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Abstract

The m-th Cullen number Cm is a number of the form m2m + 1 and the m-th

Woodall number Wm has the form m2m − 1. In 2003, Luca and Stănică proved that

the largest Fibonacci number in the Cullen sequence is F4 = 3 and that F1 = F2 = 1

are the largest Fibonacci numbers in the Woodall sequence. Very recently, the second

author proved that, for any given s > 1, the equation Fn = msm ± 1 has only finitely

many solutions, and they are effectively computable. In this note, we shall provide the

explicit form of the possible solutions.

1 Introduction

A Cullen number is a number of the formm2m+1 (denoted by Cm), wherem is a nonnegative
integer. This sequence was introduced in 1905 by Father J. Cullen [2] and it was mentioned
in the well-known book of Guy [5, Section B20]. These numbers gained great interest in
1976, when Hooley [7] showed that almost all Cullen numbers are composite. However,
despite being very scarce, it is still conjectured that there are infinitely many Cullen primes.
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In a similar way, a Woodall number (also called Cullen number of the second kind) is
a positive integer of the form m2m − 1 (denoted by Wm). It is also known that almost all
Woodall numbers are composite. However, it is also conjectured that the set of Woodall
primes is infinite.

These numbers can be generalized to the s-Cullen and s-Woodall numbers which are
numbers of the form

Cm,s = msm + 1 and Wm,s = msm − 1,

where m ≥ 1 and s ≥ 2. This family was introduced by Dubner [3]. A prime of the form
Cm,s is C139948,151 an integer with 304949 digits.

Many authors have searched for special properties of Cullen and Woodall numbers and
their generalizations. We refer the reader to [4, 6, 9, 10] for classical and recent results on
this subject.

In 2003, Luca and Stănică [8, Theorem 3] proved that the largest Fibonacci number in
the Cullen sequence is F4 = 3 = 1 · 21 + 1 and that F1 = F2 = 1 = 1 · 21 − 1 are the largest
Fibonacci numbers in the Woodall sequence.

Recall that νp(r) denotes the p-adic order of r, which is the exponent of the highest power
of a prime p which divides r. Also, the order (or rank) of appearance of n in the Fibonacci
sequence, denoted by z(n), is defined as the smallest positive integer k, such that n | Fk (for
results on this function, see [13] and references therein). Let p be a prime number and set
e(p) := νp(Fz(p)).

Very recently, Marques [11] proved that if the equation

Fn = msm + ℓ (1)

has solution, with m > 1 and ℓ ∈ {±1}, then m < (6.2 + 1.9e(p)) log(3.1 + e(p)), for some
prime factor p of s. This together with the fact that e(p) = 1 for all prime p < 2.8 · 1016
(PrimeGrid, March 2014) implies that there is no Fibonacci number that is also a nontrivial
(i.e., m > 1) s-Cullen number or s-Woodall number when the set of prime divisors of s is
contained in {2, 3, 5, . . . , 27999999999999991}. This is the set of the first 759997990476073
prime numbers.

In particular, the previous result ensures that for any given s ≥ 2, there are only finitely
many Fibonacci numbers which are also s-Cullen numbers or s-Woodall numbers and they
are effectively computable.

In this note, we shall invoke the primitive divisor theorem to provide explicitly the possible
values of m satisfying Eq. (1). More precisely,

Theorem 1. Let s > 1 be an integer. Let (n,m, ℓ) be a solution of the Diophantine equation
(1) with n,m > 1 and ℓ ∈ {−1, 1}. Then m = e(p)/νp(s), for some prime factor p of s.

In particular, we have that m ≤ e(p) for some prime factor p of s. Also, we can deduce
[11, Corollary 3] from the above theorem. In fact, for all p < 2.8 · 1016 we have e(p) = 1 and
then if (n,m, ℓ) is a solution, with m > 1, we would have the contradiction that 1 < m =
e(p)/νp(s) = 1/νp(s) for some p dividing s.
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2 The proof

Suppose that n ≤ 27. Then max{2s2 − 1,m2m − 1} ≤ msm + ℓ = Fn ≤ F27 = 196418 yields
s ≤ 313 and m ≤ 13. For this, we prepare a simple Mathematica program which, in a few
seconds, does not return any solution with m > 1.

So we may suppose that n ≥ 28. We rewrite Eq. (1) as Fn − ℓ = msm. It is well-known
that Fn ± 1 = FaLb, where 2a, 2b ∈ {n± 2, n± 1}. (This factorization depends on the class
of n modulo 4. See [12, (3)] for more details.) Then the main equation becomes

FaLb = msm,

where 2a, 2b ∈ {n± 2, n± 1} and |a− b| ∈ {1, 2}. Since a− b ∈ {±1,±2}, then gcd(a, b) ∈
{1, 2} and then gcd(Fa, Lb) = 1, 2 or 3. Therefore, we have Fa = m1s

m
1 and Lb = m2s

m
2 ,

where m1m2 = m, s1s2 = s and gcd(m1,m2), gcd(s1, s2) ∈ {1, 2, 3}. We claim that s1 > 1.
Suppose, to get a contradiction, that s1 = 1, then Fa = m1 and Lb = m2s

m. Since 2a− 4 ≥
n− 6 ≥ (n+ 8)/2 ≥ b+ 3, we arrive at the following contradiction:

m2 ≥ m2
1 = F 2

a ≥ α2a−4 ≥ αb+3 ≥ 2Lb = 2m2s
m ≥ 2m+1 > m2,

where α = (1 +
√
5)/2. Here, we used that Fj ≥ αj−2 and Lj ≤ αj+1. Thus s1 > 1. Since

a ≥ (n− 2)/2 ≥ 13, then by the primitive divisor theorem (see [1]), there exists a primitive
divisor p of Fa (i.e., p | Fa and p ∤ F1 · · ·Fa−1). We also have that p ≡ ±1 (mod a). In
particular, p ≥ a− 1. Thus p | Fa = m1s

m
1 . Suppose that p | m1. In this case, one has that

a− 1 ≤ p ≤ m1 ≤ m. On the other hand, we get

2m ≤ m1s
m
1 = Fa ≤ αa−1 < 2a−1.

Thus m < a− 1 which gives a contradiction. Therefore p ∤ m1 and consequently p | s1. This
yields νp(Fa) = mνp(s1) = mνp(s) (because p > 3, s = s1s2 and gcd(s1, s2) ≤ 3). On the
other hand, z(p) = a and so νp(Fz(p)) = νp(Fa) = mνp(s) as desired.
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