n, k)$, respectively, in terms of the relations

$$
\begin{equation*}
m^{n}(x)_{n}=\sum_{k=0}^{n} w_{m}(n, k)(m x+1)^{k} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
(m x+1)^{n}=\sum_{k=0}^{n} m^{k} W_{m}(n, k)(x)_{k} \tag{2}
\end{equation*}
$$

where $(x)_{n}=x(x-1) \cdots(x-n+1)$ is the falling factorial of x of order n. Notice that if the group G is the trivial group $(m=1)$, multiplication of both equations (1) and (2) by $(x+1)$ yields the horizontal generating functions for the well-known Stirling numbers of the first and second kind [29], denoted by $\left[\begin{array}{l}n \\ k\end{array}\right]$ and $\left\{\begin{array}{l}n \\ k\end{array}\right\}$, respectively. Hence,

$$
w_{1}(n, k)=\left[\begin{array}{l}
n+1 \\
k+1
\end{array}\right], W_{1}(n, k)=\left\{\begin{array}{l}
n+1 \\
k+1
\end{array}\right\} .
$$

We note that Benoumhani [3, 4] already established the fundamental properties of the numbers $w_{m}(n, k)$ and $W_{m}(n, k)$ while Dowling [20] gave a detailed discussion of geometric lattices. Other generalizations of the Stirling numbers $\left[\begin{array}{l}n \\ k\end{array}\right]$ and $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ were already considered by
several authors. For instance, Broder [5] defined the r-Stirling numbers $\widehat{\left[\begin{array}{c}n+r \\ k+r\end{array}\right]_{r}}$. and $\widehat{\left\{\begin{array}{c}n+r \\ k+r\end{array}\right\}_{r}}$ of the first and second kind whose relation to the Whitney numbers is stated in equations (21) and (22) below. Belbachir and Bousbaa [2] recently introduced the translated Whitney numbers $\widetilde{w}_{(\alpha)}(n, k)$ and $\widetilde{W}_{(\alpha)}(n, k)$ of the first and second kind, which are related to the Stirling numbers via

$$
\widetilde{w}_{(\alpha)}(n, k)=\alpha^{n-k}\left[\begin{array}{l}
n \\
k
\end{array}\right], \widetilde{W}_{(\alpha)}(n, k)=\alpha^{n-k}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} .
$$

Furthermore, Mező [27] defined the r-Whitney numbers $w_{m, r}(n, k)$ and $W_{m, r}(n, k)$ of the first and second kind as the coefficients in the expressions

$$
\begin{equation*}
m^{n}(x)_{n}=\sum_{k=0}^{n} w_{m, r}(n, k)(m x+r)^{k} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
(m x+r)^{n}=\sum_{k=0}^{n} m^{k} W_{m, r}(n, k)(x)_{k} . \tag{4}
\end{equation*}
$$

respectively. Further developement of the numbers $w_{m, r}(n, k)$ and $W_{m, r}(n, k)$ were due to Cheon and Jung [7], Merca [26], Corcino et al. [10], Corcino et al. [19], C. B. Corcino and R. B. Corcino [9], and R. B. Corcino and C. B Corcino [14, 15].

Corcino and Hererra [17] introduced the limit of the differences of the generalized factorial

$$
\begin{equation*}
F_{\alpha, \gamma}(n, k)=\lim _{\beta \rightarrow 0} \frac{\left[\Delta_{t}^{k}(\beta t+\gamma \mid \alpha)_{n}\right]_{t=0}}{k!\beta^{k}} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
(\beta t+\gamma \mid \alpha)_{n}=\prod_{j=0}^{n-1}(\beta t+\gamma-j \alpha),(\beta t+\gamma \mid \alpha)_{0}=1 \tag{6}
\end{equation*}
$$

which is a generalization of the Stirling numbers of the first kind. The numbers $F_{\alpha,-\gamma}(n, k)$ are actually the r-Whitney numbers of the first kind in (3). That is,

$$
F_{\alpha,-\gamma}(n, k)=w_{\alpha, \gamma}(n, k) .
$$

Similarly, Corcino [11] defined the (r, β)-Stirling numbers $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle_{r, \beta}$ as coefficients in

$$
t^{n}=\sum_{k=0}^{n}\binom{\frac{t-r}{\beta}}{k} \beta^{k} k!\left\langle\begin{array}{l}
n \tag{7}\\
k
\end{array}\right\rangle_{r, \beta} .
$$

The numbers $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle_{r, \beta}$ are found to be equivalent to the r-Whitney numbers of the second kind in (4). To be precise,

$$
\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle_{r, \beta}=W_{\beta, r}(n, k) .
$$

Corcino et al. [16], and Corcino and Aldema [12] further studied the numbers $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle_{r, \beta}$.
Recall that the classical Boson operators a and a^{\dagger} satisfy the commutation relation

$$
\begin{equation*}
\left[a, a^{\dagger}\right] \equiv a a^{\dagger}-a^{\dagger} a=1 \tag{8}
\end{equation*}
$$

If we define the Fock space by the basis $\{|s\rangle ; s=0,1,2, \ldots\}$, to be referred to as Fock states, the relations $a|s\rangle=\sqrt{s}|s-1\rangle$ and $a^{\dagger}|s\rangle=\sqrt{s+1}|s+1\rangle$ form a representation that satisfies the commutation relation (8). The operator $\hat{n} \equiv a^{\dagger} a$, when acting on $|s\rangle$, yields

$$
a^{\dagger} a|s\rangle=s|s\rangle
$$

and the operator $\left(a^{\dagger}\right)^{k} a^{k}$, when acting on the same state, yields

$$
\left(a^{\dagger}\right)^{k} a^{k}|s\rangle=(s)_{k}|s\rangle .
$$

Let $\left\{\langle s| \equiv(|s\rangle)^{\dagger} ; s=0,1,2, \ldots\right\}$ denote the Fock basis of the dual space. Requiring the normalization of the scalar product $\langle 0 \mid 0\rangle=1$ we note that

$$
\langle s+1 \mid s+1\rangle=\frac{1}{s+1}\langle s| a a^{\dagger}|s\rangle=\frac{1}{s+1}\left(\langle s| a^{\dagger} a|s\rangle+\langle s \mid s\rangle\right)=\langle s \mid s\rangle
$$

Hence, from the normalization of $\mid 0>$ it follows that all the Fock states are normalized. Moreover, since $\langle s+1| a^{\dagger}|s\rangle=\sqrt{s+1}\langle s+1 \mid s+1\rangle$ and $(a|s+1\rangle)^{\dagger}|s\rangle=\sqrt{s+1}\langle s \mid s\rangle$, it follows that a^{\dagger} is the Hermitian conjugate of a. That is, $a^{\dagger} a$ is Hermitian. Orthogonality follows from the fact that the Fock states are eigenstates of $a^{\dagger} a$ with distinct eigenvalues.

Hence, the horizontal generating functions of the Stirling numbers $\left[\begin{array}{l}n \\ k\end{array}\right]$ and $\left\{\begin{array}{l}n \\ k\end{array}\right\}$,

$$
(x)_{n}=\sum_{k=0}^{n}(-1)^{n-k}\left[\begin{array}{l}
n \tag{9}\\
k
\end{array}\right] x^{k}
$$

and

$$
x^{n}=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}(x)_{k},
$$

can be expressed as

$$
\left(a^{\dagger}\right)^{n} a^{n}=\sum_{k=0}^{n}(-1)^{n-k}\left[\begin{array}{l}
n \\
k
\end{array}\right]\left(a^{\dagger} a\right)^{k}
$$

and

$$
\left(a^{\dagger} a\right)^{n}=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}\left(a^{\dagger}\right)^{k} a^{k},
$$

respectively [22].
Now, the defining relations for the r-Whitney numbers, (3) and (4), can be expressed as

$$
\begin{equation*}
m^{n}\left(a^{\dagger}\right)^{n} a^{n}=\sum_{k=0}^{n} w_{m, r}(n, k)\left(m a^{\dagger} a+r\right)^{k} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(m a^{\dagger} a+r\right)^{n}=\sum_{k=0}^{n} m^{k} W_{m, r}(n, k)\left(a^{\dagger}\right)^{k} a^{k} \tag{11}
\end{equation*}
$$

Making use of the q-Boson operators [1] that satisfy

$$
\begin{equation*}
\left[a, a^{\dagger}\right]_{q} \equiv a a^{\dagger}-q a^{\dagger} a=1 \tag{12}
\end{equation*}
$$

we have

$$
a|s\rangle=\sqrt{[s]_{q}}|s-1\rangle, a^{\dagger}|s\rangle=\sqrt{[s+1]_{q}}|s+1\rangle
$$

hence,

$$
a^{\dagger} a|s\rangle=[s]_{q}|s\rangle,
$$

and

$$
\left(a^{\dagger}\right)^{k} a^{k}|s\rangle=[s]_{q, k}|s\rangle .
$$

Remark 1. Although we use the same notation for the boson and for the q-boson operators, no confusion should arise because the meaning of these symbols should be clear from the context.

In line with this, the defining relations for Carlitz's [6] q-Stirling numbers of the first and second kind, $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ and $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{q}$, can be written in the form [22]

$$
\left(a^{\dagger}\right)^{n} a^{n}=\sum_{k=1}^{n}(-1)^{n-k}\left[\begin{array}{l}
n \tag{13}\\
k
\end{array}\right]_{q}\left(a^{\dagger} a\right)^{k}
$$

and

$$
\left(a^{\dagger} a\right)^{n}=\sum_{k=1}^{n}\left\{\begin{array}{l}
n \tag{14}\\
k
\end{array}\right\}_{q}\left(a^{\dagger}\right)^{k} a^{k}
$$

respectively.
We define q-analogues for the Whitney numbers $w_{m, r}(n, k)$ and $W_{m, r}(n, k)$ via the same pattern as in (13) and (14).

2 (q, r)-Whitney numbers

Definition 2. For non-negative integers n and k and complex numbers r and m, the (q, r)Whitney numbers of the first and second kind, denoted by $w_{m, r, q}(n, k)$ and $W_{m, r, q}(n, k)$, respectively, are defined by

$$
\begin{equation*}
m^{n}\left(a^{\dagger}\right)^{n} a^{n}=\sum_{k=0}^{n} w_{m, r, q}(n, k)\left(m a^{\dagger} a+r\right)^{k} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(m a^{\dagger} a+r\right)^{n}=\sum_{k=0}^{n} m^{k} W_{m, r, q}(n, k)\left(a^{\dagger}\right)^{k} a^{k} \tag{16}
\end{equation*}
$$

with initial conditions $w_{m, r, q}(0,0)=W_{m, r, q}(0,0)=1$ and $w_{m, r, q}(n, k)=W_{m, r, q}(n, k)=0$ for $k>n$ and for $k<0$, where the operators a^{\dagger} and a satisfy the relation in (12).

Before proceeding we note that from (15) and (16),

$$
\begin{align*}
w_{m, 0, q}(n, k) & =(-m)^{n-k}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}, \tag{17}\\
W_{m, 0, q}(n, k) & =m^{n-k}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{q} . \tag{18}
\end{align*}
$$

Similarly, the r-Stirling numbers $\widehat{\left.\begin{array}{c}n+r \\ k+r\end{array}\right]_{r}}$, and $\widehat{\left\{\begin{array}{c}n+r \\ k+r\end{array}\right\}_{r}}$ are specified by the horizontal generating functions

$$
(x-r)_{n}=\sum_{k=0}^{n}(-1)^{n-k}\left[\begin{array}{l}
\widehat{n+r} \\
k+r
\end{array}\right]_{r} x^{k},
$$

or, equivalently,

$$
(x)_{n}=\sum_{k=0}^{n}(-1)^{n-k}\left[\begin{array}{l}
{\left[\begin{array}{l}
n+r \\
k+r
\end{array}\right]_{r}} \\
(x+r)^{k},
\end{array}\right.
$$

and

$$
(x+r)^{n}=\sum_{k=0}^{n}\left\{\begin{array}{l}
\widehat{n+r} \\
k+r
\end{array}\right\}_{r}(x)_{r} .
$$

Hence, $\widehat{\left[\begin{array}{c}n+r \\ k+r\end{array}\right]_{q, r}}$ and $\widehat{\left\{\begin{array}{c}n+r \\ k+r\end{array}\right\}_{q, r}}$, the q-analogues of $\widehat{\left[\begin{array}{c}n+r \\ k+r\end{array}\right]_{r}}$, and $\widehat{\left\{\begin{array}{c}n+r \\ k+r\end{array}\right\}_{r}}$, respectively, are specified by the horizontal generating functions

$$
\begin{align*}
\left(a^{\dagger}\right)^{n} a^{n} & =\sum_{k=0}^{n}(-1)^{n-k}\left[\begin{array}{|c}
\widehat{n+r} \\
k+r
\end{array}\right]_{q, r}\left(a^{\dagger} a+r\right)^{k}, \tag{19}\\
\left(a^{\dagger} a+r\right)^{n} & =\sum_{k=0}^{n}\left\{\begin{array}{l}
n+r \\
k+r
\end{array}\right\}_{q, r}\left(a^{\dagger}\right)^{k} a^{k} . \tag{20}
\end{align*}
$$

It follows that

$$
\begin{align*}
w_{1, r, q}(n, k) & =(-1)^{n-k}\left[\begin{array}{l}
\widehat{n+r} \\
k+r
\end{array}\right]_{q, r} \tag{21}\\
W_{1, r, q}(n, k) & =\left\{\begin{array}{l}
\widehat{n+r} \\
k+r
\end{array}\right\}_{q, r} \tag{22}
\end{align*}
$$

We will refer to the q-analogues in (19) and (20) as the (q, r)-Stirling numbers of the first and second kind, respectively.

Theorem 3. The (q, r)-Whitney numbers $w_{m, r, q}(n, k)$ and $W_{m, r, q}(n, k)$ satisfy the following identities:

$$
\begin{gather*}
w_{m, r, q}(n, k)=(-1)^{n-k} \sum_{i=k}^{n}\binom{i}{k} r^{i-k} m^{n-i}\left[\begin{array}{c}
n \\
i
\end{array}\right]_{q}, \tag{23}\\
W_{m, r, q}(n, k)=\sum_{i=k}^{n}\binom{n}{i} r^{n-i} m^{i-k}\left\{\begin{array}{c}
i \\
k
\end{array}\right\}_{q} . \tag{24}
\end{gather*}
$$

Proof. From Eq. (13), we get

$$
\begin{aligned}
m^{n}\left(a^{\dagger}\right)^{n} a^{n} & =m^{n} \sum_{i=0}^{n}(-1)^{n-i}\left[\begin{array}{c}
n \\
i
\end{array}\right]_{q}\left(a^{\dagger} a\right)^{i} \\
& =m^{n} \sum_{i=0}^{n}(-1)^{n-i}\left[\begin{array}{c}
n \\
i
\end{array}\right]_{q}\left(\frac{\hat{z}-r}{m}\right)^{i} \\
& =m^{n} \sum_{i=0}^{n}(-1)^{n-i}\left[\begin{array}{c}
n \\
i
\end{array}\right]_{q} \frac{1}{m^{i}} \sum_{k=0}^{i}\binom{i}{k} \hat{z}^{k}(-r)^{i-k} \\
& =\sum_{k=0}^{n}(-1)^{n-k}\left\{\sum_{i=k}^{n} m^{n-i}\left[\begin{array}{c}
n \\
i
\end{array}\right]_{q}\binom{i}{k} r^{i-k}\right\} \hat{z}^{k},
\end{aligned}
$$

where $\hat{z}=m a^{\dagger} a+r$. Furthermore, comparing the coefficient of \hat{z}^{k} with that in equation (15) yields equation (23).

To prove equation (24), we write

$$
\begin{aligned}
\left(m a^{\dagger} a+r\right)^{n} & =\sum_{i=0}^{n}\binom{n}{i} r^{n-i} m^{i}\left(a^{\dagger} a\right)^{i} \\
& =\sum_{i=0}^{n}\binom{n}{i} r^{n-i} m^{i} \sum_{k=0}^{i}\left\{\begin{array}{l}
i \\
k
\end{array}\right\}_{q}\left(a^{\dagger}\right)^{k} a^{k} \\
& =\sum_{k=0}^{n}\left\{\sum_{i=k}^{n} r^{n-i} m^{i}\left\{\begin{array}{c}
i \\
k
\end{array}\right\}_{q}\binom{n}{i}\right\}\left(a^{\dagger}\right)^{k} a^{k} .
\end{aligned}
$$

Comparing the coefficient of $\left(a^{\dagger}\right)^{k} a^{k}$ with that in equation (16) gives us (24).
Remark 4. (a) As $q \rightarrow 1$, we have

$$
\begin{gathered}
w_{m, r}(n, k)=\sum_{i=k}^{n}(-1)^{n-k}\binom{i}{k} r^{i-k} m^{n-i}\left[\begin{array}{c}
n \\
i
\end{array}\right] ; \\
W_{m, r}(n, k)=\sum_{i=k}^{n}\binom{n}{i} r^{n-i} m^{i-k}\left\{\begin{array}{l}
i \\
k
\end{array}\right\} .
\end{gathered}
$$

(b) Note that of all the factors in equations (23) and (24) only the Stirling numbers are q-deformed.

The following corollary is a direct consequence of the previous theorem.
Corollary 5. The (q, r)-Stirling numbers are given by

$$
\begin{align*}
& {\left[\begin{array}{l}
{\left[\begin{array}{l}
n+r \\
k+r
\end{array}\right]_{q, r}}
\end{array}=\sum_{i=k}^{n}\binom{i}{k} r^{i-k}\left[\begin{array}{c}
n \\
i
\end{array}\right]_{q}\right.} \tag{25}\\
& \left\{\begin{array}{l}
\widehat{n+r} \\
k+r
\end{array}\right\}_{q, r}=\sum_{i=k}^{n}\binom{n}{i} r^{n-i}\left\{\begin{array}{l}
i \\
k
\end{array}\right\}_{q} \tag{26}
\end{align*}
$$

3 Some recurrence relations

In this section, we present some recurrence relations involving the (q, r)-Whitney numbers.
We recall the q-boson identities

$$
\left[a,\left(a^{\dagger}\right)^{n}\right]_{q^{n}}=[n]_{q}\left(a^{\dagger}\right)^{n-1}
$$

and

$$
\left[a^{n}, a^{\dagger}\right]_{q^{n}}=[n]_{q} a^{n-1}
$$

that can be easily established by induction. The latter can also be written in the form

$$
a^{\dagger} a^{n}=q^{-n}\left(a^{n} a^{\dagger}-[n]_{q} a^{n-1}\right)
$$

Theorem 6. The (q, r)-Whitney numbers $w_{m, r, q}(n, k)$ and $W_{m, r, q}(n, k)$ satisfy the following triangular recurrence relations:

$$
\begin{align*}
& w_{m, r, q}(n+1, k)=q^{-n}\left(w_{m, r, q}(n, k-1)-\left(m[n]_{q}+r\right) w_{m, r, q}(n, k)\right) \tag{27}\\
& W_{m, r, q}(n+1, k)=q^{k-1} W_{m, r, q}(n, k-1)+\left(m[k]_{q}+r\right) W_{m, r, q}(n, k) \tag{28}
\end{align*}
$$

Proof. From equation (15), $\sum_{k=0}^{n+1} w_{m, r, q}(n+1, k)\left(m a^{\dagger} a+r\right)^{k}=m^{n+1}\left(a^{\dagger}\right)^{n}\left(a^{\dagger} a^{n}\right) a$

$$
=m^{n+1}\left(a^{\dagger}\right)^{n} q^{-n}\left(a^{n} a^{\dagger}-[n]_{q} a^{n-1}\right) a
$$

$$
=m^{n+1} q^{-n}\left(\left(a^{\dagger}\right)^{n} a^{n}\right)\left(a^{\dagger} a\right)-m^{n+1} q^{-n}[n]_{q}\left(a^{\dagger}\right)^{n} a^{n}
$$

$$
=q^{-n} \sum_{k=0}^{n} w_{m, r, q}(n, k)\left(m a^{\dagger} a+r\right)^{k}\left(m a^{\dagger} a+r-r\right)-m q^{-n}[n]_{q} \sum_{k=0}^{n} w_{m, r, q}(n, k)\left(m a^{\dagger} a+r\right)^{k}
$$

$$
=q^{-n} \sum_{k=1}^{n+1} w_{m, r, q}(n, k-1)\left(m a^{\dagger} a+r\right)^{k}-q^{-n}\left(m[n]_{q}+r\right) \sum_{k=0}^{n} w_{m, r, q}(n, k)\left(m a^{\dagger} a+r\right)^{k}
$$

$$
=q^{-n} \sum_{k=0}^{n+1}\left\{w_{m, r, q}(n, k-1)-\left(m[n]_{q}+r\right) w_{m, r, q}(n, k)\right\}\left(m a^{\dagger} a+r\right)^{k}
$$

Equating coefficients of $\left(m a^{\dagger} a+r\right)^{k}$ gives us (27) and a similar derivation yields equation (28).

Equations (27) and (28) are useful in computing the first few values of $w_{m, r, q}(n, k)$ and $W_{m, r, q}(n, k)$, using the initial values specified above.
Remark 7. (a) From (27) we obtain the explicit expression

$$
w_{m, r, q}(n, 0)=(-1)^{n} q^{-\frac{n(n-1)}{2}} \prod_{i=0}^{n-1}\left(m[i]_{q}+r\right)
$$

On the other hand, the relation (23) yields

$$
w_{m, r, q}(n, 0)=(-1)^{n} \sum_{i=0}^{n} r^{i} m^{n-i}\left[\begin{array}{c}
n \\
i
\end{array}\right]_{q} .
$$

Equating these expressions and substituting $x=\frac{r}{m}$ we obtain

$$
\sum_{i=0}^{n}\left[\begin{array}{l}
n \\
i
\end{array}\right]_{q} x^{i}=q^{-\frac{n(n-1)}{2}} \prod_{i=0}^{n-1}\left([i]_{q}+x\right)
$$

This is a horizontal generating function for the q-Stirling numbers of the first kind in terms of a q-analogue of the rising factorial. Indeed, replacing x by $-[s]_{q}$, and noting that

$$
[s]_{q}-[i]_{q}=q^{-i}[s-i]_{q}
$$

and

$$
\prod_{i=0}^{n-1} q^{i}=q^{\binom{n}{2}}
$$

we obtain

$$
\sum_{i=0}^{n}\left[\begin{array}{c}
n \\
i
\end{array}\right]_{q}(-1)^{i}[s]_{q}^{i}=(-1)^{n} \prod_{i=0}^{n-1}[s-i]_{q}
$$

(b) From (28) $W_{m, r, q}(n+1,0)=r W_{m, r, q}(n, 0)$, hence $W_{m, r, q}(n, 0)=r^{n}$. The same result is obtained from (24). That is,

$$
W_{m, r, q}(n, 0)=\sum_{i=0}^{n}\binom{n}{i} r^{n-i} m^{i} \delta_{i, 0}=r^{n}
$$

(c) As $q \rightarrow 1$, we have

$$
\begin{aligned}
w_{m, r}(n+1, k) & =w_{m, r}(n, k-1)-(m n+r) w_{m, r}(n, k) \\
W_{m, r}(n+1, k) & =W_{m, r}(n, k-1)+(m k+r) W_{m, r}(n, k)
\end{aligned}
$$

This confirms that $w_{m, r, q}(n, k)$ and $W_{m, r, q}(n, k)$ are proper q-analogues of $w_{m, r}(n, k)$ and $W_{m, r}(n, k)$, respectively.

As a consequence of the previous theorem, when $m=1$ we have
Corollary 8. The (q, r)-Stirling numbers satisfy the following triangular recurrence relations:

$$
\begin{aligned}
{\left[\begin{array}{c}
n \widehat{+1+r} \\
k+r
\end{array}\right]_{q, r} } & =q^{-n}\left[\begin{array}{c}
\widehat{n+r} \\
k-1+r
\end{array}\right]_{q, r}+\left([n]_{q}+r\right) q^{-n}\left[\begin{array}{l}
\widehat{n+r} \\
k+r
\end{array}\right]_{q, r} \\
\left\{\begin{array}{c}
n+1+r \\
k+r
\end{array}\right\}_{q, r} & =q^{k-1}\left\{\begin{array}{c}
n+r \\
k-1+r
\end{array}\right\}_{q, r}+\left([k]_{q}+r\right)\left\{\begin{array}{c}
n+r \\
k+r
\end{array}\right\}_{q, r}
\end{aligned}
$$

We can use these recurrence relations to compute the first few values of the (q, r)-Stirling numbers of the first and second kind, respectively.

Theorem 9. The (q, r)-Whitney numbers satisfy the following recurrence relations

$$
\begin{gather*}
w_{m, r+1, q}(n, \ell)=\sum_{k=\ell}^{n}\binom{k}{\ell}(-1)^{k-\ell} w_{m, r, q}(n, k), \tag{29}\\
W_{m, r+1, q}(n, k)=\sum_{\ell=k}^{n}\binom{n}{\ell} W_{m, r, q}(\ell, k) . \tag{30}
\end{gather*}
$$

Proof. From equation (15), we have

$$
\begin{aligned}
m^{n}\left(a^{\dagger}\right)^{n} a^{n} & =\sum_{k=0}^{n} w_{m, r, q}(n, k)\left(m a^{\dagger} a+r\right)^{k} \\
& =\sum_{k=0}^{n} w_{m, r, q}(n, k)\left(\left(m a^{\dagger} a+r+1\right)-1\right)^{k} \\
& =\sum_{k=0}^{n} w_{m, r, q}(n, k) \sum_{\ell=0}^{k}\binom{k}{\ell}(-1)^{k-\ell}\left(m a^{\dagger} a+r+1\right)^{\ell} \\
& =\sum_{\ell=0}^{n}\left(m a^{\dagger} a+r+1\right)^{\ell} \sum_{k=\ell}^{n}\binom{k}{\ell}(-1)^{k-\ell} w_{m, r, q}(n, k) .
\end{aligned}
$$

On the other hand,

$$
m^{n}\left(a^{\dagger}\right)^{n} a^{n}=\sum_{\ell=0}^{n} w_{m, r+1, q}(n, \ell)\left(m a^{\dagger} a+r+1\right)^{\ell}
$$

Hence, by comparing the coefficients of $\left(m a^{\dagger} a+r+1\right)^{\ell}$ we obtain equation (29).
Similarly, from equation (16)

$$
\left(m a^{\dagger} a+r+1\right)^{n}=\sum_{k=0}^{n} m^{k} W_{m, r+1, q}(n, k)\left(a^{\dagger}\right)^{k} a^{k}
$$

and since

$$
\begin{aligned}
\left(m a^{\dagger} a+r+1\right)^{n} & =\sum_{\ell=0}^{n}\binom{n}{\ell}\left(m a^{\dagger} a+r\right)^{\ell} \\
& =\sum_{\ell=0}^{n}\binom{n}{\ell} \sum_{k=0}^{\ell} m^{k} W_{m, r, q}(\ell, k)\left(a^{\dagger}\right)^{k} a^{k} \\
& =\sum_{k=0}^{n} m^{k}\left(a^{\dagger}\right)^{k} a^{k} \sum_{\ell=k}^{n}\binom{n}{\ell} W_{m, r, q}(\ell, k),
\end{aligned}
$$

we obtain equation (30).
When $m=1$, the theorem reduces to the recursion formulas for (q, r)-Stirling numbers. That is,

Corollary 10.

$$
\begin{aligned}
& {\left[\begin{array}{l}
n \widehat{+r+1} \\
l+r+1
\end{array}\right]_{q, r+1}=\sum_{k=l}^{n}(-1)^{l-k}\binom{k}{l}\left[\begin{array}{c}
n+r \\
k+r
\end{array}\right]_{q, r}} \\
& \left\{\begin{array}{l}
n \widehat{+r+1} \\
k+r+1
\end{array}\right\}_{q, r+1}=\sum_{l=k}^{n}\binom{n}{l}\left\{\begin{array}{c}
\widehat{l+r} \\
k+r
\end{array}\right\}_{q, r}
\end{aligned}
$$

4 Orthogonality and inverse relations

Theorem 11. The (q, r)-Whitney numbers $w_{m, r, q}(n, k)$ and $W_{m, r, q}(k, j)$ satisfy the following orthogonality relations:

$$
\begin{equation*}
\sum_{k=j}^{n} W_{m, r, q}(n, k) w_{m, r, q}(k, j)=\delta_{j n} \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=j}^{n} w_{m, r, q}(n, k) W_{m, r, q}(k, j)=\delta_{j n} \tag{32}
\end{equation*}
$$

where $\delta_{j n}$ is the Kronecker delta.
Proof. Using equation (15) we substitute $m^{k}\left(a^{\dagger}\right)^{k} a^{k}$ in (16), obtaining

$$
\begin{aligned}
\left(m a^{\dagger} a+r\right)^{n} & =\sum_{k=0}^{n} W_{m, r, q}(n, k) \sum_{j=0}^{k} w_{m, r, q}(k, j)\left(m a^{\dagger} a+r\right)^{j} \\
& =\sum_{j=0}^{n}\left\{\sum_{k=j}^{n} W_{m, r, q}(n, k) w_{m, r, q}(k, j)\right\}\left(m a^{\dagger} a+r\right)^{j}
\end{aligned}
$$

Comparing the coefficients of $\left(m a^{\dagger} a+r\right)^{j}$ yields equation (31). Equation (32) is obtained similarly.

The classical binomial inversion formula given by

$$
\begin{equation*}
f_{k}=\sum_{j=0}^{k}\binom{k}{j} g_{j} \Leftrightarrow g_{k}=\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} f_{j} \tag{33}
\end{equation*}
$$

can be a useful tool in deriving the explicit formula of the classical Stirling numbers of the second kind. The q-analogue of (33) is given by [8]

$$
\begin{equation*}
f_{k}=\sum_{j=0}^{k}\binom{k}{j}_{q} g_{j} \Leftrightarrow g_{k}=\sum_{j=0}^{k}(-1)^{k-j} q^{\left(\frac{k-j}{2}\right)}\binom{k}{j}_{q} f_{j}, \tag{34}
\end{equation*}
$$

The next theorem presents an inverse relation for the (q, r)-Whitney numbers $w_{m, r, q}(n, k)$ and $W_{m, r, q}(k, j)$.

Theorem 12. The (q, r)-Whitney numbers $w_{m, r, q}(n, \ell)$ and $W_{m, r, q}(n, \ell)$ satisfy the following inverse relation:

$$
\begin{equation*}
f_{n}=\sum_{\ell=0}^{n} w_{m, r, q}(n, \ell) g_{\ell} \Leftrightarrow g_{n}=\sum_{\ell=0}^{n} W_{m, r, q}(n, \ell) f_{\ell} \tag{35}
\end{equation*}
$$

Proof. By the hypothesis,

$$
\begin{aligned}
\sum_{\ell=0}^{n} W_{m, r, q}(n, \ell) f_{\ell} & =\sum_{\ell=0}^{n} W_{m, r, q}(n, \ell) \sum_{k=0}^{\ell} w_{m, r, q}(\ell, k) g_{k} \\
& =\sum_{k=0}^{n}\left\{\sum_{\ell=k}^{n} W_{m, r, q}(n, \ell) w_{m, r, q}(\ell, k)\right\} g_{k} \\
& =\sum_{k=0}^{n}\left\{\delta_{k n}\right\} g_{k} \\
& =g_{n} .
\end{aligned}
$$

The converse can be shown similarly.
The next theorem can be deduced in a similar way, from the orthogonality relations
Theorem 13. The (q, r)-Whitney numbers $w_{m, r, q}(n, \ell)$ and $W_{m, r, q}(n, \ell)$ satisfy the following inverse relation:

$$
\begin{equation*}
f_{\ell}=\sum_{n=\ell}^{\infty} w_{m, r, q}(n, \ell) g_{n} \Leftrightarrow g_{\ell}=\sum_{n=\ell}^{\infty} W_{m, r, q}(n, \ell) f_{n} \tag{36}
\end{equation*}
$$

5 (q, r)-Dowling polynomials and numbers

Cheon and Jung [7] defined the r-Dowling polynomials, denoted by $D_{m, r}(n, x)$, in terms of sums of r-Whitney numbers of the second kind. That is,

$$
\begin{equation*}
D_{m, r}(n, x)=\sum_{k=0}^{n} W_{m, r}(n, k) x^{k} . \tag{37}
\end{equation*}
$$

When $x=1$, we obtain the r-Dowling numbers $D_{m, r}(n) \equiv D_{m, r}(n, 1)$. The polynomials (37) are actually equivalent to the (r, β)-Bell polynomials $G_{n, \beta, r}(x)$ of R. B. Corcino and C. B. Corcino [13]. That is,

$$
D_{\beta, r}(n, x)=G_{n, \beta, r}(x)
$$

Moreover,

- when $m=1$ and $r=1$, we recover the classical Dowling polynomials $D(n, x) \equiv$ $D_{1,1}(n, x)$;
- when $m=1$ and $r=0$, we recover the classical Bell polynomials $B_{n}(x) \equiv D_{1,0}(n, x)$;
- when $m=1$, we recover Mező's [28] r-Bell polynomials $B_{n, r}(x)$. That is, $D_{1, r}(n, x)=$ $B_{n, r}(x)$; and
- when $m=\alpha$ and $r=0$, we recover the translated Dowling polynomials $\widetilde{D}_{(\alpha)}(n ; x)$ by Mangontarum et al. [25]. That is, $D_{\alpha, 0}(n, x)=\widetilde{D}_{(\alpha)}(n ; x)$.

Taking these into consideration, the next definition seems to be natural.
Definition 14. For non-negative integers n and k, and complex numbers m and r, the (q, r)-Dowling polynomials, denoted by $D_{m, r, q}(n, x)$, are defined by

$$
\begin{equation*}
D_{m, r, q}(n, x)=\sum_{k=0}^{n} W_{m, r, q}(n, k) x^{k} \tag{38}
\end{equation*}
$$

and the (q, r)-Dowling numbers, denoted by $D_{m, r, q}(n)$, are defined by

$$
\begin{equation*}
D_{m, r, q}(n)=D_{m, r, q}(n, 1) \tag{39}
\end{equation*}
$$

The coherent states

$$
\begin{equation*}
|\gamma\rangle=\exp \left(-\frac{|\gamma|^{2}}{2}\right) \sum_{k \geq 0} \frac{\gamma^{k}}{\sqrt{k!}}|k\rangle \tag{40}
\end{equation*}
$$

where γ is an arbitrary (complex-valued) constant, satisfy $a|\gamma\rangle=\gamma|\gamma\rangle$ and $\langle\gamma \mid \gamma\rangle=1$. Katriel [23] gave an illustration on how (40) can be a very useful tool in the derivation of certain

Dobinski-type formulas. The q-coherent states corresponding to the q-Boson operators were defined as

$$
\begin{equation*}
|\gamma\rangle_{q}=\left(\widehat{e}_{q}\left(-|\gamma|^{2}\right)\right)^{\frac{1}{2}} \sum_{k \geq 0} \frac{\gamma^{k}}{\sqrt{[k]_{q}!}}|k\rangle \tag{41}
\end{equation*}
$$

which satisfy $a|\gamma\rangle=\gamma|\gamma\rangle$. Here, $\widehat{e}_{q}(x)$ is the type $2 q$-exponential function given by

$$
\begin{equation*}
\widehat{e}_{q}(x)=\prod_{i=1}^{\infty}\left(1+(1-q) q^{i-1} x\right)=\sum_{i \geq 0} q^{\binom{i}{2}} \frac{x^{i}}{[i]_{q}!}, \tag{42}
\end{equation*}
$$

which is the inverse of the type $1 q$-exponential function

$$
\begin{equation*}
e_{q}(x)=\prod_{i=1}^{\infty}\left(1-(1-q) q^{i-1} x\right)^{-1}=\sum_{i \geq 0} \frac{x^{i}}{[i]_{q}!} \tag{43}
\end{equation*}
$$

That is, $e_{q}(x) \widehat{e}_{q}(-x)=1$.
Taking the expectation value of both sides of (16) with respect to $|\gamma\rangle$ yields

$$
\begin{equation*}
\langle\gamma|\left(m a^{\dagger} a+r\right)^{n}|\gamma\rangle=\sum_{k=0}^{n} m^{k} W_{m, r, q}(n, k)|\gamma|^{2 k} \tag{44}
\end{equation*}
$$

The left-hand-side can be evaluated using the q-coherent states in (41), yielding

$$
\begin{equation*}
\langle\gamma|\left(m a^{\dagger} a+r\right)^{n}|\gamma\rangle=\widehat{e}_{q}\left(-|\gamma|^{2}\right) \sum_{k \geq 0} \frac{\left.|\gamma|\right|^{2 k}}{[k]_{q}!}\left(m[k]_{q}+r\right)^{n} . \tag{45}
\end{equation*}
$$

Defining $x=m|\gamma|^{2}$ we obtain

$$
\begin{equation*}
\sum_{k=0}^{n} W_{m, r, q}(n, k) x^{k}=\widehat{e}_{q}\left(-\frac{x}{m}\right) \sum_{k \geq 0}\left(\frac{x}{m}\right)^{k} \frac{\left(m[k]_{q}+r\right)^{n}}{[k]_{q}!} \tag{46}
\end{equation*}
$$

Using (38), the following theorem is easily observed.
Theorem 15. The (q, r)-Dowling polynomials $D_{m, r, q}(n, x)$ and the (q, r)-Dowling numbers $D_{m, r, q}(n)$ have the following explicit formulas:

$$
\begin{equation*}
D_{m, r, q}(n, x)=\widehat{e}_{q}\left(-\frac{x}{m}\right) \sum_{k \geq 0}\left(\frac{x}{m}\right)^{k} \frac{\left(m[k]_{q}+r\right)^{n}}{[k]_{q}!} \tag{47}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{m, r, q}(n)=\widehat{e}_{q}\left(-m^{-1}\right) \sum_{k \geq 0} \frac{\left(m[k]_{q}+r\right)^{n}}{m^{k}[k]_{q}!} \tag{48}
\end{equation*}
$$

Proof. (48) can be obtained by letting $x=1$ in (47).
Katriel [23] defined the q-Bell polynomial as

$$
\sum_{\ell=0}^{k}\left\{\begin{array}{l}
k \tag{49}\\
\ell
\end{array}\right\}_{q} x^{\ell}=\widehat{e}_{q}(x) \sum_{m=1}^{\infty} x^{m} \frac{[m]_{q}^{k}}{[m]_{q}!}
$$

Expanding the right-hand side using (42) yields

$$
\sum_{\ell=0}^{k}\left\{\begin{array}{l}
k \tag{50}\\
\ell
\end{array}\right\}_{q} x^{\ell}=\sum_{\ell=0}^{\infty} \frac{x^{\ell}}{[\ell]_{q}!} \sum_{j=0}^{\ell}(-1)^{\ell-j} q^{\left({ }_{2}^{\ell-j}\right)}\binom{\ell}{j}_{q}[j]_{q}^{k}
$$

Equating coefficients of equal powers of x gives us

$$
\left\{\begin{array}{l}
k \tag{51}\\
\ell
\end{array}\right\}_{q}=\frac{1}{[\ell]_{q}!} \sum_{j=0}^{\ell}(-1)^{\ell-j} q^{\left(\left(_{2}^{-j}\right)\right.}\binom{\ell}{j}_{q}[j]_{q}^{k}
$$

Notice that as $q \rightarrow 1$, (51) reduces to the well-known explicit formula of $\left\{\begin{array}{l}k \\ j\end{array}\right\}$. That is

$$
\lim _{q \rightarrow 1}\left\{\begin{array}{l}
k \tag{52}\\
\ell
\end{array}\right\}_{q}=\frac{1}{\ell!} \sum_{j=0}^{\ell}(-1)^{\ell-j}\binom{\ell}{j} j^{k}
$$

In the following theorem, we will present an expression analogous to (51) for the q-analogue $W_{m, r, q}(n, k)$.

Theorem 16. The (q, r)-Whitney numbers of the second kind, $W_{m, r, q}(n, k)$, have the following explicit formula:

$$
\begin{equation*}
W_{m, r, q}(n, \ell)=\frac{1}{m^{\ell}[\ell]_{q}!} \sum_{k=0}^{\ell}(-1)^{\ell-k} q^{\left({ }_{2}^{\ell-k}\right)}\binom{\ell}{k}_{q}\left(m[k]_{q}+r\right)^{n} . \tag{53}
\end{equation*}
$$

Proof. Substituting $y=\frac{x}{m}$ in (47) gives us

$$
\begin{aligned}
\sum_{k=0}^{n} m^{k} W_{m, r, q}(n, k) y^{k} & =\sum_{i \geq 0} q^{\binom{i}{2}} \frac{(-y)^{i}}{[i]_{q}!} \sum_{k \geq 0} y^{k} \frac{\left(m[k]_{q}+r\right)^{n}}{[k]_{q}!} \\
& =\sum_{\ell \geq 0} \frac{y^{\ell}}{[\ell]_{q}!} \sum_{k=0}^{\ell}(-1)^{\ell-k} q^{\left(e_{2}^{-k}\right)}\binom{\ell}{k}_{q}\left(m[k]_{q}+r\right)^{n}
\end{aligned}
$$

Equating the coefficients of equal powers of y on both sides of this equation we obtain equation (53).

Note that as $q \rightarrow 1$, we have

$$
\begin{aligned}
\lim _{q \rightarrow 1} W_{m, r, q}(n, \ell) & =\frac{1}{m^{\ell} \ell!} \sum_{k=0}^{\ell}(-1)^{\ell-k}\binom{\ell}{k}(m k+r)^{n} \\
& =W_{m, r}(n, \ell)
\end{aligned}
$$

Furthermore,

$$
\lim _{q \rightarrow 1} W_{m, 1, q}(n, l)=W_{m}(n, l)
$$

Remark 17. We can also prove (53) in the following manner: First, we write (16) as

$$
\begin{aligned}
\left(m[\ell]_{q}+r\right)^{n} & =\sum_{k=0}^{n} m^{k} W_{m, r, q}(n, k)[\ell]_{q, k} \\
& =\sum_{k=0}^{\ell}\binom{\ell}{k}_{q}\left\{\frac{m^{k} W_{m, r, q}(n, k)[\ell]_{q, k}}{\binom{\ell}{k}_{q}}\right\} .
\end{aligned}
$$

Next, we apply the q-binomial inversion formula in (34) which gives us

$$
\frac{m^{\ell} W_{m, r, q}(n, \ell)[\ell]_{q, \ell}}{\binom{k}{k}_{q}}=\sum_{k=0}^{\ell}(-1)^{\ell-k} q^{\left(e_{2}^{\ell-k}\right)}\binom{l}{k}_{q}\left(m[k]_{q}+r\right)^{n} .
$$

This is precisely the explicit formula obtained in the previous theorem.
Now, using (53),

$$
\begin{aligned}
\sum_{n \geq 0} W_{m, r, q}(n, k) \frac{t^{n}}{[n]_{q}!} & =\sum_{n \geq 0} \sum_{j=0}^{k} \frac{(-1)^{k-j}}{m^{k}[k]_{q}!} q^{\binom{k-j}{2}}\binom{k}{j}_{q}\left(m[j]_{q}+r\right)^{n} \frac{t^{n}}{[n]_{q}!} \\
& =\frac{1}{m^{k}[k]_{q}!} \sum_{j=0}^{k}(-1)^{k-j} q^{\binom{k-j}{2}}\binom{k}{j}_{q} e_{q}\left[\left(m[j]_{q}+r\right) t\right]
\end{aligned}
$$

where $e_{q}(x)$ is the type $1 q$-exponential function in (43). Thus, we have the following theorem.
Theorem 18. The (q, r)-Whitney numbers of the second kind satisfy the following exponential generating function:

$$
\begin{equation*}
\sum_{n \geq 0} W_{m, r, q}(n, k) \frac{t^{n}}{[n]_{q}!}=\frac{1}{m^{k}[k]_{q}!} \sum_{j=0}^{n}(-1)^{k-j} q^{\left(\frac{k-j}{2}\right)}\binom{k}{j}_{q} e_{q}\left[\left(m[j]_{q}+r\right) t\right] \tag{54}
\end{equation*}
$$

Remark 19. As $q \rightarrow 1$, we have

$$
\lim _{q \rightarrow 1} \sum_{n \geq 0} W_{m, r, q}(n, k) \frac{t^{n}}{[n]_{q}!}=\frac{e^{r t}}{k!}\left(\frac{e^{m t}-1}{m}\right)^{k}
$$

which is the exponential generating function of the r-Whitney numbers of the second kind.

The q-difference operator [24] can be written in the form

$$
\begin{equation*}
\left.\left.\Delta_{q}^{k} f(x)=\sum_{j=0}^{k}(-1)^{k-j} q^{(k-j}\right)^{k}\right)\binom{k}{j}_{q} f(x+j) \tag{55}
\end{equation*}
$$

We are now ready to state the next theorem.
Theorem 20. The (q, r)-Whitney numbers of the second kind satisfy the following identity:

$$
\begin{equation*}
\sum_{n \geq 0} W_{m, r, q}(n, k) \frac{t^{n}}{[n]_{q}!}=\left\{\Delta_{q}^{k}\left(\frac{e_{q}\left[\left(m[x]_{q}+r\right) t\right]}{m^{k}[k]_{q}!}\right)\right\}_{x=0} \tag{56}
\end{equation*}
$$

Proof. (56) follows directly from (54) and (55).
The next corollary is easily verified.
Corollary 21. The (q, r)-Whitney numbers of the second kind can be expressed explicitly as

$$
\begin{equation*}
W_{m, r, q}(n, k)=\left\{\Delta_{q}^{k}\left(\frac{\left(m[x]_{q}+r\right)^{n}}{m^{k}[k]_{q}!}\right)\right\}_{x=0} \tag{57}
\end{equation*}
$$

6 Further identities for the (q, r)-Whitney numbers

Graham et al. [21] presented a useful set of Stirling number identities while Katriel [22] presented the q-analogues of all but two of them. Three of these identities are generalized to the (q, r)-Whitney numbers using appropriate modifications of the procedures presented by Katriel [22]. Their derivation requires the following.
Lemma 22. For $f(x)$ a polynomial, the operator identity

$$
\begin{equation*}
a^{\dagger} f\left(1+q a^{\dagger} a\right) a=a^{\dagger} a f\left(a^{\dagger} a\right) \tag{58}
\end{equation*}
$$

holds.
Proof. We write the q-commutation relation, equation (12), in the form $a a^{\dagger}=1+q a^{\dagger} a$. It follows that

$$
\left(a^{\dagger} a\right)\left(a^{\dagger} a\right)^{k}=a^{\dagger}\left(a a^{\dagger}\right)^{k} a=a^{\dagger}\left(1+q a^{\dagger} a\right)^{k} a
$$

For $f(x)=\sum_{k} c_{k} x^{k}$ we obtain

$$
\begin{aligned}
a^{\dagger} a f\left(a^{\dagger} a\right) & =\sum_{k} c_{k}\left(a^{\dagger} a\right)\left(a^{\dagger} a\right)^{k} \\
& =\sum_{k} c_{k} a^{\dagger}\left(1+q a^{\dagger} a\right)^{k} a=a^{\dagger}\left(\sum_{k} c_{k}\left(1+q a^{\dagger} a\right)^{k}\right) a \\
& =a^{\dagger} f\left(1+q a^{\dagger} a\right) a
\end{aligned}
$$

Remark 23. The lemma can also be written in the form

$$
\begin{equation*}
a^{\dagger} g\left(a^{\dagger} a\right) a=a^{\dagger} a g\left(\frac{1}{q}\left(a^{\dagger} a-1\right)\right), \tag{59}
\end{equation*}
$$

where $g(x)$ is a polynomial.
Theorem 24 (Identity 1). The (q, r)-Whitney numbers of the second kind satisfy

$$
W_{m, r, q}(n+1, k)-r W_{m, r, q}(n, k)=\sum_{\ell=k-1}^{n}\binom{n}{\ell} q^{\ell}(m+r(1-q))^{n-\ell} W_{m, r, q}(\ell, k-1)
$$

Proof. In terms of the identity (58) and with the aid of (16)

$$
\begin{aligned}
a^{\dagger}\left(m\left(1+q a^{\dagger} a\right)+r\right)^{n} a & =a^{\dagger} a\left(m a^{\dagger} a+r\right)^{n} \\
& =\frac{1}{m}\left(m a^{\dagger} a+r-r\right)\left(m a^{\dagger} a+r\right)^{n} \\
& =\frac{1}{m}\left(m a^{\dagger} a+r\right)^{n+1}-\frac{r}{m}\left(m a^{\dagger} a+r\right)^{n} \\
& =\sum_{k=0}^{n+1} m^{k-1}\left(a^{\dagger}\right)^{k} a^{k}\left(W_{m, r, q}(n+1, k)-r W_{m, r, q}(n, k)\right)
\end{aligned}
$$

On the other hand, defining $\alpha=m+r(1-q)$ (which will hold throught the present section),

$$
\begin{aligned}
a^{\dagger}\left(m\left(1+q a^{\dagger} a\right)+r\right)^{n} a & =a^{\dagger}\left(q\left(m a^{\dagger} a+r\right)+\alpha\right)^{n} a \\
& =a^{\dagger}\left(\sum_{\ell=0}^{n}\binom{n}{\ell} q^{\ell} \alpha^{n-\ell}\left(m a^{\dagger} a+r\right)^{\ell}\right) a \\
& =\sum_{\ell=0}^{n}\binom{n}{\ell} q^{\ell} \alpha^{n-\ell} \sum_{k=0}^{\ell} m^{k} W_{m, r, q}(\ell, k)\left(a^{\dagger}\right)^{k+1} a^{k+1} \\
& =\sum_{k=1}^{n+1} m^{k-1}\left(a^{\dagger}\right)^{k} a^{k} \sum_{\ell=k-1}^{n}\binom{n}{\ell} q^{\ell} \alpha^{n-\ell} W_{m, r, q}(\ell, k-1) .
\end{aligned}
$$

Equating coefficients of $m^{k-1}\left(a^{\dagger}\right)^{k} a^{k}$ the theorem follows.
For $r=0$ this identity reduces to the q-Stirling numbers identity [22, identity 1]

$$
W_{m, 0, q}(n+1, k)=\sum_{\ell=k-1}^{n}\binom{n}{\ell} q^{\ell} m^{n-\ell} W_{m, 0, q}(\ell, k-1)
$$

The following corollary is an immediate consequence of the previous theorem.

Corollary 25. As $q \rightarrow 1$,

$$
W_{m, r}(n+1, k)-r W_{m, r}(n, k)=\sum_{\ell=k-1}^{n}\binom{n}{\ell} m^{n-\ell} W_{m, r}(\ell, k-1)
$$

Theorem 26 (Identity 2). The (q, r)-Whitney numbers of the first kind satisfy

$$
\begin{aligned}
w_{m, r, q}(n+1, \ell)= & \sum_{k=\ell-1}^{n} \frac{1}{q^{k}} w_{m, r, q}(n, k)\left(-(m+r(1-q))^{k-\ell}\right. \\
& \cdot\left(\binom{k}{\ell-1}(-(m+r(1-q)))-r\binom{k}{\ell}\right) .
\end{aligned}
$$

Proof. We note that from (15),

$$
m^{n+1}\left(a^{\dagger}\right)^{n+1} a^{n+1}=\sum_{\ell=0}^{n+1} w_{m, r, q}(n+1, \ell)\left(m a^{\dagger} a+r\right)^{\ell}
$$

On the other hand, using (59),

$$
\begin{aligned}
m^{n+1}\left(a^{\dagger}\right)^{n+1} a^{n+1}= & m a^{\dagger}\left(m^{n}\left(a^{\dagger}\right)^{n} a^{n}\right) a \\
= & m a^{\dagger}\left(\sum_{k=0}^{n} w_{m, r, q}(n, k)\left(m a^{\dagger} a+r\right)^{k}\right) a \\
= & m a^{\dagger} a \sum_{k=0}^{n} w_{m, r, q}(n, k)\left(\frac{m}{q}\left(a^{\dagger} a-1\right)+r\right)^{k} \\
= & m a^{\dagger} a \sum_{k=0}^{n} w_{m, r, q}(n, k) \frac{1}{q^{k}}\left(\left(m a^{\dagger} a+r\right)-\alpha\right)^{k} \\
= & \left(\left(m a^{\dagger} a+r\right)-r\right) \sum_{k=0}^{n} w_{m, r, q}(n, k) \frac{1}{q^{k}} \sum_{\ell=0}^{k}\binom{k}{\ell}\left(m a^{\dagger} a+r\right)^{\ell}(-\alpha)^{k-\ell} \\
= & \sum_{k=0}^{n} w_{m, r, q}(n, k) \frac{1}{q^{k}} \sum_{\ell=0}^{k}\binom{k}{\ell}\left(m a^{\dagger} a+r\right)^{\ell+1}(-\alpha)^{k-\ell} \\
& -r \sum_{k=0}^{n} w_{m, r, q}(n, k) \frac{1}{q^{k}} \sum_{\ell=0}^{n}\binom{k}{\ell}\left(m a^{\dagger} a+r\right)^{\ell}(-\alpha)^{k-\ell} \\
= & \sum_{\ell=0}^{n+1}\left(m a^{\dagger} a+r\right)^{\ell} \sum_{k=\ell-1}^{n} \frac{1}{q^{k}} w_{m, r, q}(n, k)(-\alpha)^{k-\ell} . \\
& \cdot\left(\binom{k}{\ell-1}(-\alpha)-r\binom{k}{\ell}\right) .
\end{aligned}
$$

Equating the coefficients of equal powers of $m a^{\dagger} a+r$ we obtain the theorem.

For $r=0$, we recover the q-Stirling numbers identity [22, identity 2]

$$
w_{m, 0, q}(n+1, \ell)=\sum_{k=\ell-1}^{n} \frac{1}{q^{k}} w_{m, 0, q}(n, k)(-m)^{k-\ell+1}\binom{k}{\ell-1}
$$

Moreover, we have the following corollary:
Corollary 27. As $q \rightarrow 1$,

$$
w_{m, r}(n+1, \ell)=-\sum_{k=\ell-1}^{n} w_{m, r}(n, k)(-m)^{k-\ell}\left(m\binom{k}{\ell-1}+r\binom{k}{\ell}\right)
$$

Theorem 28 (Identity 3). The (q, r)-Whitney numbers of the second kind satisfy

$$
W_{m, r, q}(n, k-1)=\frac{1}{q^{n}} \sum_{\ell=k}^{n+1}(-m-r(1-q))^{n-\ell}\left(\binom{n}{\ell-1}(-m-r(1-q))-\binom{n}{\ell} r\right) W_{m, r, q}(\ell, k) .
$$

Proof. Note that

$$
\begin{aligned}
a^{\dagger}\left(m a^{\dagger} a+r\right)^{n} a & =\sum_{k=0}^{n} m^{k} W_{m, r, q}(n, k)\left(a^{\dagger}\right)^{k+1} a^{k+1} \\
& =\sum_{k=1}^{n+1} m^{k-1} W_{m, r, q}(n, k-1)\left(a^{\dagger}\right)^{k} a^{k}
\end{aligned}
$$

and on the other hand, using (59),

$$
\begin{aligned}
a^{\dagger}\left(m a^{\dagger} a+r\right)^{n} a & \left.=a^{\dagger} a\left(\frac{m}{q}\left(a^{\dagger} a-1\right)+r\right)^{n}=a^{\dagger} a \frac{1}{q^{n}}\left(m a^{\dagger} a+r\right)-\alpha\right)^{n} \\
& \left.=\frac{1}{m}\left(\left(m a^{\dagger} a+r\right)-r\right) \frac{1}{q^{n}} \sum_{\ell=0}^{n}\binom{n}{\ell}\left(m a^{\dagger} a+r\right)^{\ell}(-\alpha)\right)^{n-\ell} \\
& =\frac{1}{m q^{n}} \sum_{\ell=1}^{n+1}\left(m a^{\dagger} a+r\right)^{\ell}(-\alpha)^{n-\ell} \cdot\left(\binom{n}{\ell-1}(-\alpha)-r\binom{n}{\ell}\right) \\
& =\frac{1}{m q^{n}} \sum_{k=0}^{n+1} m^{k}\left(a^{\dagger}\right)^{k} a^{k} \sum_{\ell=k}^{n+1}(-\alpha)^{n-\ell}\left(\binom{n}{\ell-1}(-\alpha)-\binom{n}{\ell} r\right) W_{m, r, q}(\ell, k) .
\end{aligned}
$$

Equating the coefficients of $\left(a^{\dagger}\right)^{k} a^{k}$ we obtain the theorem.
For $r=0$ this theorem reduces to

$$
W_{m, 0, q}(n, k-1)=\frac{1}{q^{n}} \sum_{\ell=k}^{n+1}(-m)^{n+1-\ell}\binom{n}{\ell-1} W_{m, 0, q}(\ell, k) .
$$

Using equation (18), we can verify that this is just the q-Stirling numbers identity [22, identity 3]. The next corollary is easily verified.

Corollary 29. As $q \rightarrow 1$,

$$
W_{m, r}(n, k-1)=\sum_{\ell=k}^{n+1}(-m)^{n-\ell}\left[\binom{n}{\ell-1}(-m)-\binom{n}{\ell} r\right] W_{m, r}(\ell, k)
$$

Presently, much is yet to be learnt regarding the (q, r)-Whitney numbers. The classical r-Whitney and Stirling numbers are known to have various applications in different fields. It is tempting to explore applications for the (q, r)-Whitney numbers.

To close this section, Corcino and Hererra [17] defined the q-analogue of the limit of the differences of the generalized factorial $F_{\alpha, \gamma}(n, k)$ in (5), denoted by $\phi_{\alpha, \gamma}[n, k]_{q} . \phi_{\alpha, \gamma}[n, k]_{q}$ can be defined in terms of the relation

$$
\begin{equation*}
\sum_{k=0}^{n} \phi_{\alpha, \gamma}[n, k]_{q} t^{k}=\left\langle t+[\gamma]_{q} \mid[\alpha]_{q}\right\rangle_{n}^{q} \tag{60}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\langle t+[\gamma]_{q} \mid[\alpha]_{q}\right\rangle_{n}^{q}=\prod_{j=0}^{n-1}\left(t+[\gamma]_{q}-[j \alpha]_{q}\right) . \tag{61}
\end{equation*}
$$

The numbers $\phi_{\alpha, \gamma}[n, k]_{q}$ are actually q-analogues of the numbers $w_{m, r}(n, k)$. Similarly, Corcino and Montero [18] defined the q-analogue $\sigma[n, k]_{q}^{\beta, r}$ of the Rucinski-Voigt numbers in terms of the reccurence relation

$$
\begin{equation*}
\sigma[n, k]_{q}^{\beta, r}=\sigma[n-1, k-1]_{q}^{\beta, r}+\left([k \beta]_{q}+[r]_{q}\right) \sigma[n-1, k]_{q}^{\beta, r} . \tag{62}
\end{equation*}
$$

$\sigma[n, k]_{q}^{\beta, r}$ is also a q-analogue of the numbers $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle_{r, \beta}$ and $W_{m, r}(n, k)$. However, by comparing the defining relations for $\phi_{\alpha, \gamma}[n, k]_{q}$ and $\sigma[n, k]_{q}^{\beta, r}$ with those of the (q, r)-Whitney numbers $w_{m, r, q}(n, k)$ and $W_{m, r, q}(n, k)$, respectively, we note that they represent distinctly motivated q-analogues that cannot be simply related to one another.

7 Acknowledgments

The authors would like to thank the editor-in-chief for his helpful comments and suggestions, and the referee for carefully reading the manuscript and giving invaluable recommendations which helped improve this paper.

References

[1] M. Arik and D. Coon, Hilbert spaces of analytic functions and generalized coherent states, J. Math. Phys., 17 (1976), 524-527. DOI: doi:10.1063/1.522937.
[2] H. Belbachir and I. Bousbaa, Translated Whitney and r-Whitney numbers: a combinatorial approach, J. Integer Seq., 16 (2013), Article 13.8.6.
[3] M. Benoumhani, On Whitney numbers of Dowling lattices, Discrete Math., 159 (1996), 13-33.
[4] M. Benoumhani, On some numbers related to the Whitney numbers of Dowling lattices, Adv. Appl. Math., 19 (1997), 106-116.
[5] A. Broder, The r-Stirling numbers, Discrete Math. 49 (1984), 241-259.
[6] L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-1000.
[7] G.-S. Cheon and J.-H. Jung, The r-Whitney numbers of Dowling lattices, Discrete Math., 15 (2012), 2337-2348.
[8] L. Comtet, Advanced Combinatorics, D. Reidel Publishing Co., 1974.
[9] C. B. Corcino and R. B. Corcino, Asymptotic estimates for second kind generalized Stirling numbers, J. Appl. Math., 2013, Article ID 918513, 7 pages, (2013). DOI: doi:10.1155/2013/918513.
[10] C. B. Corcino, R. B. Corcino, and N. Acala, Asymptotic estimates for r-Whitney numbers of the second kind, J. Appl. Math., 2014, Article ID 354053, 7 pages, (2014). DOI: doi:10.1155/2014/354053.
[11] R. B. Corcino, The (r, β)-Stirling numbers, The Mindanao Forum, 14 (1999), 91-99.
[12] R. B. Corcino and R. M. Aldema, Some combinatorial and statistical applications of (r, β)-Stirling numbers, Matimyás Mat., 25 (2002), 19-29.
[13] R. B. Corcino and C. B. Corcino, On generalized Bell polynomials, Discrete Dyn. Nat. Soc., 2011, Article ID 623456, 21 pages, (2011). DOI: doi:10.1155/2011/623456.
[14] R. B. Corcino and C. B Corcino, On the maximum of generalized Stirling numbers, Util. Math., 86 (2011), 241-256.
[15] R. B. Corcino and C. B Corcino, The Hankel transform of the generalized Bell numbers and its q-analogue, Util. Math., 89 (2012), 297-309.
[16] R. B. Corcino, C. B. Corcino, and R. M. Aldema, Asymptotic normality of the (r, β)Stirling numbers, Ars Combin., 81 (2006), 81-96.
[17] R. B. Corcino and M. Hererra, The limit of the differences of the generalized factorial, its q - and p, q-analogue, Util. Math., 72 (2007), 33-49.
[18] R. B. Corcino and C. B. Montero, A q-analogue of Rucinski-Voigt numbers, ISRN Discrete Math., 2012, Article ID 592818, 18 pages, (2012). DOI: doi:10.5402/2012/592818.
[19] R. B. Corcino, M. B. Montero, and S. Ballenas, Schlomilch-type formula for r-Whitney numbers of the first kind, Matimyás Mat., 37 (2014), 1-10.
[20] T. A. Dowling, A class of geometric lattices based on finite groups, J. Combin. Theory, Ser. B, 15 (1973), 61-86.
[21] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, 1990.
[22] J. Katriel, Stirling number identities: interconsistency of q-analogues, J. Phys. A: Math. Gen., 31 (1998), 3559-3572.
[23] J. Katriel, Bell numbers and coherent states, Phys. Letters A, 273 (2000), 159-161.
[24] M.-S. Kim and J.-W. Son, A note on q-difference operators, Commun. Korean Math. Soc., 17 (2002), 432-430.
[25] M. M. Mangontarum, A. P.-M. Ringia, and N. S. Abdulcarim, The translated Dowling polynomials and numbers, International Scholarly Research Notices, 2014, Article ID 678408, 8 pages, (2014). DOI: doi:10.1155/2014/678408.
[26] M. Merca, A new connection between r-Whitney numbers and Bernoulli polynomials, Integral Transforms Spec. Funct., 25 (2014), 937-942.
[27] I. Mező, A new formula for the Bernoulli polynomials, Results Math., 58 (2010), 329335.
[28] I. Mező, The r-Bell Numbers, J. Integer Seq., 14 (2011), Article 11.1.1.
[29] J. Stirling, Methodus Differentialissme Tractus de Summatione et Interpolatione Serierum Infinitarum, London, 1730.

2010 Mathematics Subject Classification: Primary 11B83; Secondary 11B73, 05A30.
Keywords: Whitney number, Stirling number, Boson operator, q-analogue.
(Concerned with sequences $\underline{\text { A000110, }} \underline{\text { A003575, }} \underline{\text { A008275, and }} \underline{\text { A008277.) }}$

Received May 13 2015; revised version received, September 1 2015. Published in Journal of Integer Sequences, September 72015.

Return to Journal of Integer Sequences home page.

