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Abstract

In this article, first we generalize the Thue-Morse sequence by means of a cyclic
permutation and the k-adic expansion of non-negative integers, giving a sequence
(a(n))∞n=0, and consider the condition that (a(n))∞n=0 is non-periodic. Next, we show
that, if a generalized Thue-Morse sequence (a(n))∞n=0 is not periodic, then no subse-
quence of the form (a(N + nl))∞n=0 (where N ≥ 0 and l > 0) is periodic. We apply the
combinatorial transcendence criterion established by Adamczewski, Bugeaud, Luca,
and Bugeaud to find that, for a non-periodic generalized Thue-Morse sequence tak-
ing its values in {0, 1, . . . , β − 1} (where β is an integer greater than 1), the series
∑∞

n=0 a(N + nl)β−n−1 gives a transcendental number. Furthermore, for non-periodic
generalized Thue-Morse sequences taking positive integer values, the continued fraction
[0, a(N), a(N + l), . . . , a(N + nl), ...] gives a transcendental number.
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1 Introduction

First we introduce the Thue-Morse sequence, defined by digit counting. Let k be an integer
greater than 1. We define the k-adic expansion of a non-negative integer n as follows:

n =
finite
∑

q=1

sn,qk
wn(q), (1)

where 1 ≤ sn,q ≤ k− 1, 0 ≤ wn(q) < wn(q + 1). For any integer s in {1, . . . , k− 1}, let es(n)
denote the number of occurrences of s in the base k representation of n. For an integer L
greater than 1, we define a sequence (eLs (n))

∞
n=0 by

eLs (n) ≡ es(n) (mod L), (2)

where 0 ≤ eLs (n) ≤ L − 1, es(0) = 0. Then (e21(n))
∞
n=0, where k = 2, is known as the

Thue-Morse sequence. The Thue-Morse sequence has several definitions. See [11, 8, 12].
Now we introduce a new sequence. Let K be a map,

K : {1, . . . , k − 1} −→ {0, 1, . . . , L− 1}.

We define (a(n))∞n=0 as

a(n) ≡
k−1
∑

s=1

K(s)eLs (n) (mod L), (3)

where 0 ≤ a(n) ≤ L − 1. Morton and Mourant [14] and Adamczewski and Bugeaud [1]
proved the following result.

Theorem 1 ( [14, 1]). Let β ≥ L be an integer. Then
∑∞

n=0
a(n)
βn+1 is a transcendental number

unless

sK(1) ≡ K(s) (mod L) for all 1 ≤ s ≤ k − 1 and K(k − 1) ≡ 0 (mod L). (4)

The proof of Theorem 1 relies on the periodicity of (a(n))∞n=0 [14] and the Cobham
conjecture that was settled by Adamczewski and Bugeaud [1]. More precisely, Morton and
Mourant [14] proved that (a(n))∞n=0 is a k-automatic sequence for any map K (see Definition
23 in Section 5 for the full definition). Furthermore, they proved that (a(n))∞n=0 is periodic
if and only if (a(n))∞n=0 is purely periodic, which enabled them to prove that (a(n))∞n=0

is periodic if and only if the map K satisfies (4). Later, Adamczewski and Bugeaud [1]
proved the Cobham conjecture by using the Schmidt subspace theorem. Thus they deduced
Theorem 1 by combining the results of Morton and Mourant with the Cobham conjecture.

Let us define a generalized Thue-Morse sequence as follows: For any integer s in {1, . . . , k−
1} and any non-negative integer y, letting d(n; sky) be 1 or 0, and d(n; sky) satisfies that
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d(n; sky) = 1 if and only if there exists an integer q such that sn,qk
wn(q) = sky. Let κ be a

map,
κ : {1, . . . , k − 1} × N −→ {0, 1, . . . , L− 1},

where N denotes the set of non-negative integers. We define (a(n))∞n=0 as

a(n) ≡
∞
∑

y=0

k−1
∑

s=1

κ(s, y)d(n; sky) (mod L), (5)

where 0 ≤ a(n) ≤ L− 1 and a(0) = 0. We call (a(n))∞n=0 a generalized Thue-Morse sequence
of type (L, k, κ). Thus the Thue-Morse sequence is the generalized Thue-Morse sequence of
type (2, 2, κ) with κ(1, y) = 1 for all y ∈ N. Moreover, if a generalized Thue-Morse sequence
(a(n))∞n=0 is of type (L, k, κ) with

κ(s, y) = κ(s, y + 1) (6)

for all s with 1 ≤ s ≤ k − 1 and for all y ∈ N, then (a(n))∞n=0 coincides with the sequence
defined by (3), which satisfies the conditions K(s) = κ(s, y) for all s with 1 ≤ s ≤ k − 1. In
this article, we generalize Theorem 1, as follows.

Theorem 2. Let (a(n))∞n=0 be a generalized Thue-Morse sequence of type (L, k, κ). Let

β ≥ L be an integer. If there is not an integer A such that

κ(s, A+ y) ≡ κ(1, A)sky (mod L) (7)

for all s with 1 ≤ s ≤ k− 1 and for all y ∈ N, then
∑∞

n=0
a(N+nl)
βn+1 ( for all N ≥ 0 and for all

l > 0 ) is a transcendental number.

By Theorem 2, one can find an uncountable quantity of transcendental numbers. More-
over, if

∑∞
n=0

a(n)
βn+1 is a transcendental number, then

∑∞
n=0

a(N+nl)
βn+1 ( for all N ≥ 0 and for

all l > 0 ) is also a transcendental number. The proof of Theorem 2 does not rely on the
pure periodicity of the periodic generalized Thue-Morse sequence (a(n))∞n=0 and the Cobham
conjecture. Here we study non-periodicity of the subsequence (a(N +nl))∞n=0 ( for all N ≥ 0
and for all l > 0 ) of a generalized Thue-Morse sequence (a(n))∞n=0. See also Morgenbesser,
Shallit, and Stoll [15]. Almost no generalized Thue-Morse sequence (a(n))∞n=0 is k-automatic
(see Proposition 28 in Section 5). Therefore, the proof of Theorem 2 is different from the
proof of Theorem 1. We prove Theorem 2 by combining Theorem 15 in Section 3 with the
combinatorial transcendence criterion established by Adamczewski, Bugeaud, and Luca [2].

This paper is organized as follows. In Section 2, we review the basic concepts of the peri-
odicity of sequences, and give the formal definition of the generalized Thue-Morse sequences.
For a sequence (a(n))∞n=0, we set its generating function g(z) ∈ C[[z]] to be

g(z) :=
∞
∑

n=0

a(n)zn.
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For a generalized Thue-Morse sequence, one can prove that the generating function is con-
vergent on the open unit disk and that it has an infinite product expansion. In Section 3,
first we prove the key lemma on the k-adic expansion of non-negative integers. Next, we use
this lemma and the infinite product expansion of the generating function of a generalized
Thue-Morse sequence to prove a necessary-sufficient condition for the non-periodicity of the
generalized Thue-Morse sequence. Furthermore, we prove that if the generalized Thue-Morse
sequence is not periodic, then no subsequence (a(N+nl))∞n=0 ( for all N ≥ 0 and for all l > 0)
of the generalized Thue-Morse sequences is periodic. In Section 4, we introduce the concept
of the stammering sequence, introduced by Adamczewski, Bugeaud, and Luca [2], and the
combinatorial transcendence criterion, established by Adamczewski, Bugeaud, Luca [2] and
Bugeaud [9]. By applying this combinatorial transcendence criterion to the generalized non-
periodic Thue-Morse sequence (a(n))∞n=0, which takes its values from {0, 1, . . . , β − 1}, we
show that

∑∞
n=0 a(N + nl)β−n−1 is a transcendental number. Furthermore by applying this

combinatorial transcendence criterion to the generalized non-periodic Thue-Morse sequence
(a(n))∞n=0, which takes its values in bounded positive integers, we show that the continued
fraction [0, a(N), a(N + l), . . . , a(N + nl), . . .] is also transcendental number. This result
includes Theorem 2. In Section 5, we consider the necessary-sufficient condition that a gen-
eralized Thue-Morse sequence is a k-automatic sequence. Then we find many transcendental
numbers whose irrationality exponent is finite in all arithmetical subsequences of the cor-
responding generalized Thue-Morse sequence by applying the Adamczewski and Cassaigne
result on k-automatic irrational numbers [3]. Furthermore, we consider the transcendence of
the value at the algebraic point of the generating function

∑∞
n=0 a(N +nl)z−n−1 by applying

Becker’s result on k-automatic power series.

2 Generalized Thue-Morse sequences and their gener-

ating functions

Let (a(n))∞n=0 be a sequence with values in C. The sequence (a(n))∞n=0 is called ultimately

periodic if there exist non-negative integers N and l > 0 such that

a(n) = a(n+ l) (∀n ≥ N). (8)

An arithmetical subsequence of (a(n))∞n=0 is defined to be a subsequence such as (a(N +
tl))∞t=0, where N ≥ 0 and l > 0.

Definition 3. Let (a(n))∞n=0 be a sequence with values in C. The sequence (a(n))∞n=0 is
called everywhere non-periodic if no arithmetical subsequence of (a(n))∞n=0 takes on only
one value.

Now we present some lemmas about the everywhere non-periodic sequences.

Lemma 4. If (a(n))∞n=0 is everywhere non-periodic, then (a(n))∞n=0 is not ultimately periodic.
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Proof. We prove the contrapositive. Assume that (a(n))∞n=0 is ultimately periodic. From the
definition of everywhere non-periodic, there exist non-negative integers N and l > 0 such
that

a(n) = a(n+ l) (∀n ≥ N). (9)

It follows from (9) that the arithmetical subsequence (a(N + tl))∞t=0 takes on only one value.

Lemma 5. If (a(n))∞n=0 is everywhere non-periodic, then all arithmetical subsequences of

(a(n))∞n=0 are everywhere non-periodic.

Proof. We prove contraposition. If (a(N + tl))∞t=0 is not everywhere non-periodic, then there
exist non-negative integers k and J > 0 such that (a(N + kl + mJl))∞m=0 takes on only
one value. The subsequence (a(N + kl + mJl))∞m=0 is also an arithmetical subsequence of
(a(n))∞n=0. Therefore, (a(n))

∞
n=0 is not everywhere non-periodic.

Corollary 6. (a(n))∞n=0 is everywhere non-periodic if and only if no arithmetical subsequence

of (a(n))∞n=0 is ultimately periodic.

Proof. Assume (a(n))∞n=0 is everywhere non-periodic. By Lemma 4 and Lemma 5, no arith-
metical subsequence of the sequence (a(n))∞n=0 is periodic.

We show the sufficient condition. Assume (a(n))∞n=0 is not everywhere non-periodic.
Then there exist non-negative integers N and l > 0 such that (a(N + tl))∞t=0 takes on only
one value. This sequence is ultimately periodic.

Next, we generalize the Thue-Morse sequence of Emmanuel [11].

Definition 7. Let L be an integer greater than 1, and let a0, a1, . . . , aL−1 be L distinct com-
plex numbers. We let {a0, a1 . . . aL−1}∗ denote the free monoid generated by {a0, a1 . . . aL−1}.
We define a morphism f from {a0, a1 . . . aL−1}∗ to {a0, a1 . . . aL−1}∗ as follows:

f(ai) = ai+1, (10)

where the index i is computed modulo L. Let f j be the j times composed mapping of f ,
and let f 0 be the identity mapping. Let A and B be two finite words on {a0, a1, . . . , aL−1},
and let AB denote the concatenation of A and B.

Let A0 = a0, k be an integer greater than 1, and let κ be a map κ:{1, . . . , k − 1} × N →
{0, . . . , L− 1}. For a non-negative integer m, we define a space of words Wm by

Wm := {ai1ai2 . . . aim |ai1 , ai2 , · · · , aim ∈ {a0, a1, . . . , aL−1}}. (11)

We define An+1 ∈ Wkn+1 recursively as

An+1 := Anf
κ(1,n)(An) · · · · · · fκ(k−1,n)(An), (12)
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and we let

A∞ := lim
n→∞

An (13)

denote the limit of An. The sequence (or infinite word) A∞ is called the generalized Thue-
Morse sequence of type (L, k, κ), abbreviated as the (L, k, κ)-TM sequence.

Example 8 ( [11]). Let L = 2, a0 = 0, a1 = 1 and κ(1, y) = 1 for all y ∈ N. The (2, 2, 1)-TM
sequence is as follows:

A0 = 0, A1 = 01, A2 = 0110, A3 = 01101001,

A∞ = 0110100110010110100101100110100110010110011010010110100110 · · · .

This example is the Thue-Morse sequence of Emmanuel [11].

Example 9. Let L = 2, a0 = 0, a1 = 1 and

κ(1, y) =

{

1, y is a prime number;

0, otherwise.

The (2, 2, κ)-TM sequence is

A0 = 0, A1 = 00, A2 = 0000, A3 = 00001111,

A∞ = 00001111000011111111000011110000 · · · .

Example 10. Let L = 2, a0 = 0, a1 = 1 and

κ(1, y) =

{

1, y is a square number and s = 2;

0, otherwise
.

The (2, 3, κ)-TM sequence is

A0 = 0, A1 = 001, A2 = 001001001,

A∞ = 001001001001001001001001001001001001001001001001001001110110 · · · .

Let (a(n))∞n=0 be a sequence with values in C. The generating function of (a(n))∞n=0 is
the formal power series g(z) ∈ C[[z]], defined as

g(z) :=
∞
∑

n=0

a(n)zn.

The following lemma clarifies the meaning of an (L, k, κ)-TM sequence.
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Lemma 11. Let A∞ = (b(n))∞n=0 be a (L, k, κ)-TM sequence with aj = exp 2π
√
−1j
L

( for all

j with 0 ≤ j ≤ L− 1 ). Let GA∞
(z) be the generating function of (b(n))∞n=0,

GA∞
(z) :=

∞
∑

n=0

b(n)zn.

The generating function GA∞
(z) will have the infinite product on |z| < 1,

GA∞
(z) =

∞
∏

y=0

(1 +
k−1
∑

s=1

exp
2π

√
−1κ(s, y)

L
zsk

y

). (14)

Proof. From the assumption aj = exp 2π
√
−1j
L

for all j with 0 ≤ j ≤ L− 1, we have

f(aj) = exp
2π

√
−1

L
aj (15)

for all j with 0 ≤ j ≤ L− 1. The (L, k, κ)-TM sequence takes on only finite values, and by

the Cauchy-Hadamard theorem, GA∞
(z) and

∏∞
y=0(1 +

∑k−1
s=1 exp

2π
√
−1κ(s,y)
L

zsk
y

) converge
absolutely on the unit disk. Let GAn

(z) be the generating function of An; We identify the
infinite word An0 · · · 0 · · · =: An0

∞ with An.
We will show by induction that the following equality holds for n,

GAn
(z) =

n−1
∏

y=0

(1 +
k−1
∑

s=1

exp
2π

√
−1κ(s, y)

L
zsk

y

). (16)

First, we check the case n = 1. From the definition of A1, we have

GA1(z) = 1 +
k−1
∑

s=1

exp
2π

√
−1κ(s, 0)

L
zs. (17)

Thus, the n = 1 case is true. By the induction hypothesis we may assume that

GAj
(z) =

j−1
∏

y=0

(1 +
k−1
∑

s=1

exp
2π

√
−1κ(s, y)

L
zsk

y

). (18)

Therefore, we have

GAj+1
(z) = GAj

(z) +
k−1
∑

s=1

Gfκ(s,j)(Aj)(z)z
skj . (19)

Alternatively,

Gfκ(s,j)(Aj)(z) = exp
2π

√
−1κ(s, j)

L
GAj

(z). (20)
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From (18)-(20), we get

GAj+1
(z) = GAj

(z)(1 +
k−1
∑

s=1

exp
2π

√
−1κ(s, y)

L
zsk

j

)

=

j
∏

y=0

(1 +
k−1
∑

s=1

exp
2π

√
−1κ(s, y)

L
zsk

y

). (21)

Therefore (14) is true. Finally, we will compare the coefficients of zj on both sides of (14).
On the right-hand side of (14), the coefficient of zj are determined by GAN

(z) for sufficiently
large N . From the definition of A∞, the prefix word, pN , of A∞ is AN . From the above
argument and (16), the coefficients of zj on both sides of (14) must coincide.

Proposition 12. Let A∞ = (b(n))∞n=0 be a (L, k, κ)-TM sequence with aj = exp 2π
√
−1j
L

(for
all j with 0 ≤ j ≤ L− 1 ). Let (a(n))∞n=0 be a sequence defined by (5). Then

L

2π
√
−1

log b(n) ≡ a(n) (mod L). (22)

Proof. Let the k-adic expansion of n be as follows:

n =

n(k)
∑

q=1

sn,qk
wn(q), (23)

where 1 ≤ sn,q ≤ k − 1, 0 ≤ wn(q) < wn(q + 1). By uniqueness of the k-adic expansion and
Lemma 11, we have

b(n) =
∏n(k)

q=1 exp
2π

√
−1κ(sn,q ,wn(q))

L

= exp
2π

√
−1(

∑n(k)
q=1 κ(sn,q ,wn(q)))

L

= exp
2π

√
−1(

∑n(k)
q=1 κ(sn,q ,wn(q)) (mod L))

L
. (24)

By (23), (24) and the definition of a(n), the equality (22) is obtained.

Now we give other representations of Example 9 and Example 10 by using Proposition
12.

We begin with Example 9. Let the 2-adic expansion of non-negative integer n be

n =
finite
∑

q=1

2wn(q), (25)

where 0 ≤ wn(q) < wn(q + 1). We define the number A(n) to be

A(n) = #{ wn(q) | wn(q) is a prime number },
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and we define (a(n))∞n=0 as

a(n) =

{

1, A(n) ≡ 1 (mod 2);

0, A(n) ≡ 0 (mod 2),
(26)

e.g., a(44) = a(22 + 23 + 25) = 1, a(12) = a(22 + 23) = 0). The sequence (a(n))∞n=0 is the
generalized Thue-Morse sequence of type (2, 2, κ) with

κ(1, y) =

{

1, y is a prime number;

0, otherwise.

Next, we give another representation of Example 10. Let the 3-adic expansion of non-
negative integer n be

n =
finite
∑

q=1

sn,q3
wn(q), (27)

where 1 ≤ sn,q ≤ 2, 0 ≤ wn(q) < wn(q + 1). We define the number B(n) as

B(n) = #{ wn(q) | wn(q) is a square number and sn,q = 2 },

and we define (a(n))∞n=0 as

a(n) =

{

1, B(n) ≡ 1 (mod 2);

0, B(n) ≡ 0 (mod 2),
(28)

e.g., a(169) = a(1 + 2× 3 + 2× 34) = 0, a(7) = a(1 + 2× 3) = 1). The sequence (a(n))∞n=0

is the generalized Thue-Morse sequence of type (2, 3, κ) with

κ(s, y) =

{

1 y is a square number and s = 2;

0 otherwise.

3 Necessary-sufficient condition for the non-periodicity

of a generalized Thue-Morse sequence

We begin by presenting the following key lemma about the k-adic expansion of non-negative
integers.

Lemma 13. If k > 1 and l > 0 be integers and t be a non-negative integer, then there exists

an integer x such that

xl =
finite
∑

q=1

sxl,qk
wxl(q), (29)
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where sxl,1 = 1, wxl(2)− wxl(1) > t, wxl(q + 1) > wxl(q) ≥ 0.
Furthermore, if t′ be other non-negative integer, then there exists an integer X such that

Xl =
finite
∑

q=1

sXl,qk
wX l(q), (30)

where sXl,1 = 1, wXl(2)− wXl(1) > t′, wXl(q + 1) > wXl(q) ≥ 0, wxl(1) = wXl(1).

Proof. Let us assume the factorization of k into prime factors is

k =
N
∏

t=1

pt
yt , (31)

where p1, p2, · · · pN are N distinct prime numbers and yt for pt (1 ≤ t ≤ N ) are N positive
integers. Let l be represented as

l = G

n
∏

u=1

ptu
xu , (32)

where G and k are coprime, ptu ∈ {pt|1 ≤ t ≤ N} and xu are n positive integers. As G and
k are coprime, there exist integers D and E such that

DG = 1− kt+1E. (33)

We set
F = max{A|xu = ytuA+H, 0 ≤ H < ytu , 1 ≤ u ≤ n}.

From the definition of F , kF+1
∏n

u=1 ptu
−xu is a non-negative integer. Thus we have

lD2GkF+1

n
∏

u=1

ptu
−xu = kF+1D2G2. (34)

On the other hand, by (33) we have

D2G2 = 1 + kt+1E(kt+1E − 2). (35)

Thus E(kt+1E− 2) is a non-negative integer. If E(kt+1E− 2) > 0, it follows from the k-adic
expansion of E(kt+1E − 2) that kF+1D2G2 satisfies the Lemma. If E(kt+1E − 2) = 0, then
G = 1. The integer kF+1(1 + kt+1) also satisfies the Lemma. As F + 1 is independent of t,
the second claim is trivial.

Now we will show the everywhere non-periodic result by the previous lemma.
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Proposition 14. Let A∞ = (a(n))∞n=0 be a sequence with values in C, and let GA∞
(z) denote

the generating function of (a(n))∞n=0. Assume that GA∞
(z) has the following infinite product

expansion for an integer k greater than 1 and ts,y 6= 0 for all s with 1 ≤ s ≤ k − 1 and for

all y ∈ N,

GA∞
(z) =

∞
∏

y=0

(1 +
k−1
∑

s=1

ts,yz
sky). (36)

If there exists a periodic arithmetical subsequence of (a(n))∞n=0, then GA∞
(z) has the following

infinite product expansion

GA∞
(z) = (

kA−1
∑

n=0

a(n)zn)
∞
∏

y=0

(1 +
k−1
∑

s=1

hskyzsk
A+y

), (37)

where A is a non-negative integer and h is a complex number.

Proof. Let n and m be two non-negative integers and their respective k-adic expansions are
as follows:

n =
finite
∑

q

sn,qk
wn(q), m =

finite
∑

p

sm,pk
wm(p), (38)

where 1 ≤ sn,q, sm,p ≤ k − 1, 0 ≤ wn(q) < wn(q + 1), and 0 ≤ wm(p) < wm(p + 1). If
wn(q) 6= wn(p) for all pairs (q, p), then

a(n+m) = a(n)a(m) (39)

by the assumption of GA∞
(z) and the uniqueness of the k-adic expansion of non-negative

integers. If (a(n))∞n=0 has a periodic arithmetical subsequence, then by Corollary 6 (a(n))∞n=0

is not everywhere non-periodic. Thus there exist two non-negative integers, N and l > 0,
such that

a(N) = a(N + tl) (∀t ∈ N). (40)

Let the k-adic expansion of N be

N =

N(k)
∑

q=1

sN,qk
wN (q) where 1 ≤ sN,q ≤ k − 1, 0 ≤ wN(q) < wN(q + 1). (41)

By the assumption of GA∞
(z) and (39), we have

a(N) = a(N + krtl) = a(N)a(krtl) (∀r > wN(N(k))). (42)

a(N) 6= 0. (43)
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From (42) and (43), we get

a(krtl) = 1 (∀r > wN(N(k))). (44)

By Lemma 13, there exists an integer x greater than zero such that

xl =

xl(k)
∑

q=1

sxl,qk
wxl(q), (45)

where sxl,1 = 1 and wxl(2)− wxl(1) > 1.
Moreover, there exists an integer X greater than zero such that

Xl =

Xl(k)
∑

q=1

sXlqk
wXl(q), (46)

where sXl,1 = 1, wXl(2)− wXl(1) > wxl(xl(k)) and wXl(1) = wxl(1).
Let xlk−wxl(1) and Xlk−wxl(1) be replaced by xl and Xl, respectively. Let r be an integer

greater than w(N(k)) + wxl(1) and s be an integer in {1, . . . , k − 1}.
By the definition of Xl and (39), we have

a(krsXl) = a(skr)a(krsXl − skr). (47)

From (43), we get

1 = a(krxl), (48)

1 = a(krsXl), (49)

1 = a(krxl + krsXl). (50)

By (39), (47)-(50) and the definitions of xl and Xl, we have

a(kr)a(krxl − kr) = 1, (51)

a(lskr)a(sXlkr − skr) = 1, (52)

a(kr(s+ 1))a(xlkr − kr)a(sXlkr − skr) = 1. (53)

From (51)-(53), we get

a(kr(s+ 1)) = a(kr)a(krs). (54)

Put h := a(kw(N(k))+wxl(1)+1).
By (39), we have

a(sky) = ts,y, (55)
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for all s with 1 ≤ s ≤ k − 1 and for all y ∈ N.
By (43), (54), (55) and inductive computation, we get the relations

ts,w(N(k))+wxl(1)+1+y = hsky , (56)

for all s with 1 ≤ s ≤ k − 1 and for all y ∈ N. From the assumption of GA∞
(z), the proof is

complete.

Finally, we prove the main theorem in Section 3.

Theorem 15. Let A∞ = (a(n))∞n=0 be an (L, k, κ)-TM sequence. The sequence A∞ =
(a(n))∞n=0 is ultimately periodic if and only if there exists an integer A such that

κ(s, A+ y) ≡ κ(1, A)sky (mod L), (57)

for all s with 1 ≤ s ≤ k − 1 and for all y ∈ N.

Moreover, if the (L, k, κ)-TM sequence is not ultimately periodic, then no arithmetical

subsequence of (L, k, κ)-TM sequence is ultimately periodic.

Proof. We assume, without loss of generality, that A∞ = (a(n))∞n=0 is an (L, k, κ)-TM se-

quence with aj = exp 2π
√
−1j
L

(for all 0 ≤ j ≤ L − 1 ). From this assumption and Lemma
11, (a(n))∞n=0 satisfies the assumption of Proposition 14. Therefore, (57) is the necessary
condition.

Now, we show the sufficient condition. LetGA∞
(z) be the generating function of (a(n))∞n=0.

Notation is the same as for Proposition 14. If we assume that (a(n))∞n=0 satisfies (57), then
there exists a non-negative integer A such that

ts,A+y = hsky (∀y ∈ N). (58)

Thus GA∞
(z) has the infinite product expansion

GA∞
(z) = (

kA−1
∑

n=0

b(n)zn)
∞
∏

y=0

(1 +
k−1
∑

s=1

(hzk
A

)sk
y

). (59)

Let Z = hzk
A

. As h is the L-th root of 1 and κ is a zero map in Lemma 11, we find

∞
∏

y=0

(1 +
k−1
∑

s=1

Zsky) =
∞
∑

n=0

Zn on |Z| < 1. (60)

We put G(z) =
∑kA−1

n=0 a(n)zn. From (59) and (60),

GA∞
(z) = G(z)(

∞
∑

n=0

(hzk
A

)n). (61)
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As h is the L-th root of 1,

GA∞
(z) = (G(z)(

L−1
∑

n=0

(hzk
A

)n))(1 +
∞
∑

s=1

zsLk
A

) =
G(z)(

∑L−1
n=0(hz

kA)n)

1− zLkA
. (62)

As the degree of G(z) is kA − 1, and using (62), we find that the sequence (a(n))∞n=0 that
satisfies (57) has a period LkA. Moreover, if the (L, k, κ)-TM sequence is not ultimately
periodic, then no arithmetical sequence of (L, k, κ)-TM sequence is ultimately periodic by
the above argument and by Proposition 14.

If an (L, k, κ)-TM sequence satisfies

κ(s, y) = κ(s, y + 1) (63)

for all s with 1 ≤ s ≤ k − 1 and for all y ∈ N, then (κ(1), κ(2), . . . , κ(k − 1))-L will denote
the (L, k, κ)-TM sequence.

The weak version of the corollary that follows is given as Theorem 2 in Morton and
Mourant [14]. See also Allouche and Shallit [5], Frid [13].

Corollary 16. The sequence (κ(1), κ(2), . . . , κ(k− 1))-L is periodic if and only if κ(s) ( for
all s with 1 ≤ s ≤ k − 1 ) satisfies

sκ(1) ≡ κ(s), κ(k − 1) ≡ 0 (mod L). (64)

Moreover, if (κ(1), κ(2), . . . , κ(k− 1))-L is not periodic, then no arithmetical subsequence of

(κ(1), κ(2), . . . , κ(k − 1))− L is periodic.

Proof. By Theorem 15, the necessary-sufficient condition for the periodicity of
(κ(1), κ(2), . . . , κ(k − 1))-L comprises the following relations:

κ(1, A+ 1) ≡ κ(1, A)k (mod L), κ(k − 1) ≡ (k − 1)κ(1) ≡ 0 (mod L). (65)

.

4 Transcendence results of the generalized Thue-Morse

sequences

Adamczewski, Bugeaud, and Luca [2] introduced a new class of sequences, as follows. For
any positive number y,⌊y⌋ and ⌈y⌉ are the floor and ceiling functions. Let W be a finite
word on {a0, a1, . . . , aL−1} and let |W | be the length of W . For any positive number x, we
let W x defined the word W ⌊x⌋W ‘, where W ‘ is a prefix of W of length ⌈(x− ⌊x⌋)|W |⌉.

14



Definition 17. (a(n))∞n=0 is called a stammering sequence if (a(n))∞n=0 satisfies the following
conditions:

(1) The sequence (a(n))∞n=0 is a non-periodic sequence.
(2) There exist two sequences of finite words, (Um)m≥1 and (Vm)m≥1, such that,
(A) there exists a real number w > 1 independent of n such that the word UmVm

w

is a prefix of the word (a(n))∞n=0,
(B) limm→∞ |Um|/|Vm| < +∞, and
(C) limm→∞ |Vm| = +∞.

Let (a(n))∞n=0 be a sequence of positive integers. We define the continued fraction of
(a(n))∞n=0 as

[0, a(0), a(1), . . . , a(n), . . .] :=
1

a(0) +
1

a(1) +
1

· · ·+
1

a(n) +
1

. . .

. (66)

Adamczewski, Bugeaud, Luca [2] and Bugeaud [9] proved the result that follows by the
Schmidt subspace theorem.

Theorem 18 ([2, 9]). If β is an integer greater than 1 and (a(n))∞n=0 is a stammering

sequence on {0, 1, . . . , β − 1}, then
∑∞

n=0
a(n)
βn+1 is a transcendental number. Moreover, if

(a(n))∞n=0 is a stammering sequence on bounded positive integers, then the continued fraction

[0, a(0), a(1) . . . , a(n) . . .] is also a transcendental number.

We will prove the next theorem using Theorems and 2, 15 and 18.

Theorem 19. Let A∞ = (a(n))∞n=0 be an (L, k, κ)-TM sequence and β be an integer greater

than 1. We assume that (a(n))∞n=0 takes its input from {0, 1, . . . , β−1}. If there is no integer

A such that

κ(s, A+ y) ≡ κ(1, A)sky (mod L) (67)

for all s with 1 ≤ s ≤ k− 1 and for all y ∈ N, then
∑∞

n=0
a(N+nl)
βn+1 ( for all N ≥ 0 and for all

l > 0 ) is a transcendental number.

Moreover, if we assume that (a(n))∞n=0 takes its input from the positive integers, and if

there is no integer A such that

κ(s, A+ y) ≡ κ(1, A)sky (mod L) (68)

for all s with 1 ≤ s ≤ k − 1 and for all y ∈ N, then [0, a(N), a(N + s), . . . , a(N + nl) . . .] (
for all N ≥ 0 and for all l > 0 ) is a transcendental number.
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Proof. Let N and l > 0 be positive integers. By Theorem 15, (a(N+nl))∞n=0 is non-periodic.
Therefore, we only have to prove that (L, k, κ)-TM satisfies the condition (2) of Definition
17.

We choose an integer M such that kM > 2(N + l), and assume that m > M . As f is a
cyclic permutation of order L and by Definition 7, the (Ll + 1)km prefix word of (a(n))∞n=0

is as follows

A∞ = (a(n))∞n=0 = Amf
i1(Am) · · · f iLl(Am) · · · , (69)

where Am is the km prefix word of (a(n))∞n=0, ij(1 ≤ j ≤ Ll) ∈ {0, . . . , L− 1}.
By (69), we have

f itl(a(n)) = a(n+ kmtl) (70)

for all 0 ≤ n ≤ km − 1 and for all 1 ≤ t ≤ L.
As f is a cyclic permutation of order L, by (69), (70) and the Dirichlet schubfachprinzip,

we have

(a(N + nl))∞n=0 = W1,mW2,mW3,mW2,m · · · , (71)

where Wi,m (i ∈ {1, 2, 3}) are finite words such that

|W1,m| ≤ ((Ll + 1)km −N)/l + 1, (72)

|W2,m| ≥ (km −N)/l − 1, (73)

|W2,m|+ |W3,m| ≤ ((Ll + 1)km −N)/l + 1. (74)

We put Um := W1,m, Vm := W2,mW3,m and w := 1 + 1
2Ll+3

.
By (72)-(74) and the assumption of m, we obtain

⌈(w − 1)|Vm|⌉ = ⌈ 1
2Ll+3

(|W2,m|+ |W3,m|)⌉ ≤
1

2Ll+3
((Ll + 1)km −N + l)/l ≤ km

2l
< |W2,m|. (75)

From (75), (a(n))∞n=0 satisfies Condition (A).
Furthermore,

|Um|/|Vm| = |W1,m|/|W2,mW3,m| ≤
((Ll + 1)km −N + l)/l × l/(km −N − l) ≤ 2Ll + 3. (76)

From (76), (a(n))∞n=0 satisfies Condition (B).
It follows directly that (Vm)m≥1 satisfies Condition (C).

Corollary 20. Let (a(n))∞n=0 be an (L, k, κ)-TM sequence and β be an integer greater than

1. If (a(n))∞n=0 takes its input from {0, 1, . . . , β − 1} and there is no integer A such that

κ(s, A+ y) ≡ κ(1, A)sky (mod L) (77)

for all s with 1 ≤ s ≤ k − 1 and for all y ∈ N, then the generating function f(z) :=
∑∞

n=0
a(N+nl)
zn+1 ( for all N ≥ 0 and for all l > 0 ) is transcendental over C(z).
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Proof. We assume f(z) is algebraic over C(z). As f(z) is algebraic over Q(z) if and only
if f(z) is algebraic over C(z) (see the Remark in Theorem 1.2 in Nishioka [16] ), then f(z)
satisfies the equation

cn(z)f
n(z) + cn−1(z)f

n−1(z) + · · ·+ c0(z) = 0, (78)

where ci(z) ∈ Q[z] (0 ≤ i ≤ n), cn(z)c0(z) 6= 0 and ci(z) (0 ≤ i ≤ n) are coprime. From
Theorem 19, f( 1

β
) is a transcendental number. From the above argument and by (78),

ci(
1
β
) = 0 ( for all 0 ≤ i ≤ n). This contradicts the assumption that ci(z) (0 ≤ i ≤ n) are

coprime.

5 k-Automatic generalized Thue-Morse sequences and

some results

First, we introduce some definitions.

Definition 21. Let α be an irrational real number. The irrationality exponent µ(α) of α is
the supremum of the real numbers µ such that the inequality

∣

∣

∣

∣

α− p

q

∣

∣

∣

∣

<
1

qµ
(79)

has infinitely many solutions in non-zero integers p and q.

Definition 22. The k-kernel of (a(n))∞n=0 is the set of all subsequences of the form (a(ken+
j))∞n=0, where e ≥ 0 and 0 ≤ j ≤ ke − 1.

Definition 23. The sequence(a(n))∞n=0 is called a k-automatic sequence if the k-kernel of
(a(n))∞n=0 is the finite set.

Definition 24. The power series
∑∞

n=0 a(n)z
n ∈ C[[x]] is called a k-automatic power series

if (a(n))∞n=0 is a k-automatic sequence.

Definition 25. An (L, k, κ)-TM sequence is called y-periodic if there exist non-negative
integers N and t(0 < t) such that

κ(s, y) = κ(s, y + t), (80)

for all s with 1 ≤ s ≤ k − 1 and for all y ≥ N .

Now we introduce two results.

Theorem 26 ([3]). If β is an integer greater than 1 and (a(n))∞n=0 is a non-periodic k-

automatic sequence on {0, 1, . . . , β − 1}, then µ(
∑∞

n=0
a(n)
βn+1 ) is finite.
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Theorem 27 ([7]). If f(z) ∈ Q[[z]] \ Q(z) is a k-automatic power series and 0 < R < 1,
then f(α) is transcendental for all but finitely many algebraic numbers α with |α| ≤ R.

Now we consider the necessary-sufficient condition that an (L, k, κ)-TM sequence is a
k-automatic sequence.

Proposition 28. An (L, k, κ)-TM sequence is y-periodic if and only if it is a k-automatic

sequence.

Proof. We assume, without loss of generality, that A∞ = (a(n))∞n=0 is an (L, k, κ)-TM se-

quence with aj = exp 2π
√
−1j
L

(for all 0 ≤ j ≤ L− 1 ).
Let us assume that (a(n))∞n=0 is a k-automatic sequence. As the k-kernel of (a(n))∞n=0 is

a finite set, there exist integers e for 0 < t such that

a(ken) = a(ke+tn) (∀n ≥ 0). (81)

Let s be any integer in {1, 2, . . . , k − 1}, and let y be any integer in N. By Lemma 11 with
(39) and (81), and substituting sky for n, we have

exp
2π

√
−1κ(s, e+ y)

L
= a(kesky) = a(ke+tsky) = exp

2π
√
−1κ(s, e+ y + t)

L
. (82)

By the definition of the (L, k, κ)-TM sequence and (82), (a(n))∞n=0 is y-periodic.
Now we show the converse. If an (L, k, κ)-TM sequence A∞ = (a(n))∞n=0 is y-periodic,

then there exist non-negative integers e for 0 < t such that

κ(s, e+ y) = κ(s, e+ y + t), (83)

for all y being any integer in N and for all s with 1 ≤ s ≤ k− 1. Let l be any integer greater
than t−1 and let (a(ke+ln+j))∞n=0 (where 0 ≤ j ≤ ke+l−1 ) be any sequence in the k-kernel
of (a(n))∞n=0.

Therefore, from Lemma 11 with (39), we get

a(ke+ln+ j) = a(ke+ln)a(j). (84)

As (a(n))∞n=0 takes on only finitely many values, then a(j) also takes on only finitely many
values.

Let the k-adic expansion of n be

n =

N(n)
∑

q=1

sn,qk
w(j) where 1 ≤ sn,q ≤ k − 1, w(q + 1) > w(q) ≥ 0. (85)

Let l(t) ≡ l (mod t), where 0 ≤ l(t) ≤ t− 1. By Lemma 11 with (39), we have

a(ke+ln) = a(

N(n)
∑

q=1

sqk
w(q)+e+l) =

N(n)
∏

q=1

a(sqk
w(q)+e+l). (86)
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From (85), (86), and Lemma 11 with (39), we get

a(ke+ln) =

N(n)
∏

q=1

a(sqk
w(q)+e+l) =

N(n)
∏

q=1

a(sqk
w(q)+e+l(t))

= a(

N(n)
∑

q=1

sqk
w(q)+e+l(t)) = a(ke+l(t)n). (87)

As a(j) takes on only finitely many values, and by (84) and (87), it follows that the k-kernel
of (a(n))∞n=0 is a finite set.

Theorem 29. Let (a(n))∞n=0 be an (L, k, κ)-TM and β be an integer greater than 1. If

(a(n))∞n=0 takes on the values {0, 1, . . . , β − 1}, is y-periodic and there is no integer A such

that

κ(s, A+ y) ≡ κ(1, A)sky (mod L) (88)

for all s with 1 ≤ s ≤ k− 1 and for all y ∈ N, then µ(
∑∞

n=0
a(N+nl)
βn+1 ) ( for all N ≥ 0 and for

all l > 0 ) is finite.

Proof. By the previous proposition, (a(n))∞n=0 is a k-automatic sequence. As the arithmetical
subsequence of a k-automatic sequence is k-automatic, see Theorem 2.3 and Theorem 2.6 in
Allouche and Shallit [4], and by Theorems 19 and 26, µ(

∑∞
n=0

a(N+nl)
βn+1 ) is finite.

Theorem 30. Let (a(n))∞n=0 be an (L, k, κ)-TM, β be an integer greater than 1, f(z) :=
∑∞

n=0
a(N+nl)
zn+1 ( for all N ≥ 0 and for all l > 0 ), and 0 < R < 1. If (a(n))∞n=0 takes on the

values {0, 1, . . . , β − 1}, is y-periodic and there is no integer A such that

κ(s, A+ y) ≡ κ(1, A)sky (mod L) (89)

for all s with 1 ≤ s ≤ k − 1 and for all y ∈ N, then f(α) is a transcendental number for all

but finitely many algebraic numbers α with |α| ≤ R.

Proof. By Corollary 20, f(z) is transcendental over Q(z). From Proposition 28, (a(N +
nl))∞n=0 ( for all N ≥ 0 and for all l > 0 ) is a k-automatic sequence. Therefore, f(z) is a
k-automatic power series. Theorem 27 implies that f(α) is transcendental for all but finitely
many algebraic numbers α with |α| ≤ R.
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Éc. Norm. Supér 46 (2013), 1005–1022.

[10] Y. Bugeaud, Distribution modulo one and Diophantine approximation, Cambridge
Tracts in Mathematics, Vol. 193, Cambridge University Press, 2012.

[11] F. Emmanuel, An analogue of the Thue-Morse sequence, Electron. J Combin 14 (2007),
paper #R30. Available at
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v14i1r30.

[12] N. P. Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Lecture Notes
in Mathematics, Springer, 2002.

[13] Frid. A. E, Overlap-free symmetric D0L words, Discrete Math. Theor. Comput. Sci. 4

(2001), 357–362.

[14] P. Morton and W. J. Mourant, Digit patterns and transcendental numbers, J. Aus-
tralian. Math. Soc 51 (1991), 216–236.

[15] J. F. Morgenbesser, J. Shallit, and T. Stoll, Thue-Morse at multiples of an integer, J.
Number Theory 131 (2011), 1498–1512.

20

http://www.combinatorics.org/ojs/index.php/eljc/article/view/v14i1r30


[16] K. Nishioka, Mahler Functions and Transcendence, Lecture Notes in Mathematics,
Springer, 1996.

2010 Mathematics Subject Classification: Primary 11A63; Secondary 11J99.
Keywords: digit counting, stammering sequence.

Received August 9 2014; revised version received October 10 2014; April 1 2015; July 21
2015; July 31 2015. Published in Journal of Integer Sequences, July 31 2015.

Return to Journal of Integer Sequences home page.

21

http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	Generalized Thue-Morse sequences and their generating functions
	Necessary-sufficient condition for the non-periodicity of a generalized Thue-Morse sequence
	Transcendence results of the generalized Thue-Morse sequences
	 k-Automatic generalized Thue-Morse sequences and some results
	Acknowledgments

