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Abstract

In this paper, we derive closed forms for reciprocal series, both finite and infinite,

that involve Fibonacci numbers. The term that defines the denominator of each sum-

mand generates squares of Fibonacci related numbers with subscripts in arithmetic

progression. Our method employs certain algebraic identities that we believe are new.

These identities exhibit the telescoping effect when summed.

1 Introduction

As usual, the Fibonacci and Lucas numbers are defined, respectively, for all integers n, by

Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1,

Ln = Ln−1 + Ln−2, L0 = 2, L1 = 1.

With α = (1 +
√
5)/2, the Binet (closed) forms for Fn and Ln are

Fn =
(

αn + (−1)n+1α−n
)

/
√
5,

Ln = αn + (−1)nα−n,

and these closed forms are valid for all integers n.
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In this paper, we present closed forms for Fibonacci related reciprocal sums, both finite
and infinite, in which the denominator of the summand is a perfect square. For instance,
two summands that we consider are

L2ai+b

(F2ai+b + c)2
, and

F2ai+b

(L2ai+b + c)2
,

for certain values of the parameters a, b, and c. In each of these two cases, the term in
the numerator of the summand, together with its counterpart in the denominator, have
subscripts in arithmetic progression.

Before proceeding, we give some instances of infinite sums that we have discovered. These
infinite sums arise from families of such sums that occur in the sequel.

With s = 2, (25) becomes
∞
∑

i=0

F2i

(L2i + 3)2
=

9

100
. (1)

With s = 1, (26) and (28) yield, respectively,

∞
∑

i=0

F2i
(

L2i +
√
5
)2 =

5− 2
√
5

5
, (2)

and
∞
∑

i=0

L2i+1

(F2i+1 + 1)2
=

5

4
. (3)

We also have
∞
∑

i=0

L2i+3

(F2i+3 + 1)2
=

∞
∑

i=0

L2i+5

(F2i+5 − 1)2
= 1. (4)

In (4), the first sum comes from (19), with (a, b, s) = (1, 3, 1), while the second sum comes
from (35), with (a, b, s) = (1, 5, 1). We give several more results of a similar nature after we
present our main results on infinite sums.

All the results that we present flow from elementary algebraic identities that we believe
are new. In Sections 2 and 3, we present our results on finite sums, together with the infinite
sums that are readily derived from them. In Sections 4 and 5, we present our results on
infinite sums.

2 Finite sums I

The lemma that follows is a statement of our first algebraic identity. All the results in this
section flow from this lemma.

Lemma 1. Let t > 1 be a real number, and let n, a, and b be integers. Then

(ta − t−a)
(

t2an+b − t−2an−b
)

(t2an+b + t−2an−b + ta + t−a)2
=

t2an+b−a

(1 + t2an+b−a)2
− t2an+b+a

(1 + t2an+b+a)2
. (5)
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Proof. Expressing the right side of (5) on a single denominator, we obtain

t2an+b−a
(

1 + t2an+b+a
)2 − t2an+b+a

(

1 + t2an+b−a
)2

(1 + t2an+b−a + t2an+b+a + t4an+2b)2
. (6)

Upon dividing both the numerator and denominator of (6) by t4an+2b, we obtain the left side
of (5).

In this paper, n, a, and b are integers, and henceforth we do not restate this. Many of
the results that follow remain valid if a and b are allowed to be negative. Our preference,
however, has been to opt for simplicity by demanding that a and b be non-negative . Readers
wishing to take any of our results and choose parameters that yield negative subscripts should
remember that, for m ≥ 0, F−m = (−1)m−1Fm, and L−m = (−1)mLm. With this in mind,
we define, for a ≥ 1 and b ≥ 0,

S1(n, a, b) = La

n
∑

i=0

L2ai+b

(F2ai+b + Fa)
2 ,

S2(n, a, b) = 5Fa

n
∑

i=0

F2ai+b

(L2ai+b + La)
2 ,

S3(n, a, b) =
√
5La

n
∑

i=0

F2ai+b
(

L2ai+b +
√
5Fa

)2 ,

S4(n, a, b) =
Fa√
5

n
∑

i=0

L2ai+b
(

F2ai+b + La/
√
5
)2 .

As we soon see, under certain restrictions on a and b, the closed forms for each of the
Si above follow from Lemma 1. Before proceeding, we note that, for odd integers a and b,
(a + b)/2 is even (odd) if and only if (b − a)/2 is odd (even). However, if a and b are both
even, then (a + b)/2 is even (odd) if and only if (b − a)/2 is even (odd). Our first theorem
gives the closed form for S1.

Theorem 2. Let n ≥ 0. Let a ≥ 1, and b ≥ 1 both be odd. Then

S1(n, a, b) =



































5
L2
(b−a)/2

− 1
F 2
an+(a+b)/2

, if n is even and (a+ b)/2 is odd;

1
F 2
(b−a)/2

− 5
L2
an+(a+b)/2

, if n is even and (a+ b)/2 is even;

5

(

1
L2
(b−a)/2

− 1
L2
an+(a+b)/2

)

, if n is odd and (a+ b)/2 is odd;

1
F 2
(b−a)/2

− 1
F 2
an+(a+b)/2

, if n is odd and (a+ b)/2 is even.

Proof. From Lemma 1 we have, due to the telescoping effect,

n
∑

i=0

(ta − t−a)
(

t2ai+b − t−2ai−b
)

(t2ai+b + t−2ai−b + ta + t−a)2
=

tb−a

(1 + tb−a)2
− t2an+a+b

(1 + t2an+a+b)2

=
1

(t(b−a)/2 + t−(b−a)/2)
2 − 1

(tan+(a+b)/2 + t−an−(a+b)/2)
2 . (7)
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In (7), with t = α, and taking into account each of the four cases imposed upon n, a, and
b in the statement of Theorem 2, we use the Binet forms to transform the summand on the
left side of (7), and the two fractions on the right side of (7), into Fibonacci/Lucas numbers.
This proves Theorem 2.

As an immediate corollary of Theorem 2, we have

Corollary 3. Let a ≥ 1, and b ≥ 1 both be odd. Then

La

∞
∑

i=0

L2ai+b

(F2ai+b + Fa)
2 =







5
L2
(b−a)/2

, if (a+ b)/2 is odd;

1
F 2
(b−a)/2

, if (a+ b)/2 is even.

Our next theorem gives the closed form for S2 which, unlike the closed form for S1, is
independent of the parity of n. The proof begins with (7), and proceeds in precisely the
same manner as the proof of Theorem 2. We leave the details to the reader.

Theorem 4. Let n ≥ 0. Let a ≥ 2, and b ≥ 0 both be even. Then

S2(n, a, b) =











1
L2
(b−a)/2

− 1
L2
an+(a+b)/2

, if (a+ b)/2 is even;

1
5

(

1
F 2
(b−a)/2

− 1
F 2
an+(a+b)/2

)

, if (a+ b)/2 is odd.

As a corollary of Theorem 4, we have

Corollary 5. Let a ≥ 2, and b ≥ 0 both be even. Then

5Fa

∞
∑

i=0

F2ai+b

(L2ai+b + La)
2 =







1
L2
(b−a)/2

, if (a+ b)/2 is even;

1
5F 2

(b−a)/2

, if (a+ b)/2 is odd.

Observe that, for n an odd integer,

αn

(αn + 1)2
=

αn (αn − 1)2

(αn + 1)2 (αn − 1)2
=

αn (αn − 1)2

(α2n − αnα−n)2
=

αn + α−n − 2

(αn − α−n)2

=

√
5Fn − 2

L2
n

. (8)

For n an odd integer, we also have

αn

(αn − 1)2
=

√
5Fn + 2

L2
n

, (9)

which we require in the sequel.
Our next theorem gives the closed forms for S3 and S4, where the assumption is that

a and b have different parities. We follow this theorem with a corollary that gives the
corresponding infinite sums.

4



Theorem 6. Let n ≥ 0. Let a ≥ 1, b ≥ 0. Then

S3(n, a, b) =

√
5Fb−a − 2

L2
b−a

−
√
5F2an+a+b − 2

L2
2an+a+b

, if a is odd and b is even,

S4(n, a, b) =

√
5Fb−a − 2

L2
b−a

−
√
5F2an+a+b − 2

L2
2an+a+b

, if a is even and b is odd.

Proof. With t = α, and taking into account the parities of a and b, we make use of the
Binet forms, together with (8), to transform the first equality in (7) into Fibonacci/Lucas
numbers.

As a corollary of Theorem 6, we have

Corollary 7. Let a ≥ 1, b ≥ 0. Then

∞
∑

i=0

F2ai+b
(

L2ai+b +
√
5Fa

)2 =

√
5Fb−a − 2√
5LaL2

b−a

, if a is odd and b is even,

∞
∑

i=0

L2ai+b
(

F2ai+b + La/
√
5
)2 =

5Fb−a − 2
√
5

FaL2
b−a

, if a is even and b is odd.

3 Finite sums II

In this section, we give results that are parallel to those presented in the previous section.
For a ≥ 1, and b ≥ 0, the finite sums that we consider are

S5(n, a, b) = La

n
∑

i=0

L2ai+b

(F2ai+b − Fa)
2 ,

S6(n, a, b) = 5Fa

n
∑

i=0

F2ai+b

(L2ai+b − La)
2 ,

S7(n, a, b) =
√
5La

n
∑

i=0

F2ai+b
(

L2ai+b −
√
5Fa

)2 ,

S8(n, a, b) =
Fa√
5

n
∑

i=0

L2ai+b
(

F2ai+b − La/
√
5
)2 .

Under certain restrictions on a and b, the closed forms for each of the finite sums defined in
the previous paragraph are derived from Lemma 8, which follows. Since the proof of Lemma
8 is similar to the proof of Lemma 1, we state it without proof. Note that, in Lemma 8,
the condition a 6= b ensures that denominators do not vanish when n = 0. Actually, in this
section, the possibility of vanishing denominators would not have arisen had we chosen to
present all finite sums with lower limit i = 1. However, to maintain consistency with the
results of Section 2, we have chosen to present all sums in this paper with lower limit i = 0.
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Lemma 8. Let t > 1 be a real number, and let n ≥ 0. Let a ≥ 1, b ≥ 0, with a 6= b. Then

(ta − t−a)
(

t2an+b − t−2an−b
)

(t2an+b + t−2an−b − ta − t−a)2
=

t2an+b−a

(1− t2an+b−a)2
− t2an+b+a

(1− t2an+b+a)2
. (10)

Our first theorem in this section gives the closed form for S5.

Theorem 9. Let n ≥ 0. Let a ≥ 1, b ≥ 1 be odd integers with a 6= b. Then

S5(n, a, b) =



































5
L2
(b−a)/2

− 1
F 2
an+(a+b)/2

, if n is even and (a+ b)/2 is even;

1
F 2
(b−a)/2

− 5
L2
an+(a+b)/2

, if n is even and (a+ b)/2 is odd;

5

(

1
L2
(b−a)/2

− 1
L2
an+(a+b)/2

)

, if n is odd and (a+ b)/2 is even;

1
F 2
(b−a)/2

− 1
F 2
an+(a+b)/2

, if n is odd and (a+ b)/2 is odd.

Proof. From Lemma 8 we have, due to the telescoping effect,

n
∑

i=0

(ta − t−a)
(

t2ai+b − t−2ai−b
)

(t2ai+b + t−2ai−b − ta − t−a)2
=

tb−a

(1− tb−a)2
− t2an+a+b

(1− t2an+a+b)2

=
1

(t(b−a)/2 − t−(b−a)/2)
2 − 1

(tan+(a+b)/2 − t−an−(a+b)/2)
2 . (11)

In (11), with t = α, we proceed as in the proof of Theorem 2.

The following is a corollary of Theorem 9.

Corollary 10. Let a ≥ 1, b ≥ 1 be odd integers with a 6= b. Then

La

∞
∑

i=0

L2ai+b

(F2ai+b − Fa)
2 =







5
L2
(b−a)/2

, if (a+ b)/2 is even;

1
F 2
(b−a)/2

, if (a+ b)/2 is odd.

In the next theorem, we give the closed form for S6, which, like the closed form for S5, is
a consequence of (11).

Theorem 11. Let n ≥ 0. Let a ≥ 2, b ≥ 0 be even integers with a 6= b. Then

S6(n, a, b) =











1
L2
(b−a)/2

− 1
L2
an+(a+b)/2

, if (a+ b)/2 is odd;

1
5

(

1
F 2
(b−a)/2

− 1
F 2
an+(a+b)/2

)

, if (a+ b)/2 is even.

As a corollary of Theorem 11, we have

Corollary 12. Let n ≥ 0. Let a ≥ 2, b ≥ 0 be even integers with a 6= b. Then

5Fa

∞
∑

i=0

F2ai+b

(L2ai+b − La)
2 =







1
L2
(b−a)/2

, if (a+ b)/2 is odd;

1
5F 2

(b−a)/2

, if (a+ b)/2 is even.
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Our next theorem gives the closed forms for S7 and S8, where the assumption is that a
and b have different parities. We follow this with a corollary that gives the corresponding
infinite sums.

Theorem 13. Let n ≥ 0. Let a ≥ 1, b ≥ 0. Then

S7(n, a, b) =

√
5Fb−a + 2

L2
b−a

−
√
5F2an+a+b + 2

L2
2an+a+b

, if a is odd and b is even,

S8(n, a, b) =

√
5Fb−a + 2

L2
b−a

−
√
5F2an+a+b + 2

L2
2an+a+b

, if a is even and b is odd.

Proof. With t = α, and taking into account the parities of a and b, we make use of the
Binet forms, together with (9), to transform the first equality in (11) into Fibonacci/Lucas
numbers.

The following is a corollary of Theorem 13.

Corollary 14. Let a ≥ 1, b ≥ 0. Then

∞
∑

i=0

F2ai+b
(

L2ai+b −
√
5Fa

)2 =

√
5Fb−a + 2√
5LaL2

b−a

, if a is odd and b is even,

∞
∑

i=0

L2ai+b
(

F2ai+b − La/
√
5
)2 =

5Fb−a + 2
√
5

FaL2
b−a

, if a is even and b is odd.

4 Infinite sums I

In this section, we present closed forms for infinite sums that are more general than those
in Corollaries 3, 5, and 7. We accomplish this via an algebraic identity that contains an
additional parameter, s. Here, and for the remainder of this paper, s is taken to be a
positive integer. The algebraic identity in question is given in Lemma 15. We state Lemma
15 without proof, since its proof is analogous to the proof of Lemma 1.

Lemma 15. Let t > 1 be a real number. Let n ≥ 0, a ≥ 1, b ≥ 0, and s ≥ 1. Then

(tas − t−as)
(

t2an+b − t−2an−b
)

(t2an+b + t−2an−b + tas + t−as)2
=

t2an+b−as

(1 + t2an+b−as)2
− t2an+b+as

(1 + t2an+b+as)2
. (12)

As a consequence of Lemma 15, we have

Lemma 16. Let t > 1 be a real number. Let a ≥ 1, b ≥ 0, and s ≥ 1. Then

∞
∑

i=0

(tas − t−as)
(

t2ai+b − t−2ai−b
)

(t2ai+b + t−2ai−b + tas + t−as)2
=

s−1
∑

i=0

t2ai+b−as

(1 + t2ai+b−as)2
. (13)
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Proof. Consider (12) for n > s. Then, by the telescoping effect,

n
∑

i=0

(tas − t−as)
(

t2ai+b − t−2ai−b
)

(t2ai+b + t−2ai−b + tas + t−as)2

=
s−1
∑

i=0

t2ai+b−as

(1 + t2ai+b−as)2
−

n
∑

i=n−s+1

t2ai+b+as

(1 + t2ai+b+as)2
. (14)

Upon letting n → ∞ in (14), we obtain (13).

Motivated by (13), we define, for a ≥ 1, b ≥ 0, and s ≥ 1,

Ts(a, b) =
s−1
∑

i=0

α2ai+b−as

(1 + α2ai+b−as)2
.

We then have
∞
∑

i=0

(αas − α−as)
(

α2ai+b − α−2ai−b
)

(α2ai+b + α−2ai−b + αas + α−as)2
= Ts(a, b). (15)

Taking into account the parities of a, b, and s, we make use of the Binet forms to transform
the left side of (15) into Fibonacci/Lucas numbers. The various outcomes are recorded in
the theorem that follows, which is the main result in this section.

Theorem 17. Let a ≥ 1, b ≥ 0, and s ≥ 1. Then

∞
∑

i=0

F2ai+b

(L2ai+b + Las)
2 =

1

5Fas

Ts(a, b), if b is even and a or s is even, (16)

∞
∑

i=0

F2ai+b
(

L2ai+b +
√
5Fas

)2 =
1√
5Las

Ts(a, b), if b is even and a and s are odd, (17)

∞
∑

i=0

L2ai+b
(

F2ai+b + Las/
√
5
)2 =

√
5

Fas

Ts(a, b), if b is odd and a or s is even, (18)

∞
∑

i=0

L2ai+b

(F2ai+b + Fas)
2 =

5

Las

Ts(a, b), if b is odd and a and s are odd. (19)

It is a simple matter to check that, with s = 1, the sums (16)-(19) produce all the infinite
sums in Corollaries 3, 5, and 7. Of course (16)-(19) yield an infinitude of infinite sums. With
a little effort, we can also write down pairs of infinite sums that converge to the same limit.
For instance, with (b, a, s) = (2, 3, 2), and (b, a, s) = (4, 3, 2), (16) produces

∞
∑

i=0

F6i+2

(L6i+2 + 18)2
=

∞
∑

i=0

F6i+4

(L6i+4 + 18)2
=

7

900
.

Again, with (b, a, s) = (1, 2, 2), and (b, a, s) = (3, 2, 2), (18) produces

∞
∑

i=0

L4i+1
(

F4i+1 + 7/
√
5
)2 =

∞
∑

i=0

L4i+3
(

F4i+3 + 7/
√
5
)2 =

45− 17
√
5

24
.
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The expectation is that Ts(a, b) has a Fibonacci connection. We demonstrate that is
the case for the special cases (a, b) = (1, 0), and (a, b) = (1, 1), by writing down explicit
expressions for Ts(1, 0) and Ts(1, 1) in terms of their rational and irrational parts. We begin
with an analysis of Ts(1, 0) under the assumption that s is even.

T2s(1, 0) =
2s−1
∑

i=0

α2i−2s

(α2i−2s + 1)2

=
2s−1
∑

i=0

1

(αi−s + α−i+s)2

=
s−1
∑

i=0

(

1

(α2i−s + α−2i+s)2
+

1

(α2i+1−s + α−2i−1+s)2

)

, (20)

so that

T2s(1, 0) =







∑s−1
i=0

(

1
L2
2i−s

+ 1
5F 2

2i−s+1

)

, if s ≥ 2 is even;
∑s−1

i=0

(

1
5F 2

2i−s
+ 1

L2
2i−s+1

)

, if s ≥ 1 is odd.
(21)

Furthermore, it follows from (8) that

Ts(1, 0) =
s−1
∑

i=0

√
5F2i−s − 2

L2
2i−s

, if s ≥ 1 is odd. (22)

Together, (21) and (22) can be used to evaluate Ts(1, 0), in terms of its rational and
irrational parts, for any integer s ≥ 1. Since the evaluation of Ts(1, 1) follows from similar
reasoning, we simply write down the results.

Ts(1, 1) =
s−1
∑

i=0

√
5F2i−s+1 − 2

L2
2i−s+1

, if s ≥ 2 is even. (23)

T2s+1(1, 1) =















1
4
, s = 0;
1
L2
s
+
∑s−1

i=0

(

1
L2
2i−s

+ 1
5F 2

2i−s+1

)

, if s ≥ 2 is even;

1
5F 2

s
+
∑s−1

i=0

(

1
5F 2

2i−s
+ 1

L2
2i−s+1

)

, if s ≥ 1 is odd.

(24)

With (21)-(24) in mind, we state the following corollary of Theorem 17.
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Corollary 18. If s ≥ 1 then

∞
∑

i=0

F2i

(L2i + Ls)
2 =

1

5Fs

Ts(1, 0), if s is even, (25)

∞
∑

i=0

F2i
(

L2i +
√
5Fs

)2 =
1√
5Ls

Ts(1, 0), if s is odd, (26)

∞
∑

i=0

L2i+1
(

F2i+1 + Ls/
√
5
)2 =

√
5

Fs

Ts(1, 1), if s is even, (27)

∞
∑

i=0

L2i+1

(F2i+1 + Fs)
2 =

5

Ls

Ts(1, 1), if s is odd. (28)

Proof. Let (a, b) = (1, 0). Then (25) and (26) follow from (16) and (17), respectively. Next
let (a, b) = (1, 1). Then (27) and (28) follow from (18) and (19), respectively.

5 Infinite sums II

The main theorem in this section, which gives infinite sums that generalize those in Corol-
laries 10, 12, and 14, is derived from our final algebraic identity. We first specify a condition
that excludes the possibility of vanishing denominators in this algebraic identity.

Condition 19. Let a ≥ 1, b ≥ 0, and s ≥ 1 be integers. Then we say that a, b, and s satisfy

Condition 19 if 2a|(as− b) implies that as− b < 0.

The results that follow are counterparts of results in Section 4, and can be proved simi-
larly. We therefore present what follows without proof.

Lemma 20. Let t > 1 be a real number. Let n ≥ 0, a ≥ 1, b ≥ 0, and s ≥ 1 satisfy

Condition 19. Then

(tas − t−as)
(

t2an+b − t−2an−b
)

(t2an+b + t−2an−b − tas − t−as)2
=

t2an+b−as

(1− t2an+b−as)2
− t2an+b+as

(1− t2an+b+as)2
. (29)

From Lemma 20 we obtain, by the telescoping effect,

Lemma 21. Let t > 1 be a real number. Let a ≥ 1, b ≥ 0, and s ≥ 1 satisfy Condition 19.

Then
∞
∑

i=0

(tas − t−as)
(

t2ai+b − t−2ai−b
)

(t2ai+b + t−2ai−b − tas − t−as)2
=

s−1
∑

i=0

t2ai+b−as

(1− t2ai+b−as)2
. (30)

Motivated by (30), we define

T 1
s (a, b) =

s−1
∑

i=0

α2ai+b−as

(1− α2ai+b−as)2
,
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where the parameters have the same restrictions as for Lemma 21. We then have

∞
∑

i=0

(αas − α−as)
(

α2ai+b − α−2ai−b
)

(α2ai+b + α−2ai−b − αas − α−as)2
= T 1

s (a, b). (31)

The main theorem in this section, which we now state, follows from (31).

Theorem 22. Let a ≥ 1, b ≥ 0, and s ≥ 1 satisfy Condition 19. Then

∞
∑

i=0

F2ai+b

(L2ai+b − Las)
2 =

1

5Fas

T 1
s (a, b), if b is even and a or s is even, (32)

∞
∑

i=0

F2ai+b
(

L2ai+b −
√
5Fas

)2 =
1√
5Las

T 1
s (a, b), if b is even and a and s are odd, (33)

∞
∑

i=0

L2ai+b
(

F2ai+b − Las/
√
5
)2 =

√
5

Fas

T 1
s (a, b), if b is odd and a or s is even, (34)

∞
∑

i=0

L2ai+b

(F2ai+b − Fas)
2 =

5

Las

T 1
s (a, b), if b is odd and a and s are odd. (35)

Before proceeding, we give two interesting equalities produced by Theorem 22. We have
found several others. With (b, a, s) = (2, 3, 2), and (b, a, s) = (4, 3, 2), (32) produces

∞
∑

i=0

F6i+2

(L6i+2 − 18)2
=

∞
∑

i=0

F6i+4

(L6i+4 − 18)2
=

3

100
.

Again, with (b, a, s) = (1, 3, 1), and (b, a, s) = (5, 3, 1), (35) produces

∞
∑

i=0

L6i+1

(F6i+1 − 2)2
=

∞
∑

i=0

L6i+5

(F6i+5 − 2)2
=

5

4
.

Also recall (3) in the introduction to this paper.
Next, for the special cases where (a, b) = (1, 0), and (a, b) = (1, 1), we write down

expressions for T 1
s (a, b) in terms of its rational and irrational parts. The results that we

present here, however, are less complicated than their counterparts in Section 4. The reason
is that, because of the possibility of vanishing denominators, T 1

s (1, 0) exists only for s odd,
while T 1

s (1, 1) exists only for s even. It follows from (9) that

T 1
s (1, 0) =

s−1
∑

i=0

√
5F2i−s + 2

L2
2i−s

, if s ≥ 1 is odd. (36)

We also have

T 1
s (1, 1) = 2

(s−2)/2
∑

i=0

√
5F2i+1 + 2

L2
2i+1

, if s ≥ 2 is even. (37)

With (36) and (37) in mind, we state the following corollary of Theorem 22. Note that,
due to the occurrence of vanishing denominators, (32) and (35) do not make a contribution
to Corollary 23.
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Corollary 23. If s ≥ 1 then

∞
∑

i=0

F2i
(

L2i −
√
5Fs

)2 =
1

5Ls

s−1
∑

i=0

5F2i−s + 2
√
5

L2
2i−s

, if s is odd, (38)

∞
∑

i=0

L2i+1
(

F2i+1 − Ls/
√
5
)2 =

2

Fs

(s−2)/2
∑

i=0

5F2i+1 + 2
√
5

L2
2i+1

, if s is even. (39)

For instance, with s = 1 and s = 2, (38) and (39) yield, respectively,

∞
∑

i=0

F2i
(

L2i −
√
5
)2 =

5 + 2
√
5

5
,

∞
∑

i=0

L2i+1
(

F2i+1 − 3/
√
5
)2 = 10 + 4

√
5.

6 Concluding comments

In this paper, we do not make use of Fibonacci/Lucas identities to prove our results. Rather,
we establish certain algebraic identities that translate to the Fibonacci and Lucas numbers
via the Binet forms. Here, the influence of the insightful work of Almkvist [1] is clear.
Almkvist’s paper was in response to the seminal paper of Backstrom [3], who initiates study
into finite and infinite sums with summands of the form

1

F2ai+b + c
, and

1

L2ai+b + c
,

for certain constants a, b, and c. Soon after, Popov [4, 5] offers alternative proofs of Back-
strom’s results, and produces further results similar in nature. Popov’s work relies upon well
known Fibonacci identities. Later, André-Jeannin [2], with his characteristic elegance, offers
more insight. This is followed by the contributions of Zhao [6, 7].

Finally, it is natural to ask if the results in this paper can be translated to the pair of
sequences defined, for all integers n, by

Un = pUn−1 − qUn−2, U0 = 0, U1 = 1,

Vn = pVn−1 − qVn−2, V0 = 2, V1 = p.

Here, p and q are real numbers with p2 − 4q 6= 0. In the case of q = −1, one takes each
of our results and simply replaces Fn by Un, Ln by Vn, and 5 by p2 + 4. The case where
q 6= −1 is more involved. The interested reader wishing to proceed in this direction can
obtain guidance from the work of Zhao [7].
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