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Abstract

In 1966, Rosa introduced, among others, α- and β-labelings as tools to solve the

isomorphic decomposition problem of the complete graph. Ten years later, Sheppard

calculated the number of α- and β-labeled graphs with n edges. In this paper we use

an extended version of the adjacency matrix of a graph to determine the number of

gracefully labeled graphs with n edges; furthermore, we also calculate the number of

them withm vertices for every suitable value ofm. In addition, we use this technique to

determine the number of labeled graphs for other types of labelings as the harmonious,

felicitous, and elegant.

1 Introduction

By a graph we mean a finite undirected graph with no loops or multiple edges (for all
undefined graph-theoretical terminology see [3, 4]). In addition, graphs considered here have
no isolated vertices. By a labeling f of a graph G, of order m and size n, we understand an
injective mapping from V (G) into a subset of the non-negative integers. By Lf we denote
the set of labels f(vi) of the vertices vi of G. The set Wf is formed by all the numbers
|f(vi)− f(vj)| where vivj is an edge of G.

Now consider a labeling f of a graph G of size n and the following conditions:

(a) Lf ⊆ {0, 1, . . . , n};
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(b) Wf = {1, 2, . . . , n};

(c) there exists λ, λ ∈ {0, 1, . . . , n}, such that for any edge vivj of the graph G, either
f(vi) ≤ λ < f(vj) or f(vj) ≤ λ < f(vi) holds.

A labeling satisfying the conditions (a) and (b) is called a β-labeling (or graceful labeling).
If in addition the condition (c) is satisfied, we have an α-labeling.

For every v ∈ V (G), the number f(v) is called the label of v; for every uv ∈ E(G), the
number |f(u) − f(v)| is called the weight of uv. When f is a β-labeling we say that G is
graceful or it is β-labeled ; if f is an α-labeling we say that G is an α-graph or it is α-labeled.
The number λ in (c) is called the boundary value of f .

These labelings have been intensively studied since their introduction by Rosa [9] in the
mid-sixties. Rosa called them β- and α-valuations, respectively. The term graceful labeling
was introduced by Golomb [5] years later to refer to Rosa’s β-valuation, and it is the standard
name nowadays. Multiple families of graphs have been proven to be graceful; however, the
graceful tree conjecture (that states that every tree is graceful) remains unsolved. For more
information about graph labelings, the interested reader is refered to Gallian’s survey [4].

Let G be a graph of order m and size n. It is well-known that if G is graceful, then
m− n ≤ 1. Also, if G is an α-graph, then G is bipartite. Suppose that f is a β-labeling of
G, then its complementary labeling f , defined by f(v) = n − f(v), for every v ∈ V (G), is
also a β-labeling. This fact can be used to prove that the number of different β-labelings of
G is even, except when G ∼= K2.

When f is an α-labeling of G with boundary value λ, the α-labeling f−1 of G given by,

f−1(v) = λ− f(v) (mod n+ 1),

is called the inverse labeling of f . Thus, depending on the symmetry of the structure of G,
the number of different α-labelings of G is a multiple of 4.

In 1976, Sheppard [10] counted the number of different α- and β-labeled graphs with n

edges. He used a sequence of integers to represent the labelings, showing the existence of
an injective correspondence between the size n and these n-element sequences. Sheppard
proved that the number of β-labeled graphs of size n is n!. He also counted the number of
α-labeled graphs of size n to be
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(
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when n is odd.
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In Section 2 we introduce another representation of gracefully labeled graphs which sim-
plifies the attainment of the previous formulas. We also use this representation to count the
number of labeled graphs where the labeling used is harmonious, felicitous, or elegant. In
Section 3 we determine the exact number of gracefully labeled graphs of size n and order m.

2 Graceful Triangles

Let f be a β-labeling of a graph G of order m and size n. The β-labeled graph G can be
described by means of matrices. One such matrix is the graceful matrix A(G) = [aij], where
aij = 1 if there exists uv ∈ E(G) such that f(u) = i and f(v) = j, and aij = 0 otherwise, for
0 ≤ i, j ≤ n. These matrices were introduced by Zhi-Zeng [14]. The graceful matrix is just
an extension of the adjacency matrix and as this one, it is symmetric and all the elements
in the main diagonal equal zero. Therefore, all the characteristics of the β-labeled graph
G can be seen in the triangular arrangement formed by the cells aij of A(G) where i < j,
0 ≤ i ≤ n− 1, and 1 ≤ j ≤ n. We call this arragement the graceful triangle. In Figure 1 we
show a β-labeled graph of order 6 and size 10 together with its graceful triangle, where the
adjacencies have been represented by dots.

Figure 1: Graceful Triangle

The graceful matrix tool has been used by other authors. Barrientos [1], Zhi-Zeng [14],
and Shiue and Lu [11], use it to prove the existence of α- and β-labelings for certain families
of graphs. In addition, Haviar and Ivaška [7] use, in their book, a similar tool to count these
types of labeled graphs, providing an alternative proof to Sheppard’s result.

In general, for a β-labeled graph G of order m and size n, its graceful triangle contains n
diagonals d1, d2, . . . , dn, where dk is formed by the cells aij where j−i = n+1−k, 1 ≤ k ≤ n.
Thus dk has exactly k cells. Moreover, each diagonal contains exactly one adjencency or dot.

If in a triangular arrangement with n diagonals, every diagonal has one dot, then clearly
the arrangement is the graceful triangle of a β-labeled graph of size n. Thus, we can use
them to count the number of β-labeled graphs with n edges.
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Let d1, d2, . . . , dn be the diagonals of a triangular arrangement. Since for every 1 ≤ k ≤ n,
the diagonal dk has k cells and only one of them can be present, that is, contains a dot, in a
graceful triangle, it is possible to construct n! of these triangles, i.e., there are n! β-labeled
graphs of size n. Within a graceful triangle, when all the adjacencies are rotated around the
axis formed by the cells aij with i+ j = n, the resulting graceful triangle corresponds to the
complementary labeling of the original. Furthermore, when an α-labeling f , with boundary
value λ, is represented in a triangular arrangement, all the adjacencies lie in a rectangle with
corners a0n, a0(λ+1)aλ(λ+1), aλn. We refer to this rectangle as the rectangle determined by λ.
An example of this fact is shown in Figure 2 for an α-graph of size 7 and boundary value 3.

Figure 2: Triangular representation of an α-labeling

Notice that the inverse labeling of f is obtained rotating this rectangle by 180 degrees.
This representation of α-labelings is extremely useful to count the number of α-labeled

graphs of size n. In fact, we just need to count the number of possible rectangles and within
each rectangle, the number of possible distributions of dots. Using the symmetry we can
consider only half of the possible values for λ and multiply by 2. When n is even, the
rectangle determined by λ for 0 ≤ λ ≤ n−2

2
, is symmetric to the one determined by n−λ−1.

Let f be an α-labeling of G with boundary value λ, where 0 ≤ λ ≤ n−2
2
. For k ∈

{1, 2, . . . , λ}, the diagonals dk and dn+1−k have k cells that can be used to place a dot; thus
there are (λ!)2 possible distributions of the dots. For k ∈ {λ + 1, λ + 2, . . . , n − λ}, the
diagonals dk have λ+ 1 cells where a dot can be placed, thus there are (λ+ 1)n−2λ possible
distributions of the dots. Hence, there are (λ!)2(λ+ 1)n−2λ graphs of even size n that admit
an α-labeling with boundary value λ. Taking the sum over all possible values of λ and
multiplying by 2, we obtain the number of α-labeled graphs of even size n.

When n is odd, the rectangle determined by λ for 0 ≤ λ ≤ n−3
2
, is symmetric to the one

determined by n − λ − 1. The only difference with the even case is when λ = n−1
2
. In this

case the diagonals dk and dn+1−k, for 1 ≤ k ≤ λ, have k cells that can be used to place a

dot, i.e., there are
(

n−1
2
!
)2

possible distributions of the dots. The remaining diagonal, dn+1

2

,
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has n+1
2

cells where a dot can be placed. Since

((

n− 1

2

)

!

)2
n+ 1

2
=

(

n− 1

2

)

!

(

n+ 1

2

)

!,

we have that there are (λ!)2(λ+1)n−2λ graphs of size n that admit an α-labeing with boundary
value λ, 0 ≤ λ ≤ n−3

2
and

(

n−1
2

)

!
(

n+1
2

)

! with boundary value λ = n−1
2
. Once again, taking

the sum over all possible values of λ and multiplying by 2, except when λ = n−1
2
, we get the

number of α-labeled graphs of odd size n. Thus, we have given a different and more intuitive
proof to Sheppard’s result [10].

In Figure 3 we show the facts about cells per diagonal, where n = 7 and λ = 2.

Figure 3: Triangular atrrangements for n = 7 and λ = 2

Proposition 1. The number of α-labeled graphs of size n is

2

n−2

2
∑

λ=0

(λ!)2(λ+ 1)n−2λ

when n is even, and

2

n−3

2
∑

λ=0

(λ!)2(λ+ 1)n−2λ +

(

n− 1

2

)

!

(

n+ 1

2

)

!

when n is odd.

In Table 1, we show the number of α-labeled graphs of size n for the first values of n.
This is the sequence A005193 in Sloane’s Online Encyclopedia of Integer Sequences [12].

2.1 Enumerating Other Types of Labeled Graphs

Triangular arrangements can be also used to count other types of labeled graphs. Suppose
G is a graph of size n. Let f : V (G) → L be a labeling of the vertices of G such that the
weight of each edge uv of G is now defined as (f(u) + f(v)) (mod z).
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n α(n) n α(n)
1 1 8 1930
2 2 9 9690
3 4 10 53578
4 10 11 322650
5 30 12 2106250
6 106 13 14790810
7 426 14 111327178

Table 1: Number of α-labeled graphs of size n

(a) f is harmonious when L = {0, 1, . . . , n− 1}, z = n, and

Wf = {0, 1, . . . , n− 1}. (See [6].)

(b) f is felicitous when L = {0, 1, . . . , n}, z = n, and

Wf = {0, 1, . . . , n− 1}. (See [4, 8].)

(c) f is elegant when L = {0, 1, . . . , n}, z = n+ 1, and

Wf = {0, 1, . . . , n}. (See [2].)

Even when the nature of the weights is different now, all these labelings can be analyzed
using these triangular arrangements. Now, the cell aij corresponds to (i + j) (mod z). We
focus our attention on the harmonious labelings.

The definition of harmonious labelings can be extended to include graphs as trees, i.e.,
graphs of size n and order n+ 1, by allowing the repetition of one label on two vertices. As
a consequence of this repetition, the enumeration technique presented below gives the exact
number of harmoniously labeled graphs of size n and order at most n; and a lower bound
for the number of harmoniously labeled graphs of size n.

Because we want to determine h(n), that is, the number of harmoniously labeled graphs
of size n and order at most n, we have n ≥ 3.

The weight w = n − 1 appears exactly once in each of the diagonals dk where k is odd.
Thus, when n is odd, w = n− 1 appears n−1

2
times and n

2
when n is even.

For every 0 ≤ w ≤
⌊

n−2
2

⌋

, both weights, w and n− 2−w, appear in the diagonals dk for
every k ∈ A = {w + 2, w + 4, . . . , n − x} and every k ∈ B = {n − w, n − w + 2, . . . , n − y}
where

x =



















1, if n is odd and w is even;

2, if n is odd and w is odd;

2, if n is even and w is even;

1, if n is even and w is odd.
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and

y =

{

1, if w is even;

2, if w is odd.

regardless the parity of n.
Notice that B = ∅ when w = 0 and w = n− 2.
When n is even, |A| = n−x−w

2
and |B| = w+2−x

2
because x = y. Then the weight w

appears in n
2
+ 1− x diagonals, that is, n

2
− 1 times when it is even, and n

2
times when it is

odd. Therefore, the number of harmoniously labeled graphs of even size n, h(n), is given by

h(n) =
(n

2
− 1
)

n
2
(n

2

)
n
2

.

When n is odd, |A| = n−x−w
2

and |B| = w+2−y

2
. Then the weight w appears in n+2−x−y

2

diagonals, that is, n−1
2

times. Hence,

h(n) =

(

n− 1

2

)n

.

Thus, we have proved the following proposition.

Proposition 2. The number of harmoniously labeled graphs of size n and order at most n
is equal to:

•
(

n−1
2

)n
when n ≥ 3 is odd,

•
(

n
2
− 1
)

n
2
(

n
2

)
n
2 when n ≥ 4 is even.

Using similar arguments we determined the number of felicitously and elegantly labeled
graphs of size n.

Proposition 3. The number of felicitously labeled graphs of size n is

•
(

n+1
2

)n
when n is odd,

•
(

n
2

)
n
2
(

n+2
2

)
n
2 when n is even.

Proposition 4. The number of elegantly labeled graphs of size n is

•
(

n−1
2

)
n−1

2
(

n+1
2

)
n+1

2 when n is odd,

•
(

n
2

)n
when n is even.
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3 The Number of Graceful Graphs

Let Gm,n be the family of all β-labeled graphs of order m and size n. We want to determine
its cardinality. To do this, we use graceful triangles.

Recall that every graph G in Gm,n must have the integers 0 and n as labels. Since
m ≤ n + 1, the remaining m − 2 labels of G form a subset of {1, 2, . . . , n − 1}. Thus, any
β-labeling of G does not assign t = n + 1 − m integers from {1, 2, . . . , n − 1} as labels of
G. Let A = {x1, x2, . . . , xt} be the set formed by these numbers, where xi < xi+1 for every
1 ≤ i ≤ t− 1.

Let d(j, xi) denote the number of deleted (or forbidden) cells on the diagonal dj of the
graceful triangle when xi is not a label of G. Suppose t = 1; we can see that:

• For 1 ≤ x1 ≤ ⌊n
2
⌋

d(j, x1) =











0, if 1 ≤ j ≤ x1;

1, if x1 + 1 ≤ j ≤ n− x1;

2, if n− x1 + 1 ≤ j ≤ n.

• For ⌈n+1
2
⌉ ≤ x1 ≤ n− 1

d(j, x1) =











0, if 1 ≤ j ≤ n− x1;

1, if n− x1 + 1 ≤ j ≤ x1;

2, if x1 + 1 ≤ j ≤ n.

In Figure 4 we show an example for n = 10, where x1 = 4. All the cells in the first 4
diagonals are available, all the cells except 1 can be used in the diagonals d5 and d6, while
in the remaining diagonals two cells cannot be used in each of them.

Figure 4: Counting of deleted cells

Thus, j − d(j, x1) is the number of cells in dj where a dot can be placed. Therefore,
using the product rule, the number g(n, x1) of β-labeled graphs of size n that do not have
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the integer x1 as a label is given by

g(n, x1) =
n
∏

j=1

(j − d(j, x1))

In Table 2 we show the number g(n, i) of β-labeled graphs of size n ≥ 2 that do not use
the integer i ∈ {1, 2, . . . , n− 1} as a label. This is the sequence A241094 in Sloane’s Online
Encyclopedia of Integer Sequences [12].

n\i 1 2 3 4 5 6 7
2 0
3 1 1
4 4 4 4
5 18 24 24 18
6 96 144 144 144 96
7 600 960 1080 1080 960 600
8 4320 7200 8640 8640 8640 7200 4320

Table 2: β-labeled graphs where i is not a label

Suppose now that the integers x1 and x2 are not labels of G. The number of available
cells on dj is

j − d(j, x1)− d(j, x2),

except when j = n+ 1− (x2 − x1), where this number is

j − d(j, x1)− d(j, x2) + 1,

because the cell ax1x2
was eliminated twice (see Figure 5a). Then the number g(n, x1, x2) of

β-labeled graphs of size n that do not have the integers x1 and x2 as labels, is given by

g(n, x1, x2) =
n
∏

j=1

(j − d(j, x1)− d(j, x2) + δx1x2
),

where

δx1x2
=

{

1, if j = n+ 1− (x2 − x1);

0, otherwise.

Now that a pattern has been established, we proceed to find the general formula that
allows us to count the number of β-labeled graphs of size n that do not have as labels, t
numbers from {1, 2, . . . , n− 1}.
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Figure 5: Overcounting of deleted cells

Notice that when t numbers from {1, 2, . . . , n − 1} are not used, the number of cells, in

the triangular arrangement, that have been eliminated twice is given by t(t−1)
2

(see Figure
4). Thus,

δ =
∑

∀xi,xj∈A

δxixj
,

and the number of β-labeled graphs of size n that do not have, as labels, the integers in
A = {x1, x2, . . . , xt} is given by

g(n,A) =
n
∏

j=1

(

j −
t
∑

i=1

d(j; xi) + δ

)

.

Therefore, the number g(n, t) of β-labeled graphs of size n that do not use t numbers
from {1, 2, . . . , n − 1} as labels, is obtained by adding the numbers g(n,A) for all possible
t-element subsets A of {1, 2, . . . , n− 1}, that is,

g(n, t) =
∑

A⊆{1,2,...,n−1}

g(n,A)

=
∑

A⊆{1,2,...,n−1}

(

n
∏

j=1

(

j −

t
∑

i=1

d(j, xi) + δ

))

In the next theorem we use the principle of inclusion and exclusion and the numbers
g(n, t) to count the number of β-labeled graphs of size n and order n+ 1. Notice that these
kind of graphs include all β-labeled trees.

Theorem 5. The number of graceful graphs of order n+ 1 and size n is given by

g(n, 0) = n! +
n−1
∑

k=1

(−1)kg(n, k).
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Proof. Let g(n, 0) represent the number of β-labeled graphs of size n and order n + 1. For
any 1 ≤ k < n − 1, the number g(n, t) includes the number g(n, t + 1). Since there are n!
graceful-graphs of size n and the numbers g(n, k) satisfy the conditions of the principle of
inclusion and exclusion, we have proven our result.

The first values of g(n, 0) can be seen in the lower diagonal of Table 3. For example,
7008 is the number of β-labeled graphs of size 8 and order 9. We can also use g(n, 0) as an
upper bound for the number of β-labeled trees of size n.

Now we can focus on our final goal, that is, to know the value of |Gm,n|. Since g(n, t) counts
the number of β-labeled graphs of size n that do not use the t numbers in A = {x1, x2, . . . , xt}
as labels, g(n, t) includes g(n, t+1). Suppose that k is the largest integer in {1, 2, . . . , n−1}
such that g(n, k) 6= 0. Then

|Gn+1−k,n| = g(n, k).

Let g(n, t) denote the number of β-labeled graphs of size n that do not use exactly t

numbers from {1, 2, . . . , n − 1} as labels. Thus g(n, k) = g(n, k). Moreover, to determine
g(n, k− 1) we need to eliminate from g(n, k− 1) all those labeled graphs counted by g(n, k).
Since every set with k elements contains

(

k

k−1

)

= k subsets of cardinality k − 1, we know
that g(n, k− 1) = g(n, k− 1)− kg(n, k). This equation is used within the proof of our main
result.

Theorem 6. The number g(n, t) of β-labeled graphs of size n and order m = n + 1 − t is
given by

g(n, t) = g(n, t)−
k−t
∑

i=1

(

t+ i

t

)

g(n, t+ i)

where k is the largest integer in {1, 2, . . . , n− 1} such that g(n, k) 6= 0.

Proof. Suppose that the value of g(n, t+ i) is known for every 1 ≤ i ≤ k − t. Thus

(

t+ i

t

)

g(n, t+ i)

counts the number of times a β-labeled graph of size n and order n + 1 − t − i has been
counted inside g(n, t). Since 1 ≤ i ≤ k,

g(n, t) = g(n, t)−
k−t
∑

i=1

(

t+ i

t

)

g(n, t+ i).

This concludes the proof.

Observe that this last formula can be written in terms of g(n, t+ i) instead of g(n, t+ i).
Doing back substitution we arrive to the following equivalent formula.
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Theorem 7. The number g(n, t) of β-labeled graphs of size n and order n+1− t is given by

g(n, t) = g(n, t) +
k−t
∑

i=1

(−1)i
(

t+ i

t

)

g(n, t+ i).

In Table 3 we show |Gm,n| for the first values of n and m.

m\n 1 2 3 4 5 6 7 8 9 10
2 1
3 2 2
4 4 12 8 2
5 12 68 106 88 32 8
6 44 406 1186 1728 1696 964
7 206 2644 12096 29536 45496
8 1122 19456 126304 448512
9 7008 155960 1365992
10 49376 1380476
11 387360

Table 3: First values of |Gm,n|

4 Conclusions

Triangular arrangements have shown to be extremely useful to count the number of β-labeled
graphs of size n and order m. Now, that these numbers have been determined, we can use
them for further investigations of this type of labeled graphs. In particular, we can take the
subfamily of size n and order n + 1 and study how many of them correspond to connected
graphs, that is, trees. If this is possible, we would have more information toward the proof
of the graceful tree conjecture.

5 Note

During the preperation of the final version of this paper we became aware of the work of
Whitty [13]. In this paper, Whitty determined the number of β-labeled trees of order n to
be the leading coefficient of the rook polymonial associated with the Klein bottle.
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