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Abstract

We introduce a sequence b(n) of algebraic integers that is an analogue of Stern’s
diatomic sequence, not only in definition, but also in many of its properties. Just as
Stern’s sequence arises from Ford circles, so too b(n) arises from an array of circles.
We study the generating function for b(n) and derive several closed formulas for the
sequence. Two second order recurrence formulas for b(n) are found. It is shown that, for
t the square root of 2, the ratios t·b(n+1)/b(n) enumerate the positive rational numbers.
Finally, we use b(n) to create a function f(x) that is an analogue of Conway’s box
function and that has inverse a singular function analogous to Minkowski’s question-
mark function.

1 Introduction

Stern’s diatomic sequence is a particularly well studied sequence; see the survey paper by
Northshield [9], sequence A002487 in [12], and the references therein. In this paper, we
introduce a new sequence in Z[

√
2] that is an analogue of Stern’s sequence both in definition

and also in most of the properties described by Northshield [9].
In Section 2, we introduce the sequence (bn)n≥0. We also describe a “diatomic array”

so, as for Stern’s sequence, it earns the adjective “diatomic”. We also develop some basic
properties of the sequence.

In Section 3, we recall “Ford circles” and their parameterization by rational numbers.
Stern’s sequence appears as numerators and denominators in various generations of these
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circles. A variant of the family of Ford circles is introduced, perhaps first studied by Guettler
and Mallows [5], and we show how our sequence (bn) arises from these circles.

In Section 4, we find a closed formula for the generating function for (bn). Just as
Fibonacci numbers have a closed formula in terms of roots of a certain equation (Binet’s
formula), Northshield [9] showed that an analogous closed formula exists for Stern’s sequence
(involving s2(n), the number of ones in the binary representation of an n). Here we derive
an analogous closed formula for (bn), this time involving s3,1(n), the number of ones in the
ternary representation of n. Another closed formula is given in terms of generalized Lucas
numbers.

In Section 5, we show that (bn) satisfies a three-term recurrence

bn+1 = (2ν3(n) + 1)
√
2bn − bn−1

where ν3(n) := max{k : 3k|n}. We show that a similar formula holds for Stern’s sequence
(an) as well:

an+1 = (2ν2(n) + 1)an − an−1

where ν2(n) := max{k : 2k|n}. We are also able to give a modified Fibonacci recurrence for
(bn) as follows:

bn+1 =
√
2bn + bn−1 − 2(bn−1 mod (

√
2bn))

which is analogous to a result of Northshield [9, Proposition 4.3]:

an+1 = an + an−1 − 2(an−1 mod an).

In Section 6, we define a function on the triadic rationals in [0, 1] by

f

(

k

3n

)

=
bk

bk + b3n−k

.

We determine the range of f and consequently identify the set {[bk, bk+1]} as the pairs of
non-negative relatively prime integers (in the ring Z[

√
2]) such that

√
2bk+1/bk ∈ Q. It

follows that the map n 7→ Rn defined by

R1 = 2, Rn = 4ν3(n) + 2− 2

Rn−1

is a bijection from Z+ to Q+. Alternatively, the iterates of 2+ 2
x
− 4

{

1
x

}

, starting at 2, span
the entire set of positive rational numbers.

In Section 7, the function f introduced in Section 6 is shown to extend to a continuous
strictly increasing function on [0, 1]. Its inverse is an analogue of Minkowski’s question-mark
function ?(x) and, in fact, it shares the same formula in terms of the continued fraction
expansion of x as the original ?(x) except for the base of 2 is changed to 3.

In Section 8 we give some directions for future research and, in Section 9, we give Maple
code for the sequence (bn) as well as the first 101 terms of (bn).
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2 The sequence

Throughout this paper, for notational convenience, we let τ :=
√
2. Let b0 := 0, b1 := 1, and

b3n := bn;

b3n+1 := τ · bn + bn+1;

b3n+2 := bn + τ · bn+1.

(1)

Looking at the first few terms, we get

0, 1, τ, 1, 2τ, 3, τ, 3, 2τ, 1, 3τ, 5, 2τ, 7, 5τ, 3, 4τ, 5, τ, 5, 4τ, 3, 5τ, 7, 2τ, 5, . . .

Maple code for constructing this sequence, and a longer list of its elements, is in the Appendix
(Section 9).

Consider an (infinite) array of numbers with first three rows given as follows:

1 τ
1 2τ 3 τ
1 3τ 5 2τ 7 5τ 3 4τ 5 τ
. . . . . . . . . .

This is similar to Pascal’s triangle in that every entry in all but the top row is the weighted
sum of certain entries above. Specifically, given the nth row, we get the next row by repeating
the nth row but, between each two entries, we put the sums of those entries weighted by
[τ, 1] and [1, τ ], respectively. Any entry which is at the top of a column is the sum of two
entries on the previous row while any other entry just repeats the entry directly above it.

Any entry not in the first or last column contribute to five below and receive from either
one or two above, so that its “valence” (here meaning the number of bonds made with other
entries) is 6 or 7. We say the array is “diatomic”: Conceivably, an alloy with two types
of atoms, of chemical valence 6 or 7, could combine to make a kind of crystal described
by the diatomic array. Of course, such a crystal could only exist in hyperbolic space since
row size increases exponentially. The sequence (bn) arises from this array: the nth row is
b3n , . . . , b2·3n (and the reverse of the nth row is b2·3n , . . . , b3n+1). Just as it was for Stern’s
diatomic sequence, the adjective “diatomic” is appropriate for (bn) as well.

We observe that the nth row of the diatomic array contains 3n−1 + 1 elements while
the sum of the elements in the nth row satisfies the recurrence Sn+1 = η2(Sn − 1) where
η := 1+

√
2 is the fundamental unit of Z[

√
2] (i.e., all a+ b

√
2 with norm a2 − 2b2 = ±1 are

of the form ±ηn for some n ∈ Z). Note that Sn = xn + yn
√
2 where (xn) and (yn) are the

integer sequences A046090 and A011900 in [12], respectively.
Each segment b3n , . . . , b3n+1 of our original sequence (bn) is palindromic and we may

express this symmetry as a formula:

Proposition 1. For all n and all k between 0 and 2 · 3n,

b3n+k = b3n+1−k. (2)
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Proof. (Induction on n). The n = 0 case follows from the fact that b1 = 1 = b3.
Suppose that the conclusion of the proposition is true for n and that k is between 0 and

2 · 3n+1. There are three cases: k = 3j + i where i = 0, 1, or 2.
In the case where k = 3j,

b3n+1+k = b3n+j = b3n+1−j = b3n+2−k.

For k = 3j + i where j = 1 or 2, if 0 ≤ 3k+ j ≤ 2 · 3n+1 then −j ≤ 3k ≤ 2 · 3n+1 − j and
so 0 ≤ k ≤ 2 · 3n − 1. Hence, by the inductive hypothesis,

b3n+j+1 = b3n+1−j−1 and b3n+j = b3n+1−j.

When k = 3j + 1,

b3n+1+k = b3(3n+j)+1 = τb3n+j + b3n+j+1

= τb3n+1−j + b3n+1−j−1 = b3(3n+1−j−1)+2 = b3n+2−k.

When k = 3j + 2,

b3n+1+k = b3(3n+j)+2 = b3n+j + τb3n+j+1

= b3n+1−j + τb3n+1−j−1 = b3(3n+1−j−1)+1 = b3n+2−k.

Consider next the crushed array formed by taking rows of b3n , . . . , b3n+1−1 with all the
terms squeezed to the left as far as possible:

1 τ
1 2τ 3 τ 3 2τ
1 3τ 5 2τ 7 5τ 3 4τ 5 τ 5 4τ 3 5τ 7 2τ 5 3τ
1 4τ 7 3τ 11 8τ 5 7τ 9 2τ 11 9τ 7 12τ 17 5τ 13 8τ . . .

Apparently, each column is an arithmetic sequence (i.e., successive differences are constant)
and the sequence of these differences is (τbn).

Proposition 2. If 0 ≤ k < 3n, then

b3n+k − b3n−k =
√
2bk.

Proof. (Induction on n). Since b1+0 − b1−0 = 0 = τb0 and b1+1 − b1−1 = b2 − b0 = τ = τb1,
the proposition holds for n = 0.

Suppose the proposition is true for n and let k be between 0 and 3n+1−1 inclusive. There
are three cases: k = 3j + i for i = 0, 1, or 2.
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If k = 3j, then

b3n+1+k − b3n+1−k = b3(3n+j) − b3(3n−j) = b3n+j − b3n−j = τbj = τbk.

If k = 3j + 1, then

b3n+1+k − b3n+1−k = b3(3n+j)+1 − b3(3n−j−1)+2

= (τb3n+j + b3n+j+1)− (b3n−j−1 + τb3n−j)

= τ(b3n+j − b3n−j) + (b3n+j+1 − b3n−j−1)

= τ 2bj + τbj+1 = τbk.

If k = 3j + 2, then

b3n+1+k − b3n+1−k = b3(3n+j)+2 − b3(3n−j−1)+1

= (b3n+j + τb3n+j+1)− (τb3n−j−1 + b3n−j)

= (b3n+j − b3n−j) + τ(b3n+j+1 − b3n−j−1)

= τbj + τ 2bj+1 = τbk.

Proposition 3. For 0 ≤ k < 3n,

bk+1b3n−k − bkb3n−k−1 = 1.

Although it is possible to prove Proposition 3 using induction and the two previous
propositions, we will defer the proof to Section 6 (equation (7)).

Theorem 4. Let j(n) := (3n + 1)/2. Then

max{bk : 3n ≤ k < 3n+1} = bj(n) =
(
√
2 + 1)n + (

√
2− 1)n

2
.

Proof. Let xn := ((τ +1)n+(τ −1)n)/2. Since τ ±1 are zeros of x2−2τx+1, it follows that

x0 = 1, x1 = τ, xn+1 = 2τxn − xn−1.

We show that bj(n) satisfies the same recurrence. Note bj(0) = b1 = 1 = x0 and bj(1) =
b2 = τ = x1. Since

b3k−2 = b3(k−1)+1 = τbk−1 + bk = τ(bk−1 + τbk)− bk = τb3(k−1)+2 − bk = τb3k−1 − bk,

it follows that
b9k−4 = b3k−2 + τb3k−1 = 2τb3k−1 − bk.

Replacing k by j(n − 1) and using the facts that j(n) = 3j(n − 1) − 1 and j(n + 1) =
9j(n− 1)− 4,

bj(n+1) = 2τbj(n) − bj(n−1)
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and therefore bj(n) = xn.
A similar argument shows bj′(n) = ((τ + 1)n − (τ − 1)n)/2 where j′(n) = j(n) − 1 =

(3n − 1)/2. Hence b2j(n)−1 = b2j(n) − 1 and so bj(n)−1 is the second largest value in nth row. It

follows that the largest value in the (n+ 1)st row is bj(n)−1 + τbj(n) = b3j(n)−1 = bj(n+1). By
induction, the theorem follows.

Corollary 5. lim sup
n→∞

2bn

(2n)log3(1+
√
2)

≥ 1.

We conjecture that equality holds here. If true, then this is an analogue of a recent result
by Coons and Tyler [3] on Stern’s sequence.

3 Ford circles

We say a circle in the x, y-plane is normal if it is above and tangent to the x-axis. For t ∈ R

and r > 0, let C(t, r) be the circle with center (t, r) and radius r. Hence, C(t, r) is normal.
We note that every normal circle can be uniquely represented as C(t, r) for some t, r. By the
Pythagorean theorem, two circles C(t, r) and C(t′, r′) are tangent (we write C(t, r)||C(t′, r′))
if and only if

(t− t′)2 + (r − r′)2 = (r + r′)2

or, equivalently,
(t− t′)2 = 4rr′. (3)

Given a, b ∈ R with b > 0, we define

Ca,b := C

(

a

b
,
1

2b2

)

.

Then every circle above and tangent to the x-axis can be uniquely represented as Ca,b for
some real a, b (b > 0):

C(t, r) = Ct/
√
2r,1/

√
2r.

By (3), two such circles are tangent, i.e., Ca,b||Cc,d, if and only if |ad− bc| = 1.
From this point on, we write a ⊥ b for a, b relatively prime. We define the set of Ford

circles as follows:
F := {Ca,b : a, b ∈ Z, a ⊥ b}.

Hence F is parameterized by the rationals via the map taking a/b (in lowest terms) to Ca,b.
Given two normal circles that are tangent to each other, there is a unique normal circle

between and tangent to both. Further, it is easy to see that if these circles are Ca,b, Cc,d (i.e.,
|ad− bc| = 1) then Ca+c,b+d is the unique circle between and tangent to both.

The Ford circles are also constructed by a recursive geometric procedure: the family of
Ford circles of level 0 is just {C0,1, C1,1} and, given any two tangent circles of a family of level
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Figure 1: Ford Circles

n, add the unique circle between and tangent to those two. The family of level n together
with all the circles arising as above creates the family of level n+ 1. F turns out to be the
union of all the families of all levels [8]. The family of Ford circles of level n is parameterized
by Stern’s diatomic sequence (an)n≥0 defined by a0 = 0, a1 = 1, a2n = an, a2n+1 = an + an+1

[9]:
{Cak,ak+a2n−k

: k = 0, .., 2n}.
A variant of the family of Ford circles has been introduced and studied by Guettler and

Mallows [5]. Given any two tangent normal circles, there exists a unique triple of mutually
tangent circles between them, two of which are normal. If we iterate the process of taking
these two (instead of taking the unique normal circle between, as for Ford circles) then the
resulting array (see Figure 2) is that of Guettler and Mallows [5]. We shall now show that
the circles of level n are then of the form Cbk,bk+b3n−k

.

Figure 2: Ford Circles variant

We shall use the notation
(

a c
b d

)

(z) :=
az + c

bz + d

and thus express every Möbius transformation in terms of a (non-singular) matrix. It is
well known that Möbius transformations take circles to circles (straight lines are considered
circles too since, on the Riemann sphere, they are circles through ∞ [7]). For real a, b, c, d
with ad − bc = 1, the Möbius transformation above preserves the x-axis and takes x/y to
(ax + cy)/(bx + dy). Furthermore, since the imaginary part of m(z) is (ad − bc)/|cz + d|2
times the imaginary part of z, m takes normal circles to normal circles.
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Lemma 6. If m is a Möbius transformation

(

a c
b d

)

with ad − bc = 1, then m′(z) =

1/(bz + d)2,
m : C(z, r) 7→ C(m(z), |m′(z)|r),

and, consequently,
(

a c
b d

)

: Cx,y 7→ Cax+cy,bx+dy.

Proof. Since a, b, c, d are real, the Möbius transformation

(

a c
b d

)

takes the x-axis to itself

and therefore m(C(z, r)) = C(m(z), r′) for some r′ > 0. Let w 6= z in R. There exists
a unique s > 0 such that C(z, r)||C(w, s). There is then some s′ such that m(C(w, s)) =
C(m(w), s′). Since

4r′s′ = |m(z)−m(w)|2 = |m′(z)||m′(w)||z − w|2 = |m′(z)||m′(w)|4rs,

it follows that s′/(|m′(w)|s) is a constant function of w (equal to k := |m′(z)|r/r′). Letting
w converge to z shows that 1

k
= k and so r′ = |m′(z)|r.

The second part follows.

Cax+cy,bx+dy = C

(

ax+ cy

bx+ dy
,

1

2|bx+ dy|2
)

= C






m

(

x

y

)

,
1

2y2
(

b(x
y
) + d

)2







= C

(

m

(

x

y

)

,

∣

∣

∣

∣

m′
(

x

y

)∣

∣

∣

∣

· 1

2y2

)

= m

(

C

(

x

y
,
1

2y2

))

= m(Cx,y).

Theorem 7. Given two tangent normal circles Ca,b, Cc,d, there exist a unique triple of three

mutually tangent circles between them so that the six circles have octahedral contact graph

and such that two of those circles are normal. The two normal circles are Cτa+c,τb+d and

Ca+τc,b+τd.

Proof. Given C0,1 and C1,0 (which is the line y = 1), it is easy to see that Cτ,1, C1,τ , and
its reflection across y = 1/2 are the unique (up to reflection around x = 0) three mutually
tangent circles so that the collection of all six has octahedral contact graph. By Lemma 6,

(

a c
b d

)

: C1,0, C0,1, Cτ,1, C1,τ 7→ Ca,b, Cc,d, Cτa+c,τb+d, Ca+τc,b+τd.

For 0 ≤ k ≤ 3n, let C
[

k
3n

]

:= Cbk,bk+b3n−k
.
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Corollary 8. For 0 ≤ k < 3n, C
[

k
3n

]

||C
[

k+1
3n

]

and the two normal circles as defined by

Theorem 7 are given by C
[

3k+1
3n+1

]

and C
[

3k+2
3n+1

]

.

Proof. Let A = bk, B = bk + b3n−k, C = bk+1, and D = bk+1 + b3n−k−1. By Proposition 3,
CA,B||CC,D and so C

[

k
3n

]

||C
[

k+1
3n

]

. By Theorem 7, the two “new circles” are CτA+C,τB+D

and CA+τC,B+τD. It is easy to check, by (1), that τA + C = b3k+1, A + τC = b3k+2,
τB +D = b3k+1 + b3n+1−(3k+1), and B + τD = b3k+2 + b3n+1−(3k+2). The result follows.

4 Generating function

Let B(x) :=
∞
∑

n=0

bn+1x
n.

Proposition 9. B(x) := (1 +
√
2x+ x2 +

√
2x3 + x4)B(x3).

Proof. Since b0 = 0,
∑

bnx
n = x

∑

bn+1x
n and thus

B(x) =
∑

bn+1x
n =

∑

b3n+1x
3n +

∑

b3n+2x
3n+1 +

∑

b3n+3x
3n+2

=
∑

(τbn + bn+1)x
3n +

∑

(bn + τbn+1)x
3n+1 +

∑

bn+1x
3n+2

= τ
∑

bnx
3n +

∑

bn+1x
3n + x

∑

bnx
3n + xτ

∑

bn+1x
3n + x2

∑

bn+1x
3n

= (τx3 + 1 + x4 + xτ + x2)
∑

bn+1x
3n

and the proposition follows.

We let 〈N1, N2, . . . , Nn〉k be 1 or 0 according to whether the integers Ni share no non-zero
digits in their respective k-ary expansions or not. Northshield [9, Theorem 4.1] expressed
Stern’s sequence (an) thus:

an+1 =
∑

a+2b=n

〈a, b〉2.

We have an analogue of this theorem for (bn):

Theorem 10. For n ≥ 0, bn+1 =
∑

a+2b+3c+4d=n

〈a, b, c, d〉3 · (
√
2)a+c.

Proof. By the preceding proposition,

B(x) = (1 + τx+ x2 + τx3 + x4) · (1 + τx3 + x6 + τx9 + x12)

· (1 + τx9 + x18 + τx27 + x36) · · ·
and so B(x) can be written as a sum indexed by all choices of four integers with no ternary
digits in common:

B(x) =
∑

〈a,b,c,d〉3=1

τa+cxa+2b+3c+4d.

The result follows by equating coefficients.
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Some immediate consequences are that, if n is even, then bn is an integer multiple of τ ;
if n is odd then bn is an odd integer.

The following leads to another closed formula for (bn).

Lemma 11. 1 +
√
2x+ x2 +

√
2x3 + x4 = (1 + 1+

√
3√

2
x+ x2)(1 + 1−

√
3√

2
x+ x2).

Proof. Suppose 1+τx+x2+τx3+x4 = (1+ax+x2)(1+bx+x2). Multiplying the right side
out and equating coefficients, a+b = τ and 2+ab = 1. Then a, b are roots of x2−τx−1 = 0
and the result follows.

Note that the zeros of 1+ τx+ x2 + τx3 + x4 can easily be seen to be ζω, ζω, ζω, and ζω
where ζ = ei5π/12 and ω = ei2π/3.

Recall Binet’s formula for the nth Fibonacci number: for φ and φ the zeros of x2−x− 1,

Fn =
φn − φ

n

φ− φ
.

Alternatively, we may write

Fn+1 =
n
∑

k=0

φkφ
n−k

.

Northshield [9, Proposition 4.4] proved a Binet type formula for Stern’s sequence: for σ and
σ the zeros of x2 + x+ 1 and s2(n) the number of ones in the binary expansion of n,

an+1 =
n
∑

k=0

σs2(k)σs2(n−k).

The following is a Binet type formula for (bn). Let s(n) denote the number of ones in
the ternary representation of n (A062756 in [12]).

Theorem 12. For ρ and ρ the zeros of x2 −
√
2x − 1 and s(n) the number of ones in the

ternary representation of n,

bn+1 =
n
∑

k=0

ρs(k)ρs(n−k).

Proof. The zeros of x2 − τx− 1 are (1±
√
3)/τ . By Proposition 9 and Lemma 11,

B(x) =
∞
∏

n=0

(1 + τx3n + x2·3n + τx3·3n + x4·3n)

=
∞
∏

n=0

(1 + ax3n + x2·3n) ·
∞
∏

n=0

(1 + bx3n + x2·3n)

10
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where a =
1 +

√
3

τ
and b =

1−
√
3

τ
. Since

∞
∏

n=0

(1 + ax3n + x2·3n) =
∞
∑

k=0

as(k)xk,

B(x) =

( ∞
∑

k=0

as(k)xk

)( ∞
∑

k=0

bs(k)xk

)

=
∞
∑

n=0

(

n
∑

k=0

as(k)bs(n−k)

)

xn.

Let (ln)n≥0 denote the generalized Lucas numbers 2, τ, 4, 5τ, 14, 19τ, 52, 71τ, . . . defined
by

l0 = 2, l1 = τ, ln+1 = τ ln + ln−1.

We note that (l2n)n≥0 is sequence A003500 in [12] and (l2n+1/
√
2)n≥0 is sequence A001834

in [12].

Corollary 13. bn+1 =
1

2

n
∑

k=0

(−1)s(k)∧s(n−k)l|s(k)−s(n−k)|.

Proof. It is easy to see that

n
∑

k=0

(ab)s(k)∧s(n−k)(a|s(k)−s(n−k)| + b|s(k)−s(n−k)|) = 2
n
∑

k=0

as(k)bs(n−k)

holds generally for any a, b and any natural numbers s(k). For the choice a = (1 +
√
3)/

√
2

and b = (1−
√
3)/

√
2, ab = −1 and the result follows from Theorem 12.

5 Recurrence formulas

For a prime p, let νp(n) be the largest k so that pk divides n. The sequences (ν2(n)) and
(ν3(n)) appear as, respectively, A007814 and A007949 in [12].

Theorem 14. The sequence (bn) satisfies, for n > 0,

bn+1 = (2ν3(n) + 1)τbn − bn−1.

Proof. Let rn := bn+1 + bn−1 − τbn. Then

r3n+1 = b3n+2 + b3n − τb3n+1 = bn + τbn+1 + bn − τ(τbn + bn+1)

= bn + τbn+1 + bn − 2bn − τbn+1 = 0,

r3n+2 = b3n+3 + b3n+1 − τb3n+2 = bn+1 + τbn + bn+1 − τ(bn + τbn+1)

= 2bn+1 + τbn − τbn − 2bn+1 = 0,
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and
r3n = b3n+1 + b3n−1 − τb3n = τbn + bn+1 + bn−1 + τbn − τbn

= bn+1 + bn−1 + τbn = rn + 2τbn.

By induction, rn = 2τν3(n)bn and the result follows.

Corollary 15. Let Rn := τ bn+1

bn
. Then R1 = 2 and

Rn = 4ν3(n) + 2− 2

Rn−1

.

Remark 16. An analogue of this result works for Stern’s diatomic sequence (proof, using
ν2(n) = ⌊an−1/an⌋, is left to the reader): if rn := an+1/an, then

rn = 2ν2(n) + 1− 1

rn−1

.

Lemma 17. For n > 0,

⌊

1

Rn−1

⌋

= ν3(n).

Proof. For n > 0, let Yn :=
bn−1

τbn
=

1

Rn−1

. Then

Y3n = 1 + Yn, Y3n+1 =
bn

2bn + τbn+1

, and Y3n+2 =
τbn + bn+1

τbn + 2bn+1

.

Hence ⌊Y3n⌋ = 1 + ⌊Yn⌋, ⌊Y3n+1⌋ = 0, and ⌊Y3n+2⌋ = 0. Since Y1 = 0, the result follows by
induction.

We may then get recurrences new for (Rn) and (bn).

Theorem 18. For n > 0,

Rn+1 = 2 +
2

Rn

− 4

{

1

Rn

}

and

bn+1 =
√
2bn + bn−1 − 2(bn−1 mod (

√
2bn)).

Proof. By Corollary 15 and Lemma 17,

Rn = 4ν3(n) + 2− 2

Rn−1

= 4

⌊

1

Rn−1

⌋

+ 2− 2

Rn−1

= 2 +
2

Rn−1

+ 4

(⌊

1

Rn−1

⌋

− 1

Rn−1

)

= 2 +
2

Rn−1

− 4

{

1

Rn−1

}

which shows the first part.
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Using Corollary 15 again,

τbn+1

bn
= 4ν3(n) + 2− 2bn−1

τbn
.

Multiplying by bn/τ , we find

bn+1 = 2τbnν3(n) + τbn − bn−1

= τbn + bn−1 − 2(bn−1 − τbnν3(n))

and the result follows from Lemma 17 and the fact that

bn−1 mod (τbn) = bn−1 − τbn

⌊

bn−1

τbn

⌋

= bn−1 − τbnν3(n).

6 Enumerating the rationals

Let D denote the set {k/3n : k, n ∈ N+, k ≤ 3n} of triadic rationals in the unit interval and
consider the function f : D → Q(τ) defined by

f(k/3n) :=
bk

bk + b3n−k

.

This function is well-defined since

f(3k/3n+1) =
b3k

b3k + b3n+1−3k

=
bk

bk + b3n−k

= f(k/3n).

In this section, we find the image of the triadic rationals under the map f .
Let

B0 :=

(

1 τ
0 1

)

, B1 :=

(

τ 1
1 τ

)

, B2 :=

(

1 0
τ 1

)

and, for n ∈ Z+, vn :=

(

bn+1

bn

)

.

Then, for i = 0, 1, and 2,
Bivn = v3n+i.

If m =
n
∑

k=0

ik3
k then

Bi0Bi1 · · ·Binv0 = vm;

Bi0Bi1 · · ·Binv1 = v3n+1+m.
(4)

Hence,

Bi0Bi1 · · ·BinB0 =

(

bm+1 b3n+1+m+1

bm b3n+1+m

)

(5)

13



and so, since tBi = B2−i and
t(A · B) =tB ·tA,

B2B2−inB2−in−1
· · ·B2−i0 =

(

b3n+1+m b3n+1+m+1

bm bm+1

)

. (6)

Since the determinant of each Bi is 1, by (5),

bk+1b3n−k − bkb3n−k−1 = 1 (7)

which thus proves Proposition 3.
The following is an immediate consequence of (5) and (6).

Proposition 19. For natural numbers m,n satisfying m < 3n+1, there exists k such that

(

b3n+1+m

bm

)

=

(

bk+1

bk

)

.

We define the slow Euclidean algorithm on ordered pairs of real numbers:

E : [x, y] 7→



















[x− τy, y], if y
x
≤ 1

τ
;

[τx− y, τy − x], if 1
τ
< y

x
≤ τ ;

[x, y − τx], if y
x
> τ ;

stop, if xy = 0.

Proposition 20. For x, y ∈ Z[
√
2], E preserves greatest common divisor.

Proof. The determinant of each Bi is 1 and so Bi is invertible over Z[
√
2]. Hence, for p a

prime in Z[
√
2], p| gcd(x, y) iff p| gcd(x−τy, y) iff p| gcd(x−τy, y−τx) iff p| gcd(x, y−τx).

Let L := {[x, y] ∈ Z[
√
2]2 : x ⊥ y, τx/y ∈ Q, x, y ≥ 0} where x ⊥ y means x and y are

relatively prime in Z[
√
2].

Theorem 21. The set L satisfies L = {[bk, bk+1] : k ∈ Z+}.

Proof. Let [x, y] ∈ L. Note that E([x, y]) ∈ L. By induction on the length of the ternary
expansion of k, since [b0, b1] = [0, 1] ∈ L, every [bk, bk+1] ∈ L.

Suppose [x, y] ∈ L but is not equal to any [bk, bk+1]. Without loss of generality, we
may assume that x + y is as small as possible. Let [u, v] = E([x, y]). Then [u, v] ∈ L and
u+ v < x+ y. Then [u, v] = [bk, bk+1] for some k and therefore

[x, y] ∈ {[b3k, b3k+1], [b3k+1, b3k+2], [b3k+2, b3k+3]}

– a contradiction.

Using Proposition 19,
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Corollary 22. The sets

{

bk
b3n+k

: k < 3n
}

and {r
√
2 : r ∈ Q} are the same.

Corollary 23. The image of the triadic rationals in [0, 1] under f is the set

{

m

m+ (n−m)
√
2
: n > 0,m ≥ 0

}

.

Proof. Since b3N+k/bk = τn/m for some n,m, Proposition 2 implies b3N−k/bk = τ(n−m)/m
and so f(k/3N) = m/(m+ (n−m)τ).

Recall the sequence (Rn)n≥1 defined by Rn :=
√
2 bn+1

bn
. By Corollary 15, the sequence

(Rn) is rational. The first few terms are, starting with n = 1,

2, 1, 4, 3/2, 2/3, 3, 4/3, 1/2, 6, 5/3, 4/5, 7/2, 10/7, 3/5, 8/3, 5/4, 2/5, 5, 8/5, 3/4, . . .

By Proposition 19 and Corollary 22, the range of Rn is all of the positive rationals and
therefore, by Corollary 15,

Theorem 24. With Rn defined by

R1 = 2, Rn = 4ν3(n) + 2− 2

Rn−1

,

the map n 7→ Rn is a bijection from Z+ to Q+.

Remark 25. A version of Theorem 24 appeared as a problem in the American Mathematical
Monthly [10].

The following is a consequence of Theorems 18 and 24.

Corollary 26. The iterates of 2 + 2
x
− 4

{

1
x

}

, starting at 2, span the entire set of positive

rational numbers.

This is similar, but not equivalent to, the fact [9, Theorem 5.2] that the iterates of
1 + 1

x
− 2

{

1
x

}

, starting at 1, span the entire set of positive rational numbers.

“Negative continued fractions” have been studied by Eustis ([4]) and others, but to
significantly lesser extent than regular continued fractions. They are of the form

(c0, c1, c2, . . .) := c0 −
1

c1 − 1
c2− 1

c3−...

where ci ∈ Z. Theorem 24 shows that every positive rational is a (finite) negative continued
fraction of the form

Rn = 2un −
2

2un−1 − 2
2un−2− 2

2un−3−...

= (2un, un−1, 2un−2, un−3, . . .)
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where un = 2ν3(n) + 1.

Allouche and Shallit [1] introduced k-regular sequences; recall that a sequence (xn)n≥0

(in a ring) is 3-regular if there are finitely many sequences such that (x3in+j)n≥0 is a Z-linear
combination of those sequences.

Proposition 27. The sequence (bn) is 3-regular.

Proof. If n =
k
∑

l=0

il3
l and j =

i−1
∑

l=0

jl3
l for some i ≥ 1, then

3in+ j =
k
∑

l=0

il3
l+i +

i−1
∑

l=0

jl3
l.

In terms of the matrices Bj and vectors vj defined at the beginning of this section, and by
equation (4),

v3in+j = Bj0Bj1 · · ·Bji−1
vn

and so
b3in+j =

(

0 1
)

·Bj0Bj1 · · ·Bji−1
vn.

That is, b3in+j is Z-linear combination of bn and bn+1, the entries of vn.

The sequence of rationals Rn :=
τbn+1

bn
can be written in lowest terms as

2

1
,
1

1
,
4

1
,
3

2
,
2

3
,
3

1
,
4

3
,
1

2
,
6

1
,
5

3
,
4

5
,
7

2
,
10

7
,
3

5
,
8

3
,
5

4
,
2

5
,
5

1
,
8

5
,
3

4
, . . .

The integer sequences that form the numerators and denominators are

2, 1, 4, 3, 2, 3, 4, 1, 6, 5, 4, 7, 10, 3, 8, 5, 2, 5, 8, 3, . . .

and
1, 1, 1, 2, 3, 1, 3, 2, 1, 3, 5, 2, 7, 5, 3, 4, 5, 1, 5, 4, . . . ,

respectively.
We show that these sequences are 3-regular. First we shall define two integer sequences

in terms of (bn) and show that they are term-wise relatively prime and that their term-wise
ratios correspond to Rn (and thus we will have formulas for the numerator and denominator
sequences). From this, we show that these two sequences are also 3-regular since each is a
product of (bn) with another 3-regular sequence.

Recall that two numbers x, y in a Euclidean domain E = Z or Z[
√
2] are relatively prime

(we write x ⊥ y) if and only if there exist u, v ∈ E such that ux + vy = 1. If x ⊥ y and
|ad− bc| = 1 then ax+ by ⊥ cx+ dy (since the matrix ( a b

c d ) is invertible over E).
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By the recurrence (1), if bn ⊥ bn+1 then b3n ⊥ b3n+1, b3n+1 ⊥ b3n+2, and b3n+2 ⊥ b3n+3. An
induction argument shows that bn ⊥ bn+1 over Z[

√
2] for all n. Recall that, by Theorem 10,

b2n+1 is an odd integer for each n and that b2n is an integer multiple of τ for each n. Let

γ(n) =

{

1, if n is odd;

τ, if n is even.

We then define D(n) := bn/γ(n), and N(n) := γ(n+1)bn+1. Then (D(n))n≥0 and (N(n))n≥0

are integer sequences and, for all n, D(n) ⊥ N(n). Note that N(n)/D(n) = τbn+1/bn and,
therefore, (N(n)) and (D(n)) are the numerator and denominator sequences of (Rn).

Since γ(3in+ j) = γ(n) or γ(n+ 1) according to whether j is even or odd, respectively,
the sequence (γ(n))n≥0 is 3-regular. Since the product of 3-regular sequences is 3-regular,
the sequences (N(n))n≥0 and (D(n))n≥0 are 3-regular.

7 A singular function

Let dn,k := bk + b3n−k so that f
(

k
3n

)

= bk
dn,k

.

Lemma 28. For 0 ≤ k < 3n, dn,kdn,k+1 ≥ n+ 1.

Proof. Note that
dn+1,3k = dn,k

dn+1,3k+1 = τdn,k + dn,k+1

dn+1,3k+2 = dn,k + τdn,k+1.

Then
dn+1,3kdn+1,3k+1 = τd2n,k + dn,kdn,k+1 ≥ dn,kdn,k+1 + 1,

dn+1,3k+1dn+1,3k+2 = (τdn,k + dn,k+1)(dn,k + τdn,k+1)

= 3dn,kdn,k+1 + τ(d2n,k + d2n,k+1) ≥ dn,kdn,k+1 + 1,

and
dn+1,3k+2dn+1,3k+3 = (dn,k + τdn,k+1)dn,k+1

= dn,kdn,k+1 + τd2n,k+1 ≥ dn,kdn,k+1 + 1.

Hence, for 0 ≤ j < 3n+1, dn+1,jdn+1,j+1 ≥ dn,⌊j/3⌋dn,⌊j/3⌋+1 + 1 and so the lemma follows by
induction.

Theorem 29. The function f
(

k
3n

)

:= bk
bk+b3n−k

on the triadic rationals in [0, 1] extends to a

continuous and strictly increasing function on [0, 1].
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Proof. By Lemma 28 and Proposition 3 (equation (7)),

f

(

k + 1

3n

)

− f

(

k

3n

)

=
bk+1

dn,k+1

− bk
dn,k

=
bk+1b3n−k − bkb3n−k−1

dn,kdn,k+1

=
1

dn,kdn,k+1

∈
(

0,
1

n

)

.

The result follows.

Recall the notation for continued fractions [6]: for positive integers c1, c2, c3, . . .,

[0; c1, c2, c3, . . .] := 1/(c1 + 1/(c2 + 1/(c3 + · · · ))).

Every irrational positive number between 0 and 1 can be written uniquely in that form
(rational numbers have non-unique finite expansions).

In 1904, Minkowski introduced a singular function (continuous and strictly increasing
with derivative existing and 0 almost everywhere) ? : [0, 1] → [0, 1]. Its value at x is defined
in terms of the continued fraction expansion of x: If x = [0, c1, c2, . . .] then

?(x) :=
∑

k≥1

(−1)k+1

2c1+···+ck−1
. (8)

One of the question mark function’s most interesting properties is that it maps quadratic
surds to rational numbers (since the sequence c1, c2, . . . is eventually periodic precisely when
x is a quadratic surd). The inverse of ?(x) is known as Conway’s box function [11, p. 82] and
it is known by, for example, Northshield [9, Theorem 6.2], that Stern’s sequence is related
to it:

?−1

(

k

2n

)

=
ak

ak + a2n−k

.

Figure 3: The graphs of f(x) and its inverse.
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For convenience, we define a function on the triadic rationals D:

g

(

k

3n

)

:=
bk

b3n+k

.

The functions f and g are closely related: by Proposition 2,

b3n+k

bk
=

b3n−k +
√
2bk

bk
=

b3n−k + bk
bk

+
√
2− 1

and therefore

g

(

k

3n

)

=
1

1
f(k/3n)

+
√
2− 1

and f

(

k

3n

)

=
1

1
g(k/3n)

+ 1−
√
2
. (9)

By Theorem 7 and equation (9), g extends to a continuous, strictly increasing function on
[0, 1].

Lemma 30. For 0 ≤ x < 3, g

(

3− x

3n

)

=
1

n
√
2 + g(x)

.

Proof. Let k < 3m+1. By Propositions 1 and 2,

b3m+2−k = b3m+1−k + τbk.

By an induction argument,
b3n+m+1−k = b3m+1−k + nτbk.

Replacing k by 3m+1 − k, and using Proposition 1,

b3n+m+3m+1−k = bk + nτb3m+1−k.

Hence,

g

(

3m+1 − k

3n+m

)

=
b3m+1−k

b3m+n+3m+1−k

=
b3m+k

bk + nτb3m+k

=
1

nτ + g(k/3m)
.

Letting k/3m → x, the result follows.

Consider now continued fractions [0; c1
√
2, c2

√
2, c3

√
2, . . .]. By Lemma 30,

g−1

(

1

n
√
2 + x

)

=
3− g−1(x)

3n

and thus

g−1([0, c1
√
2, c2

√
2, c3

√
2, . . .]) =

3− g−1([0, c2
√
2, c3

√
2, c4

√
2, . . .])

3c1
.

An induction argument shows the following.
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Figure 4: Homeomorphic fractals

Theorem 31. For c1, c2, . . . ∈ Z+,

g−1([0, c1
√
2, c2

√
2, c3

√
2, . . .]) =

∑

k

(−1)k+1

3c1+...+ck−1
.

Figure 4 gives a geometric way of viewing our analogue of Minkowski’s ?–function. We
consider each of the two objects to be lying in the complex plane with bottom edge coinciding
with the unit interval. Clearly they are homeomorphic and there is a unique homeomorphism
from the figure on the left to that on the right which takes the unit interval to itself and
fixes its endpoints. The restriction of this homeomorphism to the unit interval can be shown
to be f(x).

8 Future directions

The contact graph of a set of circles (with non-intersecting interiors) is the graph with that
vertex set such that we place an edge between two vertices if and only if the circles are
tangent. Ford circles are formed by iteratively completing triangles in a contact graph by
adding a new vertex (so as to form a graph tetrahedron out of the triangle). If we consider
this process “tetrahedral”, then the process generating the variant Ford circles of Section 3
is “octahedral”. It then seems that any polyhedron with triangular faces could be used to
generate a new set of circles and, thus, a new sequence of (presumably) algebraic integers.

At the end of Section 4, generalized Lucas numbers (an+bn) were defined. This sequence
displayed a type of combinatorial reciprocity [2]: the even terms and the odd terms (divided
by τ) are sequences of positive integers (A003500 and A001834 in [12] respectively) that are
known to count various sets of objects. One can consider generalized Fibonacci numbers
(an− bn)/(a− b) as well and investigate its even and odd terms. At the end of Section 6, the
sequences of numerators and denominators of Rn were considered. What do these sequences
count? Further, is there some kind of combinatorial reciprocity [2] occurring here?

The three term recurrence of Theorem 14 is reminiscent of the type of recurrence that
defines orthogonal polynomials. What are the polynomials generated by that recurrence
(with τ as variable)? What measure makes them orthogonal?

In Section 6, we have seen sequences satisfying

r1 = 1, rn = 2ν2(n) + 1− 1

rn−1
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and

R1 = 2, Rn = 4ν3(n) + 2− 2

rn−1

.

How does this generalize?

9 Appendix

The following is Maple code for a function b where bn = b(n).

b := proc (n);

if $n\le 1$ then n

elif n mod 3 = 0 then b(n/3)

elif n mod 3 = 1 then sqrt(2)*b((n-1)/3)+b((n+2)/3)

else b((n-2)/3)+sqrt(2)*b((n+1)/3); fi;

end proc;

Output for n = 0..100:

0, 1,
√
2, 1, 2

√
2, 3,

√
2, 3, 2

√
2, 1, 3

√
2, 5, 2

√
2, 7, 5

√
2, 3, 4

√
2, 5,

√
2, 5, 4

√
2, 3, 5

√
2,

7, 2
√
2, 5, 3

√
2, 1, 4

√
2, 7, 3

√
2, 11, 8

√
2, 5, 7

√
2, 9, 2

√
2, 11, 9

√
2, 7, 12

√
2, 17, 5

√
2, 13,

8
√
2, 3, 7

√
2, 11, 4

√
2, 13, 9

√
2, 5, 6

√
2, 7,

√
2, 7, 6

√
2, 5, 9

√
2, 13, 4

√
2, 11, 7

√
2, 3, 8

√
2,

13, 5
√
2, 17, 12

√
2, 7, 9

√
2, 11, 2

√
2, 9, 7

√
2, 5, 8

√
2, 11, 3

√
2, 7, 4

√
2, 1, 5

√
2, 9, 4

√
2,

15, 11
√
2, 7, 10

√
2, 13, 3

√
2, 17, 14

√
2, 11, 19

√
2, 27, 8

√
2, 21, 13

√
2, 5, 12

√
2.
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