Carlitz's Identity for the Bernoulli Numbers and Zeon Algebra

Antônio Francisco Neto ${ }^{1}$
DEPRO, Escola de Minas
Campus Morro do Cruzeiro, UFOP
35400-000 Ouro Preto MG
Brazil
antfrannet@gmail.com

Abstract

In this work we provide a new short proof of Carlitz's identity for the Bernoulli numbers. Our approach is based on the ordinary generating function for the Bernoulli numbers and a Grassmann-Berezin integral representation of the Bernoulli numbers in the context of the Zeon algebra, which comprises an associative and commutative algebra with nilpotent generators.

1 Introduction

In this work we will give a new, simple and short proof of Carlitz's identity for the Bernoulli numbers [6]

$$
\begin{equation*}
\sum_{i=0}^{m}\binom{m}{i} B_{n+i}=(-1)^{m+n} \sum_{j=0}^{n}\binom{n}{j} B_{m+j} \tag{1}
\end{equation*}
$$

using the Zeon algebra [16, 17]. The identity in Eq. (1) has been re-obtained many times $[7,8,12,23,25]$ and also very recently $[13,18,24]$. The proof given here is of independent interest, because of the simplicity of the arguments involved and, as it occurred in other contexts $[1,2,5,10,11,15,16,17,20,21,22]$, the proof comprises another example of

[^0]the usefulness of using the Zeon algebra and/or the Grassmann algebra towards obtaining combinatorial identities.

Before we continue, we establish the basic underlying algebraic setup needed to give the proof of Eq. (1). Throughout this work we let \mathbb{Q} and \mathbb{R} denote the rational and real numbers, respectively.

2 Basic definitions: Zeon algebra and the GrassmannBerezin integral

Definition 1. The Zeon algebra $\mathcal{Z}_{n} \supset \mathbb{R}$ is defined as the associative algebra generated by the collection $\left\{\varepsilon_{i}\right\}_{i=1}^{n}(n<\infty)$ and the scalar $1 \in \mathbb{R}$, such that $1 \varepsilon_{i}=\varepsilon_{i}=\varepsilon_{i} 1, \varepsilon_{i} \varepsilon_{j}=\varepsilon_{j} \varepsilon_{i} \forall$ i, j and $\varepsilon_{i}^{2}=0 \forall i$.

Note that only linear elements in \mathcal{Z}_{n} contribute to the calculations.
For $\{i, j, \ldots, k\} \subset\{1,2, \ldots, n\}$ and $\varepsilon_{i j \cdots k} \equiv \varepsilon_{i} \varepsilon_{j} \cdots \varepsilon_{k}$ the most general element with n generators ε_{i} can be written as (with the convention of sum over repeated indices implicit)

$$
\begin{equation*}
\phi_{n}=a+a_{i} \varepsilon_{i}+a_{i j} \varepsilon_{i j}+\cdots+a_{12 \cdots n} \varepsilon_{12 \cdots n}=\sum_{\mathbf{i} \in 2^{[n]}} a_{\mathbf{i}} \varepsilon_{\mathbf{i}}, \tag{2}
\end{equation*}
$$

with $a, a_{i}, a_{i j}, \ldots, a_{12 \cdots n} \in \mathbb{R}, 2^{[n]}$ being the power set of $[n]:=\{1,2, \ldots, n\}$, and $1 \leq i<$ $j<\cdots \leq n$. We refer to a as the body of ϕ_{n} and write $b\left(\phi_{n}\right)=a$ and to $\phi_{n}-a$ as the soul such that $s\left(\phi_{n}\right)=\phi_{n}-a$.

Definition 2. The Grassmann-Berezin integral on \mathcal{Z}_{n}, denoted by \int, is the linear functional $\int: \mathcal{Z}_{n} \rightarrow \mathbb{R}$ such that (we use throughout this work the compact notation $d \mu_{n}:=d \varepsilon_{n} \cdots d \varepsilon_{1}$)

$$
d \varepsilon_{i} d \varepsilon_{j}=d \varepsilon_{j} d \varepsilon_{i}, \int \phi_{n}\left(\hat{\varepsilon}_{i}\right) d \varepsilon_{i}=0 \text { and } \int \phi_{n}\left(\hat{\varepsilon}_{i}\right) \varepsilon_{i} d \varepsilon_{i}=\phi_{n}\left(\hat{\varepsilon}_{i}\right)
$$

where $\phi_{n}\left(\hat{\varepsilon}_{i}\right)$ means any element of \mathcal{Z}_{n} with no dependence on ε_{i}. Multiple integrals are iterated integrals, i.e.,

$$
\int f\left(\phi_{n}\right) d \mu_{n}=\int \cdots\left(\int\left(\int f\left(\phi_{n}\right) d \varepsilon_{n}\right) d \varepsilon_{n-1}\right) \cdots d \varepsilon_{1}
$$

For example, if we define $\varphi_{n}:=\varepsilon_{1}+\cdots+\varepsilon_{n}$ it follows directly from Definition 2 and the multinomial theorem that

$$
\begin{equation*}
\int \varphi_{n}^{i} d \mu_{n}=i!\delta_{i, n} \tag{3}
\end{equation*}
$$

where $\delta_{i, n}$ is the Kronecker delta. For more details on Grassmann-Berezin integration, we refer the reader to the books of Berezin [3, Chapter 1] and [4, Chapter 2] or the books of DeWitt [9, Chapter 1] and Rogers [19, Chapter 11].

We will now recall some basic facts about the Zeon algebra. First, $a+\phi_{n}$ with $s(a)=$ $0=b\left(\phi_{n}\right)$ is invertible iff $b(a) \neq 0$. More precisely, we have

$$
\begin{equation*}
\frac{1}{a+\phi_{n}}=\frac{1}{a}\left(1-\frac{\phi_{n}}{a}+\frac{\phi_{n}^{2}}{a^{2}}+\cdots+(-1)^{n} \frac{\phi_{n}^{n}}{a^{n}}\right) . \tag{4}
\end{equation*}
$$

Second, the following expression holds

$$
\begin{equation*}
e^{\varphi_{n}}:=\sum_{i=0}^{\infty} \frac{\varphi_{n}^{i}}{i!}=\sum_{i=0}^{n} \frac{\varphi_{n}^{i}}{i!}=1+\sum_{1 \leq i \leq n} \varepsilon_{i}+\sum_{1 \leq i<j \leq n} \varepsilon_{i j}+\cdots+\varepsilon_{12 \cdots n} \tag{5}
\end{equation*}
$$

To obtain Eq. (5) we have used the multinomial theorem and $\varphi_{n}^{n+1}=0 \forall n \geq 1$. Third, let $\phi_{n}\left(\hat{\varepsilon}_{i}, \hat{\varepsilon}_{j}, \ldots, \hat{\varepsilon}_{k}\right)$ and $d \mu_{n}\left(\hat{\varepsilon}_{i}, \hat{\varepsilon}_{j}, \ldots, \hat{\varepsilon}_{k}\right)$ mean ϕ_{n} with $\varepsilon_{i}=\varepsilon_{j}=\cdots=\varepsilon_{k}=0$ and $d \mu_{n}$ with $d \varepsilon_{i}, d \varepsilon_{j}, \ldots, d \varepsilon_{k}$ omitted, respectively. We have

$$
\begin{equation*}
\int \phi_{n} \varepsilon_{i j \cdots k} d \mu_{n}=\int \phi_{n}\left(\hat{\varepsilon}_{i}, \hat{\varepsilon}_{j}, \ldots, \hat{\varepsilon}_{k}\right) \varepsilon_{i j \cdots k} d \mu_{n}=\int \phi_{n}\left(\hat{\varepsilon}_{i}, \hat{\varepsilon}_{j}, \ldots, \hat{\varepsilon}_{k}\right) d \mu_{n}\left(\hat{\varepsilon}_{i}, \hat{\varepsilon}_{j}, \ldots, \hat{\varepsilon}_{k}\right) \tag{6}
\end{equation*}
$$

Eq. (6) follows directly from the general expression in Eq. (2) and Definition 2. Finally, from Definition 2, we conclude that the order of integration is irrelevant, i.e., a Fubini-like theorem holds in the setting of Grassmann-Berezin integration.

We are now ready to prove Eq. (1).

3 Proof of Eq. (1)

Let us write $\mathbb{Q}[[z]]$ for the ring of formal power series in the variable z over \mathbb{Q}. We recall the generating function for the Bernoulli numbers B_{j} in $\mathbb{Q}[[z]]$ [26], i.e.,

$$
\begin{equation*}
\frac{1}{\sum_{i=0}^{\infty} \frac{z^{i}}{(i+1)!}}=\frac{z}{e^{z}-1}=\sum_{j=0}^{\infty} B_{j} \frac{z^{j}}{j!} \tag{7}
\end{equation*}
$$

and, making the change $z \rightarrow-z$ in Eq. (7), we get

$$
\begin{equation*}
\frac{e^{z}}{\sum_{i=0}^{\infty} \frac{z^{i}}{(i+1)!}}=\frac{z e^{z}}{e^{z}-1}=\sum_{j=0}^{\infty} B_{j} \frac{(-z)^{j}}{j!} \tag{8}
\end{equation*}
$$

Following the strategy of our previous work $[16,17]$, we consider Eqs. (7) and (8) in the context of the Zeon algebra with the replacement $z \rightarrow \phi_{k} \equiv \varphi_{k}$. Therefore, we get

$$
\begin{equation*}
\frac{1}{\sum_{i=0}^{k} \frac{\varphi_{k}^{i}}{(i+1)!}}=\sum_{j=0}^{k} B_{j} \frac{\varphi_{k}^{j}}{j!} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{e^{\varphi_{k}}}{\sum_{i=0}^{k} \frac{\varphi_{k}^{i}}{(i+1)!}}=\sum_{j=0}^{k} B_{j} \frac{\left(-\varphi_{k}\right)^{j}}{j!} \tag{10}
\end{equation*}
$$

using that $\varphi_{k}^{k+1}=0 \forall k \geq 1$. We observe that $b\left(\sum_{i=0}^{k} \frac{\varphi_{k}^{i}}{(i+1)!}\right)=1 \neq 0$ and, hence, $\sum_{i=0}^{k} \frac{\varphi_{k}^{i}}{(i+1)!}$ is invertible in \mathcal{Z}_{k}.

Now, integrating Eq. (9) in the Zeon algebra and using Eq. (3) we get

$$
\begin{equation*}
\int \frac{1}{\sum_{i=0}^{j} \frac{\varphi_{j}^{i}}{(i+1)!}} d \mu_{j}=\sum_{k=0}^{j} \frac{B_{k}}{k!} \int \varphi_{j}^{k} d \mu_{j}=B_{j} \tag{11}
\end{equation*}
$$

$\forall j \geq 1$. It is straightforward to verify that the representation in Eq. (11) is equivalent to a well-known representation of the Bernoulli numbers [14, Theorem 3.1], i.e.,

$$
B_{n}=n!\sum_{i=1}^{n}(-1)^{i} \sum_{\substack{i_{1}, i_{2}, \ldots, i_{n} \geq 0 \\ i_{1}+i_{n} \\ i_{1}+2 i_{2}+\cdots+n+n i_{n}=n}} \frac{i!}{i_{1}!i_{2}!\cdots i_{n}!} \frac{1}{2!^{i_{1}} 3!i^{i_{2}} \cdots(n+1)!^{i_{n}}} .
$$

Indeed, we have

$$
\begin{aligned}
B_{n} & =\sum_{i=1}^{n}(-1)^{i} \int\left(\frac{\varphi_{n}}{2!}+\frac{\varphi_{n}^{2}}{3!}+\cdots+\frac{\varphi_{n}^{n}}{(n+1)!}\right)^{i} d \mu_{n} \\
& =\sum_{i=1}^{n}(-1)^{i} \sum_{\substack{i_{1}, i_{2}, \ldots, i_{n} \geq 0 \\
i_{1}+i_{2}+\cdots+i_{n}=i}} \frac{i!}{i_{1}!i_{2}!\cdots i_{n}!} \int \frac{\varphi_{n}^{i_{1}} \varphi_{n}^{2 i_{2}} \cdots \varphi_{n}^{n i_{n}}}{2!_{i} 3!!_{2} \cdots(n+1)!_{n}} d \mu_{n} \\
& =n!\sum_{i=1}^{n}(-1)^{i} \sum_{\substack{i_{1}, i_{2}, \ldots, i_{n} \geq 0 \\
i_{1}+i_{2}+\cdots+i_{n}=i}} \frac{i!}{i_{1}!i_{2}!\cdots i_{n}!} \frac{\delta_{n, i_{1}+2 i_{2}+\cdots+n i_{n}}^{2!^{i} 3!i_{2} \cdots(n+1)!i_{n}}}{} \\
& =n!\sum_{i=1}^{n}(-1)^{i} \sum_{\substack{i_{1}, i_{2}, \ldots, i_{n} \geq 0 \\
i_{1}+i_{2}+\cdots+i_{n}=i}} \frac{i!}{i_{1}!i_{2}!\cdots i_{n}!} \frac{\delta_{n, i_{1}+2 i_{2}+\cdots+n i_{n}}^{2!i_{1} 3!i_{2} \cdots(n+1)!i_{n}},}{}
\end{aligned}
$$

using Eqs. (3), (4) and the multinomial theorem.
By considering Eq. (10), we take $k=m+n$ and write $\varphi_{m+n}=\varphi_{m}+\phi_{n}$ with $\varphi_{m}:=$ $\varepsilon_{1}+\cdots+\varepsilon_{m}, \phi_{n}:=\epsilon_{1}+\cdots+\epsilon_{n}$, and $\epsilon_{i}:=\varepsilon_{i+m} \forall 1 \leq i \leq n$. Next, we multiply both sides of Eq. (10) by $e^{-\phi_{n}}$. Finally, integrating the resulting equation with $d \mu_{m}:=d \varepsilon_{m} \cdots d \varepsilon_{1}$ and $d \nu_{n}:=d \epsilon_{n} \cdots d \epsilon_{1}$ we get

$$
\begin{equation*}
\int\left(\int \frac{e^{\varphi_{m}}}{\sum_{i=0}^{m+n} \frac{\left(\varphi_{m}+\phi_{n}\right)^{i}}{(i+1)!}} d \mu_{m}\right) d \nu_{n}=\sum_{j=0}^{m+n} \frac{B_{j}}{j!} \int\left(\int\left(-\varphi_{m}-\phi_{n}\right)^{j} e^{-\phi_{n}} d \nu_{n}\right) d \mu_{m} \tag{12}
\end{equation*}
$$

In Eq. (12) we have used a Fubini-like argument to perform the integrations. We first consider the left-hand side of Eq. (12). By expanding $e^{\varphi_{m}}$ as in Eq. (5) and integrating with respect to $d \mu_{m}$ we will need to analyze terms such as

$$
\begin{align*}
& \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{j} \leq m} \int\left(\int \frac{\varepsilon_{i_{1} i_{2} \cdots i_{j}}}{\sum_{i=0}^{m+n} \frac{\left(\varphi_{m}+\phi_{n}\right)^{2}}{(i+1)!}} d \mu_{m}\right) d \nu_{n} \\
& =\binom{m}{j} \int\left(\int \frac{1}{\sum_{i=0}^{m-j+n} \frac{\left(\varphi_{\left.m-j+\phi_{n}\right)^{i}}^{(i+1)!}\right.}{(i+1}} d \mu_{m-j}\right) d \nu_{n}=\binom{m}{j} B_{n+m-j} . \tag{13}
\end{align*}
$$

Therefore, using Eq. (13), we get for the left-hand side of Eq. (12)

$$
\begin{equation*}
\sum_{i=0}^{m}\binom{m}{i} B_{n+i} . \tag{14}
\end{equation*}
$$

Similarly, we expand $e^{-\phi_{n}}$ as in Eq. (5) and integrate with respect to $d \nu_{n}$ to obtain for the right-hand side of Eq. (12)

$$
\begin{equation*}
(-1)^{m+n} \sum_{j=0}^{n}\binom{n}{j} B_{m+j} . \tag{15}
\end{equation*}
$$

By equating the expressions in (14) and (15) we obtain the desired result, i.e., Eq. (1).
Let $B_{i}^{(j)}$ be the i-th Bernoulli number of order j with generating function in $\mathbb{Q}[[z]]$ given by

$$
\left(\frac{z}{e^{z}-1}\right)^{j}=\sum_{i=0}^{\infty} B_{i}^{(j)} \frac{z^{i}}{i!}
$$

Note that $B_{n}^{(1)} \equiv B_{n}$. Following the procedure just described, it is straightforward to prove an analogous identity for the Bernoulli numbers of higher order, i.e.,

$$
\sum_{i=0}^{m} k^{i}\binom{m}{i} B_{n+i}^{(k)}=(-1)^{m+n} \sum_{j=0}^{n} k^{j}\binom{n}{j} B_{m+j}^{(k)}
$$

4 Acknowledgments

The author thanks the anonymous referee for suggestions that improved the paper.

References

[1] A. Abdesselam, The Grassmann-Berezin calculus and theorems of the matrix-tree type, Adv. in Appl. Math. 33 (2004), 51-70.
[2] A. Bedini, S. Caracciolo, and A. Sportiello, Hyperforests on the complete hypergraph by Grassmann integral representation, J. Phys. A 41 (2008), 205003.
[3] F. A. Berezin, The Method of Second Quantization, Academic Press, 1966.
[4] F. A. Berezin, Introduction to Superanalysis, Reidel Publishing Company, 1987.
[5] S. Caracciolo, A. D. Sokal, and A. Sportiello, Algebraic/combinatorial proofs of Cayleytype identities for derivatives of determinants and pfaffians, Adv. in Appl. Math. 50 (2013), 474-594.
[6] L. Carlitz, Problem 795, Math. Mag. 44 (1971), 107.
[7] W. Y. C. Chen and L. H. Sun, Extended Zeilberger's algorithm for identities on Bernoulli and Euler polynomials, J. Number Theory 129 (2009), 2111-2132.
[8] W. Chu and P. Magli, Summation formulae on reciprocal sequences, European J. Combin. 28 (2007), 921-930.
[9] B. DeWitt, Supermanifolds, Cambridge University Press, 1992.
[10] P. Feinsilver, Zeon algebra, Fock space, and Markov chains, Commun. Stoch. Anal. 2 (2008), 263-275.
[11] P. Feinsilver and J. McSorley, Zeons, permanents, the Johnson scheme, and generalized derangements, Int. J. Comb. (2011), Article ID 539030.
[12] I. M. Gessel, Applications of the classical umbra calculus, Algebra Universalis 49 (2003), 397-434.
[13] H. W. Gould and J. Quaintance, Bernoulli numbers and a new binomial transform identity, J. Integer Sequences 17 (2014), Article 14.2.2.
[14] S. Jeong, M.-S. Kim, and J.-W. Son, On explicit formulae for Bernoulli numbers and their counterparts in positive characteristic, J. Number Theory 113 (2005), 53-68.
[15] T. Mansour and M. Schork, On linear differential equations involving a para-Grassmann variable, SIGMA Symmetry Integrability Geom. Methods Appl. 5 (2009), 073.
[16] A. F. Neto and P. H. R. dos Anjos, Zeon algebra and combinatorial identities, SIAM Rev. 56 (2014), 353-370.
[17] A. F. Neto, Higher order derivatives of trigonometric functions, Stirling numbers of the second kind, and zeon algebra, J. Integer Sequences $\mathbf{1 7}$ (2014), Article 14.9.3.
[18] H. Prodinger, A short proof of Carlitz's Bernoulli number identity, J. Integer Sequences 17 (2014), Article 14.4.1.
[19] A. Rogers, Supermanifolds: Theory and Applications, World Scientific Publishing, 2007.
[20] M. Schork, Some algebraical, combinatorial and analytical properties of paraGrassmann variables, Internat. J. Modern Phys. A 20 (2005), 4797-4819.
[21] R. Schott and G. S. Staples, Partitions and Clifford algebras, European J. Combin. 29 (2008), 1133-1138.
[22] R. Schott and G. S. Staples, Zeons, lattices of partitions, and free probability, Commun. Stoch. Anal. 4 (2010), 311-334.
[23] A. G. Shannon, Solution of problem 795, Math. Mag. 45 (1972), 55-56.
[24] J. Singh, On an arithmetic convolution, J. Integer Sequences 17 (2014), Article 14.6.7.
[25] P. Vassilev and M. Vassilev-Missana, On one remarkable identity involving Bernoulli numbers, Notes on Number Theory and Discrete Mathematics 11 (2005), 22-24.
[26] H. S. Wilf, Generatingfunctionology, Academic Press, New York, 1990. Free download available from http://www.math.upenn.edu/~wilf/DownldGF.html.

2010 Mathematics Subject Classification: Primary 11B68; Secondary 33B10, 05A15, 05A19.
Keywords: Zeon algebra, Berezin integration, Bernoulli number, generating function.
(Concerned with sequences A027641 and A027642.)

Received January 29 2015; revised version received April 6 2015. Published in Journal of Integer Sequences, May 252015.

Return to Journal of Integer Sequences home page.

[^0]: ${ }^{1}$ This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPqBrazil) under grant 307617/2012-2.

