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Rokitanského 62
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Abstract

In this paper, we consider the Fibonomial coefficients, a natural generalization of

the binomial coefficients. We generalize a 2013 result of the authors and J. Sellers

by proving an exact divisibility result for Fibonomial coefficients involving powers of

primes and confirming a recent conjecture.

1 Introduction

Let (Fn)n≥0 be the Fibonacci sequence given by the recurrence relation Fn+2 = Fn+1 + Fn,
with F0 = 0 and F1 = 1. These numbers are well-known for possessing amazing properties
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(consult book [5] to find additional references and history).
In 1915, Fontené published a one-page note [1] suggesting a generalization of binomial

coefficients, replacing the natural numbers by the terms of an arbitrary sequence (An) of real
or complex numbers.

Since at least the 1960s, there has been much interest in the Fibonomial coefficients
[

m
k

]

F
, which correspond to the choice An = Fn. Hence Fibonomial coefficients are defined,

for 1 ≤ k ≤ m, by
[

m

k

]

F

:=
Fm−k+1 · · ·Fm−1Fm

F1 · · ·Fk

, (1)

and for k > m,
[

m
k

]

F
= 0. (For example, see Gould [2] as well as numerous papers referenced

therein.) It is surprising that this quantity will always take integer values.
Some authors have been interested in searching for divisibility properties of Fibonomial

coefficients. For instance, in 1974, Gould [3] proved several such properties where one of
them is an analogous to Hermite’s identity for binomial coefficients.

In recent papers, the authors [13, 14] proved that p |
[

pa+1

pa

]

F
for all integers a ≥ 1 and

p ∈ {2, 3}. Subsequently, the authors and Sellers [15] proved that the number
[

pa+1

pa

]

F
is

divisible by p for all primes p such that p ≡ −2 or 2 (mod 5) and for all integers a ≥ 1.

Here, we are interested in the highest power of p which divides
[

pa+1

pa

]

F
. Let δi,j denote

the Kronecker delta, equal to 1 if i = j and 0 otherwise. As usual, ak ‖ b means that ak | b,
but ak+1 ∤ b. Our first result is the following:

Theorem 1. Let p be a prime such that p ≡ −2 or 2 (mod 5). Then p⌈(a+δp,2)/2⌉ ‖
[

pa+1

pa

]

F
,

for all integers a ≥ 1.

A paper of the authors and Sellers [15] contained the following conjecture about the
remaining cases of p, suggested by the referee.

Conjecture 2. If p ≡ −1 or 1 (mod 5), then
[

pa+1

pa

]

F
is not divisible by p for any integer

a ≥ 1.

Note that this conjecture, together with [15, Theorem 1.1] and [15, Proposition 2.4], leads
to the following result for all odd primes p

p |
[

pa+1

pa

]

F
for all integers a ≥ 1 ⇐⇒ p = 5 or p ≡ −2 or 2 (mod 5).

In this paper, we also confirm this conjecture. We shall state it for the sake of preciseness.

Theorem 3. Conjecture 2 is true.

We organize this paper as follows. In Section 2, we will recall some useful properties
of the Fibonacci numbers such as a result concerning the p-adic order of Fn. Section 3 is
devoted to the proof of these theorems.
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2 Auxiliary results

Before proceeding further, we recall some facts for the convenience of the reader.

Lemma 4. We have

(a) For all primes p, Fp−( 5
p
) ≡ 0 (mod p) where (a

q
) denotes the Legendre symbol of a with

respect to a prime q > 2.

(b) (De Polignac formula) For all n ≥ 1, we have

νp(n!) =
∞
∑

j=1

⌊

n

pj

⌋

,

where the p-adic order (or valuation) of r, νp(r), is the exponent of the highest power
of a prime p which divides r.

Item (a) can be proved by using the well-known Binet formula:

Fn =
αn − βn

α− β
, for n ≥ 0,

where α = (1 +
√
5)/2 and β = (1 −

√
5)/2. The proof of item (b) can be found in [16,

Theorem 4.2].
Before stating the next lemma, we recall that for a positive integer n, the order (or rank)

of appearance of n in the Fibonacci sequence, denoted by z(n), is defined as the smallest
positive integer k, such that n | Fk. (Some authors also call it the order of apparition, as it
was called by Lucas, or the Fibonacci entry point.) There are several results on z(n) in the
literature; for example, recently, the first author [7, 8, 9, 10, 11, 12] found closed formulas
for this function at some integers related to the Fibonacci and Lucas sequences.

Lemma 5. (Cf. [8, Lemma 2.2 (c)]) If n | Fm, then z(n) | m.

Note that Lemma 4 (a) together with Lemma 5 implies that z(p) | p− (5
p
) for all primes

p 6= 5. Also, it is well-known that (5
p
) = −1 or 1 according to the residue of p modulo 5.

More precisely, we have that if p 6= 5 is a prime, then z(p) | p + 1 if p ≡ −2 or 2 (mod 5)
and z(p) | p− 1 otherwise.

Lemma 6. (Cf. [11, Lemma 2.3]) For all primes p 6= 5, we have that gcd(z(p), p) = 1.

The p-adic order of Fibonacci numbers has been completely characterized, see [4, 6, 18,
19]. For instance, from the main results of Lengyel [6], we extract the following result.
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Proposition 7. For n ≥ 1, we have

ν2(Fn) =



















0, if n ≡ 1, 2 (mod 3);

1, if n ≡ 3 (mod 6);

3, if n ≡ 6 (mod 12);

ν2(n) + 2, if n ≡ 0 (mod 12)

and for any prime p > 2

νp(Fn) =

{

νp(n) + νp(Fz(p)), if n ≡ 0 (mod z(p));

0, if n 6≡ 0 (mod z(p)).

A proof of a more general result can be found in [6, pp. 236–237 and Section 5].
Now we are ready to deal with the proof of the theorems.

3 Proofs

3.1 Proof of Theorem 1

In order to avoid unnecessary repetition, let us suppose that p > 2 and that a is even (the
case p = 2 and when a is odd can be handled in much the same way).

Thus we want to prove that

νp

([

pa+1

pa

]

F

)

=
⌈a

2

⌉

holds for every odd prime p such that p ≡ −2 or 2 (mod 5) for all integer a ≥ 1.
We start the proof by proceeding exactly as in the beginning of the proof of [15, Theorem

1.1]. However, we shall repeat that argument for the convenience of the reader.
By the definition of the Fibonomial coefficient (1), we have

[

pa+1

pa

]

F

=
F(p−1)pa+1 · · ·Fpa+1

F1 · · ·Fpa
. (2)

Our goal now is to compare the p-adic order of the numerator and denominator in (2). Since
p | Fn if and only if z(p) | n (by Proposition 7), we need only to consider the p-adic order of
the (pa − 1)/z(p) numbers Fz(p), F2z(p), F3z(p), . . . , Fpa−1 in the denominator and F(p−1)pa+2,
F(p−1)pa+2+z(p), F(p−1)pa+2+2z(p),. . . , Fpa+1−z(p)+1 in the numerator. So, in the first case, we
use Proposition 7 to obtain
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S1 := νp(F1 · · ·Fpa)

= νp(Fz(p)) + νp(F2z(p)) + · · ·+ νp(Fpa−1)

= (νp(z(p)) + νp(Fz(p))) + (νp(2z(p)) + νp(Fz(p))) + · · ·+ (νp(p
a − 1) + νp(Fz(p)))

= νp(z(p)) + νp(2z(p)) + · · ·+ νp(p
a − 1) +

(

pa − 1

z(p)

)

νp(Fz(p)). (3)

Note that a is even and z(p) | p + 1 (since p ≡ −2 or 2 (mod 5)). Thus (pa − 1)/z(p) is an
integer.

For the p-adic order of the numerator, we proceed as before to get

S2 := νp(F(p−1)pa+1 · · ·Fpa+1)

= νp(F(p−1)pa+2) + · · ·+ νp(Fpa+1−z(p)+1)

= νp((p− 1)pa + 2) + · · ·+ νp(p
a+1 − z(p) + 1) +

(

pa − 1

z(p)

)

νp(Fz(p))

= νp(p(p
a − pa−1 + z(p)− 2)) + · · ·+ νp(p(p

a − 1)) +

(

pa − 1

z(p)

)

νp(Fz(p))

= νp(p
a − pa−1 + z(p)− 2) + · · ·+ νp(p

a − 1) +
pa−1 + 1

z(p)
+

+

(

pa − 1

z(p)

)

νp(Fz(p)). (4)

Observe that there exist several common terms in sums (3) and (4); so combining them
we get

S2 − S1 =
pa−1 + 1

z(p)
−
(

νp(1z(p)) + νp(2z(p)) + · · ·+ νp

(

pa − pa−1 − 2

z(p)
z(p)

))

=
pa−1 + 1

z(p)
− νp

((

pa − pa−1 − 2

z(p)

)

!

)

.

Now we shall use the De Polignac formula together with some properties of the fractional
part of x, defined by {x} = x− ⌊x⌋. Since, for j ≥ a, we have

pjz(p) ≥ 3pa > pa − pa−1 − 2
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and after a straightforward calculation, we arrive at

S2 − S1 =
pa−1 + 1

z(p)
−

a−1
∑

j=1

⌊

pa − pa−1 − 2

pjz(p)

⌋

=
pa−1 + 1

z(p)
−

a−1
∑

j=1

(

pa − pa−1 − 2

pjz(p)

)

+
a−1
∑

j=1

{

pa − pa−1 − 2

pjz(p)

}

=
2(pa − 1)

z(p)(p− 1)pa−1
+

a−1
∑

j=1

{

pa − pa−1 − 2

pjz(p)

}

. (5)

Now let us see what happens with {(pa − pa−1 − 2)/(pjz(p))} depending on the parity
of j. We have that

pa − pa−1 − 2

pjz(p)
= pa−j−1 (p− 1)

z(p)
− 2

pjz(p)
.

Since p ≡ −1 (mod z(p)) and a is even, we obtain

pa−j−1(p− 1) ≡
{

2 (mod z(p)), if 2 | j;
p− 1 (mod z(p)), if 2 ∤ j.

Thus

pa − pa−1 − 2

pjz(p)
≡

{

2
z(p)

− 2
pjz(p)

(mod 1), if 2 | j;
p−1
z(p)

− 2
pjz(p)

(mod 1), if 2 ∤ j.

Now we use that (p − 1)/z(p) ≡ −2/z(p) (mod 1) (because (p + 1)/z(p) is an integer)
together with the facts that {x} = x, if 0 ≤ x < 1, {n + x} = {x} and {n − x} = 1 − {x},
for any positive integer n, to get

{

pa − pa−1 − 2

pjz(p)

}

=







2
z(p)

(

1− 1
pj

)

, if 2 | j;
1− 2

z(p)

(

1 + 1
pj

)

, if 2 ∤ j.

Write A1 = {1, 3, 5, . . . , a − 1} and A2 = {2, 4, 6, . . . , a − 2}. Therefore, the summation
in (5) can be written as follows:

a−1
∑

j=1

{

pa − pa−1 − 2

pjz(p)

}

=
∑

j∈A1

{

pa − pa−1 − 2

pjz(p)

}

+
∑

j∈A2

{

pa − pa−1 − 2

pjz(p)

}

=
∑

j∈A1

(

1− 2

z(p)
− 2

z(p)pj

)

+
∑

j∈A2

(

2

z(p)
− 2

z(p)pj

)

.
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After some easy computations, we get

a−1
∑

j=1

{

pa − pa−1 − 2

pjz(p)

}

=
a

2

(

1− 2

z(p)

)

− 2p1−a (pa − 1)

(p2 − 1) z(p)
+

a− 2

z(p)
− 2p−a (pa − p2)

(p2 − 1) z(p)
.

Combining this with equality (5) yields

νp

([

pa+1

pa

]

F

)

= S2 − S1 =
2(pa − 1)

z(p)(p− 1)pa−1
+

−4p+ 4p1−a + az(p)(p− 1)

2z(p)(p− 1)
=

a

2
.

This completes the proof.

3.2 Proof of Theorem 3

Again, we must compare the p-adic order of the numerator and denominator in (2). Thus,
we must only consider the p-adic order of the (pa − 1)/z(p) numbers Fz(p), F2z(p), . . . , Fpa−1

in the denominator and F(p−1)pa+z(p), F(p−1)pa+2z(p), . . . , Fpa+1−1 in the numerator. So, in the
first case, we use Proposition 7 to obtain

S1 := νp(F1 · · ·Fpa)

= νp(Fz(p)) + νp(F2z(p)) + · · ·+ νp(Fpa−1)

= (νp(z(p)) + νp(Fz(p))) + (νp(2z(p)) + νp(Fz(p))) + · · ·+ (νp(p
a − 1) + νp(Fz(p)))

= νp(z(p)) + νp(2z(p)) + · · ·+ νp(p
a − 1) +

(

pa − 1

z(p)

)

νp(Fz(p)). (6)

Note that z(p) | p− 1 (since p ≡ −1 or 1 (mod 5)). Thus (pa − 1)/z(p) is an integer.
For the p-adic order of the numerator, we proceed as before to get

S2 := νp(F(p−1)pa+1 · · ·Fpa+1)

= νp(F(p−1)pa+z(p)) + · · ·+ νp(Fpa+1−1)

= νp((p− 1)pa + z(p)) + · · ·+ νp(p
a+1 − 1) +

(

pa − 1

z(p)

)

νp(Fz(p))

= νp((p
a − pa−1 + z(p)) + · · ·+ νp(p

a − 1) +

(

pa−1 − 1

z(p)

)

+

(

pa − 1

z(p)

)

νp(Fz(p)). (7)

Observe that there exist several common terms in sums (6) and (7), so combining them
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(and using that p ∤ z(p)) we get

S2 − S1 =
pa−1 − 1

z(p)
−
(

νp(z(p)) + νp(2z(p)) + · · ·+ νp

((

pa − pa−1

z(p)

)

z(p)

))

=
pa−1 − 1

z(p)
−
(

νp(1) + · · ·+ νp

(

pa − pa−1

z(p)

))

=
pa−1 − 1

z(p)
− νp

((

pa − pa−1

z(p)

)

!

)

.

Thus, in order to prove this theorem, it suffices to show that

pa−1 − 1

z(p)
= νp

((

pa − pa−1

z(p)

)

!

)

, for p ≡ ±1 (mod 5),

which yields νp(
[

pa+1

pa

]

F
) = S2−S1 = 0. For that, we shall use Lemma 4 (b). Thus we obtain

νp

((

pa − pa−1

z(p)

)

!

)

=
∞
∑

j=1

⌊

pa−1−j(p− 1)

z(p)

⌋

=
a−1
∑

j=1

⌊

pa−1−j(p− 1)

z(p)

⌋

+
∞
∑

j=a

⌊

pa−1−j(p− 1)

z(p)

⌋

.

Now note that for 1 ≤ j ≤ a− 1, the number pa−1−j(p− 1)/z(p) is an integer. Furthermore,
for j ≥ a, we have

0 <
pa−1−j(p− 1)

z(p)
≤ p− 1

pz(p)
≤ p− 1

3p
< 1,

where we used that z(p) ≥ 3 for any prime p. In conclusion, we get

νp

((

pa − pa−1

z(p)

)

!

)

=
a−1
∑

j=1

(

pa−1−j(p− 1)

z(p)

)

=
pa−1 − 1

z(p)

as desired. The proof is therefore complete.
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