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Abstract

Consider a fair n-sided die with faces numbered 1 to n. Several different methods

are used to compute the probability that every face has come up at least once when

face n appears for the k
th time. The results lead to a number of summation identities.

The probabilities are related to several sequences in Sloane’s On-Line Encyclopedia of

Integer Sequences.

1 Introduction

1.1 The puzzle

The warden meets with 23 new prisoners when they arrive. He tells them, “You may meet
today and plan a strategy. But after today, you will be in isolated cells and will have no
communication with one another.

“In the prison is a switch room, which contains two light switches labeled A and B, each of
which can be in either the on or the off position. I am not telling you their present positions.
The switches are not connected to anything.

“After today, from time to time whenever I feel so inclined, I will select one prisoner at
random and escort him to the switch room. This prisoner will select one of the two switches
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and reverse its position. He must move one, but only one of the switches. He can’t move
both but he can’t move none either. Then he’ll be led back to his cell.

“No one else will enter the switch room until I lead the next prisoner there, and he’ll be
instructed to do the same thing. I’m going to choose prisoners at random. I may choose the
same guy three times in a row, or I may jump around and come back.

“But, given enough time, everyone will eventually visit the switch room as many times
as everyone else. At any time any one of you may declare to me, ‘We have all visited the
switch room.

“If it is true, then you will all be set free. If it is false, and somebody has not yet visited
the switch room, you will be fed to the alligators.”

Here’s the question: What is the strategy the prisoners devise?

That is the puzzle as presented by Tom and Ray Magliozzi on their National Public
Radio show Car Talk [6].

1.2 A solution

One prisoner is selected as the monitor. The other 22 prisoners are given the following
instructions: the first two times you enter the switch room with switch A in the off position,
flip it to the on position; otherwise flip switch B. The monitor’s first visit to the switch room
is used to set switch A in the off position if it is not already there or flip switch B otherwise.
The monitor now begins to count visits: whenever the monitor enters the switch room after
that first time, and finds switch A on, it is flipped off, and 1 is added to the visits total;
otherwise switch B is flipped. When the visits total reaches 43, the monitor announces that
all 22 other prisoners have each been to the switch room at least once. This is so since 21
prisoners can account for at most 42 cases of the monitor finding switch A in the on position.

1.3 A variation

In this note, the switches are removed from the puzzle and the number of prisoners is some
n ≥ 1. A monitor is elected whose duty is to declare, when escorted to the interview room,
that all the other prisoners have been to the interview room at least once. In this situation,
the puzzle now becomes a probability problem. On visit k by the monitor, what is the
probability that all n− 1 other prisoners have been to the interview room at least once?

This version of the puzzle is similar to the occupancy problems of the type discussed by
David and Barton [2]. In the terminology of that text, the problem would be presented as:
If balls are distributed one at a time randomly into boxes numbered 1, 2, 3, . . . , n, what is the
probability that there are no empty boxes when the kth ball is added to box n? Or, the version
used here, if an n-sided fair die is rolled repeatedly, what is the probability that every face
has come up at least once when face n comes up for the kth time?

2



2 The natural solution

Let n, k be positive integers. Roll an n-sided fair die repeatedly. We compute the probability
that every face has occurred at least once when face n comes up for the kth time.

When face n comes up for the kth time, and every other face has occurred at least once,
the preceding tosses will consist of ji ≥ 1 occurrence of faces i = 1, 2, . . . , n − 1 and k − 1
occurrences of face n. The probability of any one such pattern is given by

(

1

n

)j1+j2+···+jn−1+k−1

.

The number of such patterns is given by the multinomial coefficient
(

j1 + j2 + · · ·+ jn−1 + k − 1

j1, j2, . . . , jn−1, k − 1

)

.

So the probability of faces 1 through n − 1 each occurring at least once and face n

occurring k − 1 times is

∞
∑

j1=1

∞
∑

j2=1

· · ·

∞
∑

jn−1=1

(

1

n

)j1+j2+···+jn−1+k−1(
j1 + j2 + · · ·+ jn−1 + k − 1

j1, j2, . . . , jn−1, k − 1

)

.

It follows that the probability every face has occurred at least once when face n comes
up for the kth time is

1

n

∞
∑

j1=1

∞
∑

j2=1

· · ·

∞
∑

jn−1=1

(

1

n

)j1+j2+···+jn−1+k−1(
j1 + j2 + · · ·+ jn−1 + k − 1

j1, j2, . . . , jn−1, k − 1

)

=
∞
∑

j1=1

∞
∑

j2=1

· · ·

∞
∑

jn−1=1

(

1

n

)j1+j2+···+jn−1+k (
j1 + j2 + · · ·+ jn−1 + k − 1

j1, j2, . . . , jn−1, k − 1

)

.

3 The inclusion-exclusion solution

The probability is computed again, this time by inclusion-exclusion. For j = 1, 2, . . . , n− 1,
let Aj be the event that face j has not come up when face n appears for the kth time. Then
the probability that every face has come up at least once when face n is tossed for the kth

time is
p(n, k) = 1− Pr(A1 or A2 or · · · or An−1).

Using the summation formula

∞
∑

m=k

(

m− 1

k − 1

)

xm =

(

x

1− x

)k

,
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it follows that for each of the
(

n−1
j

)

possible choices of j of the events, and for any m ≥ k,
the probability that face n appears k− 1 times in the first m− 1 tosses, and face n appears
for the kth time on toss m, is given by

(

n− j − 1

n

)m−k (
1

n

)k−1(
m− 1

k − 1

)

1

n
.

Consequently,

Pr(Ai1 and Ai2 and · · · and Aij) =
∞
∑

m=k

(

1

n

)k (
n− j − 1

n

)m−k (
m− 1

k − 1

)

=

(

1

n

)k (
n

n− j − 1

)k ∞
∑

m=k

(

n− j − 1

n

)m(
m− 1

k − 1

)

=

(

1

n− j − 1

)k
(

n−j−1
n

)k

(

1− n−j−1
n

)k
=

1

(j + 1)k
,

So, by inclusion-exclusion, the probability that every face has occurred at least once when
face n is rolled for the kth time is

(

1

1

)k (
n− 1

0

)

−

(

1

2

)k (
n− 1

1

)

+ · · ·+

(

1

j

)k (
n− 1

j − 1

)

+ · · ·+ (−1)n−1

(

1

n

)k (
n− 1

n− 1

)

=
n
∑

j=1

(−1)j−1

(

1

j

)k (
n− 1

j − 1

)

.

This leads to the unusual-looking identity

∞
∑

j1=1

∞
∑

j2=1

· · ·

∞
∑

jn−1=1

(

1

n

)j1+j2+···+jn−1+k (
j1 + j2 + · · ·+ jn−1 + k − 1

j1, j2, . . . , jn−1, k − 1

)

=
n
∑

j=1

(−1)j−1

(

1

j

)k (
n− 1

j − 1

)

.

4 The waiting time solution

The probability can also be thought of as a waiting time problem. See Feller [3, p. 166].
Think of the rolls of the die as a sequence of Bernoulli trials with success being the occurrence
of face n with probability p = 1

n
and failure being the occurrence of any other face with

probability q = 1− p = 1− 1
n
. For t ≥ 0, the probability of the kth success on trial k + t is
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the probability that exactly t failures precede the kth success. The probability of exactly t

failures in k + t− 1 trials followed by success at trial k + t is given by

Pr(kth success at trial k + t) =

(

k + t− 1

t

)(

1

n

)k−1(

1−
1

n

)t
1

n

=

(

k + t− 1

t

)(

1

n

)k (

1−
1

n

)t

.

Next, an expression for the probability that faces 1, 2, . . . , n− 1, but not n, all occur in
t rolls (t ≥ n− 1, necessarily) is derived.

Recall that
{

t

n−1

}

, the Stirling number of the second kind, gives the number of ways of
distributing t distinguishable balls (tosses of a die in our case) in n − 1 indistinguishable
boxes (faces in our case) with no box empty. See Graham, Knuth, and Patashnik [4, p. 257]
for facts about the Stirling numbers. If the boxes are now made distinguishable, there are
(n − 1)!

{

t

n−1

}

distributions possible. Of the (n − 1)t possible patterns of length t of faces
1, 2, . . . , n − 1, the probability that each of those n − 1 faces occurs at least once, with no
face n, is therefore given by

Pr(faces 1, 2, . . . , n− 1 all occur in t rolls) =
(n− 1)!

{

t

n−1

}

(n− 1)t
.

It follows that the probability that every face has appeared at least once when face n

occurs for the kth time is given by

∞
∑

t=n−1

Pr(kth success at trial k + t) Pr(faces 1, 2, . . . , n− 1 all occur in t rolls)

=
∞
∑

t=n−1

(n− 1)!
{

t

n−1

}

(n− 1)t

(

1

n

)k (

1−
1

n

)t(
k + t− 1

t

)

The sequence T (t,m) = m!
{

t

m

}

(read by rows with t ≥ 0, 0 ≤ m ≤ t) appears in the
On-Line Encyclopedia of Integer Sequences as A131689. There are two formulas for the
entries in this sequence not mentioned in the OEIS.

One, which is virtually the definition of m!
{

t

m

}

, is

m!

{

t

m

}

=
∑

St

(

t

t1, t2, . . . , tm

)

,

where the sum is taken over the set St of all partitions of t into m positive parts. This is
so since the multinomial coefficient

(

t

t1,t2,...,tm

)

gives the number of arrangements of t1 1’s, t2
2’s, and so on, up to tm m’s.
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A second expression for m!
{

t

m

}

, also involving the sum over St of all partitions of t into
m positive parts, is not so obvious:

m!

{

t

m

}

=
∑

St

1t12t2 · · ·mtm .

To see this is correct, let U(t,m) = 1
m!

∑

St
1t12t2 · · ·mtm . For convenience we will declare

U(0, 0) = 1. Note that U(t, 0) = 0 for t > 0 since St will be empty in such cases. These are
the same initial conditions satisfied by the Stirling numbers:

{

0

0

}

= 1 and

{

t

0

}

= 0 for t > 0.

In addition, the Stirling numbers satisfy the recursion

{

t

m

}

= m

{

t− 1

m

}

+

{

t− 1

m− 1

}

for t > 0.

We will show that U satisfies the same recursion. Let t,m > 0. Then, letting A be the
set of partitions of t− 1 into m positive parts, and letting B be the set of partitions of t− 1
into m− 1 positive parts, we see

mU(t− 1,m) + U(t− 1,m− 1)

=
m

m!

∑

A

1t12t2 · · ·mtm +
1

(m− 1)!

∑

B

1t12t2 · · · (m− 1)tm−1

=
1

m!

∑

A

1t12t2 · · ·mtm+1 +
1

m!

∑

B

1t12t2 · · · (m− 1)tm−1m

The first sum accounts for all terms in U(t,m) with m raised to a power bigger than 1
while the second sum accounts for the terms with m raised to the first power, and so

mU(t− 1,m) + U(t− 1,m− 1) = U(t,m).

Since
{

t

m

}

and U(t,m) have the same initial conditions and obey the same recursion, it
follows that

m!

{

t

m

}

=
∑

St

1t12t2 · · ·mtm .

Comparing the various expressions derived here with the result of the inclusion-exclusion
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computation gives several summation identities:

p(n, k) =
n
∑

j=1

(−1)j−1

(

1

j

)k (
n− 1

j − 1

)

=
∞
∑

t=n−1

(n− 1)!
{

t

n−1

}

nk+t

(

k + t− 1

t

)

=
∞
∑

t=n−1

∑

St

1

nk+t

(

t

t1, t2, . . . , tm

)(

k + t− 1

t

)

=
∞
∑

t=n−1

∑

St

1t12t2 · · · (n− 1)tn−1

nk+t

(

k + t− 1

t

)

,

where, in the last two expressions, the sums are taken over the set St of all ordered partitions,
(t1, t2, . . . , tn−1), of t into n− 1 positive parts.

5 The Markov process solution

The problem can also be modeled as a Markov process with two absorbing states. The
notation and terminology as given in Kemeny and Snell [5, p. 43] is used in what follows.

In Figure 1, the initial state is labeled
[

0
0

]

. Each roll of the die determines a state
transition. If face n comes up, move to the state directly above the current state. If a face
other than n comes up for the first time, move to the state to the right of the current state.
In each state, the upper parameter gives the number of times face n has been tossed, and the
lower parameter gives the number of different faces from 1, 2, 3, . . . , n−1 that have come up.
There is a loop back for every state that is omitted from the figure for the sake of clarity:
there is no change of state for faces 1, 2, . . . , n − 1 when they come up after the first time.
Finally, the topmost state and the rightmost state are absorbing states. The probability of
looping back in those two states is 1.

For each of the non-absorbing states
[

s

t

]

, the probability of moving to the state directly
above is 1

n
, and the probability of moving to the state directly to the right is n−1−s

n
. The

probability of staying in the same state is s
n
. Number the transient states left to right and

then from bottom to top, starting with s1 for state
[

0
0

]

, ending with k(n− 1) for state
[

n−2
k−1

]

.
Let sk(n−1)+1 be the absorbing state on the right, and finally, let sk(n−1)+2 be the absorbing
state at the top of the diagram. With this numbering of the states, and the matrix columns
taken in the order sk(n−1)+1, sk(n−1)+2, s1, s2, s3, . . . , sk(n−1), the canonical transition matrix
has the form

P =

[

I 0
R Q

]

=





1 0 0 0 0 · · · 0
0 1 0 0 0 · · · 0
R Q



 ,
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Figure 1: The Markov Process with absorbing states.

where R is the k(n− 1)× 2 matrix giving the probabilities of moving from a transient state
to one of the absorbing states, and Q is the k(n−1)×k(n−1) matrix giving the probabilities
of moving between the transient states.
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As a small example, for the case n = 5 and k = 3, the canonical matrix is

P =





1 0 0 0 0 · · · 0
0 1 0 0 0 · · · 0
R Q



 =







































































1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 4
5

0 0 1
5

0 0 0 0 0 0 0

0 0 0 1
5

3
5

0 0 1
5

0 0 0 0 0 0

0 0 0 0 2
5

2
5

0 0 1
5

0 0 0 0 0

1
5

0 0 0 0 3
5

0 0 0 1
5

0 0 0 0

0 0 0 0 0 0 0 4
5

0 0 1
5

0 0 0

0 0 0 0 0 0 0 1
5

3
5

0 0 1
5

0 0

0 0 0 0 0 0 0 0 2
5

2
5

0 0 1
5

0

1
5

0 0 0 0 0 0 0 0 3
5

0 0 0 1
5

0 1
5

0 0 0 0 0 0 0 0 0 4
5

0 0

0 1
5

0 0 0 0 0 0 0 0 0 1
5

3
5

0

0 1
5

0 0 0 0 0 0 0 0 0 0 2
5

2
5

1
5

1
5

0 0 0 0 0 0 0 0 0 0 0 3
5







































































.

In this example, the fundamental matrix N = (I −Q)−1 is given by

N =





























































1 1 1 1 1
5

9
20

47
60

77
60

1
25

61
400

1489
3600

3799
3600

0 5
4

5
4

5
4

0 5
16

35
48

65
48

0 5
64

185
576

575
576

0 0 5
3

5
3

0 0 5
9

25
18

0 0 5
27

95
108

0 0 0 5
2

0 0 0 5
4

0 0 0 5
8

0 0 0 0 1 1 1 1 1
5

9
20

47
60

77
60

0 0 0 0 0 5
4

5
4

5
4

0 5
16

35
48

65
48

0 0 0 0 0 0 5
3

5
3

0 0 5
9

25
18

0 0 0 0 0 0 0 5
2

0 0 0 5
4

0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 5
4

5
4

5
4

0 0 0 0 0 0 0 0 0 0 5
3

5
3

0 0 0 0 0 0 0 0 0 0 0 5
2





























































.

The probability we are interested is the (1, 1) entry in the matrix product B = NR.
That entry gives the probability that the state s13 has been reached starting from s1, and
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consequently that all five faces of the die will have come up when face 5 is rolled for the
third time.

We find

B =





























































12019
18000

5981
18000

415
576

161
576

85
108

23
108

7
8

1
8

137
300

163
300

25
48

23
48

11
18

7
18

3
4

1
4

1
5

4
5

1
4

3
4

1
3

2
3

1
2

1
2





























































,

which agrees with

p(5, 3) =
5
∑

j=1

(−1)j−1

(

1

j

)3(
4

j − 1

)

=
12019

18000
.

The particularly simple structure of the transition matrix Q makes it possible to compute
the (1, 1) entry in NR = (I −Q)−1R easily. Let A and D be the n− 1× n− 1 matrices

A =

























0 n−1
n

0 0 · · · 0

0 1
n

n−2
n

0 · · · 0

0 0 2
n

n−3
n

· · · 0

...
...

...
...

...

0 0 0 0 0 n−2
n

























and D =

























1
n

0 0 0 · · · 0

0 1
n

0 0 · · · 0

0 0 1
n

0 · · · 0

...
...

...
...

...

0 0 0 0 0 1
n

























.

For I representing identity matrices of appropriate sizes and with 0 representing the
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n− 1× n− 1 zero matrix, I −Q is the k × k block matrix

I −Q =

















I − A −D 0 0 · · · 0

0 I − A −D 0 · · · 0

...
...

...
...

...

0 0 0 0 · · · I − A

















.

The matrix D = 1
n
I commutes with I − A. Consequently, N = (I −Q)−1 is

N =

















(I − A)−1 D(I − A)−2 D2(I − A)−3 D3(I − A)−4 · · · Dk−1(I − A)−k

0 (I − A)−1 D(I − A)−2 D2(I − A)−3 · · · Dk−2(I − A)−k+1

...
...

...
...

...

0 0 0 0 · · · (I − A)−1

















.

The matrix I − A can be written as

I − A =































1 −
n− 1

n
0 0 · · · 0

0 1−
1

n
−
n− 2

n
0 · · · 0

0 0 1−
2

n
−
n− 3

n
· · · 0

...
...

...
...

...

0 0 0 0 0 1−
n− 2

n































=
1

n

























n −(n− 1) 0 0 · · · 0

0 n− 1 −(n− 2) 0 · · · 0

0 0 n− 2 −(n− 3) · · · 0

...
...

...
...

...

0 0 0 0 0 2

























That last matrix can be diagonalized, with the eigenvalues n, n− 1, n− 2, . . . , 2, in that
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order, along the diagonal, by multiplying on the left and right by

S = S−1 =

























(

n−1
0

)

−
(

n−1
1

) (

n−1
2

)

−
(

n−1
3

)

· · · (−1)n
(

n−1
n−2

)

0 −
(

n−2
0

) (

n−2
1

)

−
(

n−2
2

)

· · · (−1)n
(

n−2
n−3

)

0 0
(

n−3
0

)

−
(

n−3
1

)

· · · (−1)n
(

n−3
n−4

)

...
...

...
...

...

0 0 0 · · · · · · (−1)n
(

1
0

)

























Letting E be that diagonal matrix, so that I − A = 1
n
SES, and assembling the various

pieces, the (1, 1) entry in B = NR is
k
∑

j=1

1

n
cj,

where cj is the (1, n− 1) entry in

Dj−1(I − A)−j =

(

1

n
I

)j−1(
1

n
SES

)

−j

= nSE−jS.

That gives one more expression for p(n, k):

p(n, k) =
k
∑

j=1

1

n

n−1
∑

m=1

n

(

n− 1

m− 1

)

(−1)m−1

(n−m+ 1)j
(−1)n

(

n−m

n−m− 1

)

=
k
∑

j=1

n−1
∑

m=1

(−1)n+m−1

(

n− 1

m− 1

)

n−m

(n−m+ 1)j
.

6 Related entries in the OEIS

Let p(n, k) denote the probability that all faces have appeared at least once when face n

occurs for the kth time. This probability is related to a family of integer sequences, several of
which are given in the OEIS. Let Ln be the least common multiple of the integers 1, 2, 3, . . . , n,
and let

Gn(x) =
1

∏n

j=1(1−
Ln

j
x)

=
n!

∏n

j=1(j − Lnx)
= n!

n
∏

j=1

1

(j − Lnx)
.

For n = 1, 2, 3, 4, 5, the functions Gn(x) are generating functions for sequences in the

12



OEIS:

A000012 : G1(x) = 1 + x+ x2 + x3 + · · ·+ xn + · · ·

A126646 : G2(x) = 1 + 3x+ 7x2 + 15x3 + 31x4 + · · ·+ (2n+1
− 1)xn + · · ·

A001240 : G3(x) = 1 + 11x+ 85x2 + 575x3 + · · ·

A028037 : G4(x) = 1 + 25x+ 415x2 + 5845x3 + · · ·

A103878 : G5(x) = 1 + 137x+ 12019x2 + · · ·

The generating functions in this family are related in a simple way involving the proba-
bilities

p(n, k) =
n
∑

j=1

(−1)j−1

(

1

j

)k (
n− 1

j − 1

)

.

In fact,

Gn(x) =
∞
∑

k=0

[

n
∑

j=1

(−1)j−1

(

1

j

)k (
n− 1

j − 1

)(

nLk
n

j

)

]

xk

=
∞
∑

k=0

[

n
∑

j=1

(−1)j−1

(

Ln

j

)k (
n

j

)

]

xk.

To show this is the expansion of Gn(x), it is sufficient to determine the expansion of

gn(x) =
n
∏

j=1

1

1− 1
j
x
,

and then replace x with Lnx.
The partial fraction expansion of gn(x) is

gn(x) =
n
∏

k=1

1

1− 1
k
x
=

A1

1− x
1

+
A2

1− x
2

+ · · ·+
An

1− x
n

.

Consequently

1 = A1

n
∏

k=1

k 6=1

(

1−
x

k

)

+ A2

n
∏

k=1

k 6=2

(

1−
x

k

)

+ · · ·+ An

n
∏

k=1

k 6=n

(

1−
x

k

)

.
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For each j = 1, 2, . . . , n, setting x = j in turn gives

1 = Aj

n
∏

k=1

k 6=j

(

1−
j

k

)

= (−1)j−1 j!(n− j)!Aj

n!
,

and so

Aj = (−1)j−1

(

n

j

)

.

It follows that

gn(x) =
∞
∑

k=0

[

n
∑

j=1

Aj

(

1

j

)k
]

xk =
∞
∑

k=0

[

n
∑

j=1

(−1)j−1

(

1

j

)k (
n

j

)

]

xk

as promised.
The probabilities p(n, k) are also related to a number of sequences in the OEIS that are

obtained from iterated sums of harmonic numbers.
A family of sequences is defined recursively by

h1 = (1, 1, 1, . . . , 1, . . .)

so h1,k = 1 for all k ≥ 1.
For n > 1, the kth term of the sequence hn is given by

hn,k =
k
∑

j=1

h(n− 1, j)

j
.

The first few sequences in this family are

h1 = (1, 1, 1, . . . , 1, . . .)

h2 =

(

1,
3

2
,
11

6
,
25

12
,
137

60
,
49

20
,
363

140
,
761

280
,
7129

2520
,
7381

2520
,
83711

27720
,
86021

27720
,
1145993

360360
,
1171733

360360
, . . .

)

h3 =

(

1,
7

4
,
85

36
,
415

144
,
12019

3600
,
13489

3600
,
726301

176400
,
3144919

705600
,
30300391

6350400
,
32160403

6350400
,
4102360483

768398400
, . . .

)

h4 =

(

1,
15

8
,
575

216
,
5845

1728
,
874853

216000
,
336581

72000
,
129973303

24696000
,
1149858589

197568000
,
101622655189

16003008000
, . . .

)

h5 =

(

1,
31

16
,
3661

1296
,
76111

20736
,
58067611

12960000
,
68165041

12960000
,
187059457981

31116960000
,
3355156783231

497871360000
, . . .

)

The terms of the sequence h2 are the harmonic numbers, with the kth term commonly
written as Hk. These are the partial sums of the harmonic series.
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The numerators of the terms of these sequences, with all fractions reduced to lowest
terms, are listed in the OEIS.

A001008 : 1, 3, 11, 25, 137, 49, 363, 761, 7129, 7381, 83711, 86021, 1145993, 1171733, . . .

A027459 : 1, 7, 85, 415, 12019, 13489, 726301, 3144919, 30300391, 32160403, 4102360483, . . .

A027462 : 1, 15, 575, 5845, 874853, 336581, 129973303, 1149858589, 101622655189, . . .

A072913 : 1, 31, 3661, 76111, 58067611, 68165041, 187059457981, 3355156783231 . . .

Theorem 1. For n, k ≥ 1, we have h(n, k) = kp(k, n).

Proof. The proof will be by induction. For n = 1 and all k ≥ 1, we see

h(1, k) = 1 = k

(

1

k

)

= kp(k, 1).

Assuming that h(n− 1, k) = kp(k, n− 1) for some n ≥ 2 and all k ≥ 1, we see that, for
any k ≥ 1,

h(n, k) =
k
∑

j=1

h(n− 1, j)

j
=

k
∑

j=1

jp(j, n− 1)

j

=
k
∑

j=1

j
∑

m=1

(−1)m−1 1

mn−1

(

j − 1

m− 1

)

=
k
∑

m=1

k
∑

j=m

(−1)m−1 1

mn−1

(

j − 1

m− 1

)

=
k
∑

m=1

(−1)m−1 1

mn

(

k
∑

j=m

m

(

j − 1

m− 1

)

)

=
k
∑

m=1

(−1)m−1 1

mn

(

k

(

k − 1

m− 1

))

= kp(k, n).

The next to last equality follows from the upper summation identity,

s
∑

m=t

(

m

t

)

=

(

s+ 1

t+ 1

)

for s ≥ t,

that shows

k
∑

j=m

m

(

j − 1

m− 1

)

= m

k
∑

j=m

(

j − 1

m− 1

)

= m

(

k

m

)

= m

(

k

m

)(

k − 1

m− 1

)

= k

(

k − 1

m− 1

)

.
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It follows from Theorem 1 that if the numerator of h(n, k) and k are relatively prime,
then the numerator of p(k, n) is the same as the numerator of h(n, k), as given in the OEIS
entries listed above, and the denominator of p(k, n) is k times the denominator of h(n, k).
That observation leads to the question of when the numerator of h(n, k) and k are relatively
prime.

Theorem 2. If p ≥ 5 is a prime, then p divides the numerator of h(2, p(p− 1)) (written in
lowest terms), and consequently the numerator of h(2, p(p−1)) and p(p−1) are not relatively
prime.

Proof. Carlitz [1] established an extension of Wolstenholme’s theorem by showing that for a
prime p ≥ 5

1

kp+ 1
+

1

kp+ 2
+

1

kp+ 3
+ · · ·+

1

(k + 1)p− 1
≡ 0 (mod p2),

so that p2 is a factor of the numerator of that sum written in lowest terms. Now

h(2, p(p− 1)) =

p(p−1)
∑

j=1

1

j
=

(

p−2
∑

k=0

p−1
∑

j=1

1

kp+ j

)

+
1

p
+

1

2p
+ · · ·+

1

(p− 1)p

=

(

p−2
∑

k=0

p−1
∑

j=1

1

kp+ j

)

+
1

p

(

1 +
1

2
+ · · ·+

1

(p− 1)

)

.

For each k = 0, 1, . . . , p− 2, write, in lowest terms,

1

kp+ 1
+

1

kp+ 2
+

1

kp+ 3
+ · · ·+

1

(k + 1)p− 1
=

p2nk

mk

.

So

h(2, p(p− 1)) =
1

p

(

p2n0

m0

)

+

p−2
∑

k=0

p2nk

mk

=
pn0

m0

+

p−2
∑

k=0

p2nk

mk

.

Since p does not divide the denominators mk, it follows that the numerator of h(2, p(p− 1))
is a multiple of p.

In addition to the values of k given by Theorem 2, there are rare sporadic values of k not
relatively prime to the numerator of h(n, k). The nine such sporadic values of k less than
500, 000 are listed in the following table.

16



k gcd of numerator
of h(2, k) and k

77 11
1247 43
9328 11
102608 11
102718 11
116413 11
116501 11
342441 1153
372780 109

Extensive numerical experimentation suggests that the numerator of h(n, k) and k are
relatively prime for all n ≥ 3 and all k ≥ 1. That leads to the following conjecture:

Conjecture 3. For n ≥ 3 and k ≥ 1, with fractions written in lowest terms, the numerator
of p(k, n) equals the numerator of h(n, k), and the denominator of p(k, n) is k times the
denominator of h(n, k).

7 Conclusion

The probability that when a fair n-sided die with faces numbered 1 to n is tossed repeatedly,
every face has come up at least once when face n appears for the kth time is computed
in several different ways. Comparing the results gives a number of summation identities
involving binomial coefficients. The probability is related to a family of sequences in the
OEIS.

What may initially seem paradoxical is the slow rate at which the value of k increases as
n increases in order to guarantee say .99 probability that all n faces have appeared at least
once when face n comes up for the kth time. For example, for n = 2, the probability that
both faces have come up first exceeds .99 for k = 7. For n = 10, it is k = 10. For n = 100,
it is k = 14. For n = 1000, it is k = 17. For n = 10000, it is k = 20. These values suggest k
grows as the log of n.
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