Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.3

The Numbers $a^{2}+b^{2}-d c^{2}$

Andrzej Nowicki
Nicolaus Copernicus University
Faculty of Mathematics and Computer Science
87-100 Toruń
Poland
anow@mat.uni.torun.pl

Abstract

We say that a positive integer d is special if for every integer m there exist nonzero integers a, b, c such that $m=a^{2}+b^{2}-d c^{2}$. In this note we present examples and some properties of special numbers. Moreover, we present an infinite sequence of special numbers.

1 Introduction

Let d be a positive integer. If a, b, c are integers, then let $[a, b, c]_{d}$ denote the number $a^{2}+$ $b^{2}-d c^{2}$. We say that d is special if for every integer m there exist nonzero integers a, b, c such that $m=[a, b, c]_{d}$.

We present examples and some properties of special numbers. Moreover, we present an infinite sequence of special numbers.

2 The numbers $a^{2}+b^{2}-c^{2}$

Observe that $0=[3,4,5]_{1}$ and

$$
\begin{aligned}
& -1=[2,2,3]_{1}, \quad 1=[1,1,1]_{1}, \quad-6=[3,1,4]_{1}, \quad 6=[3,1,2]_{1}, \\
& -2=[1,1,2]_{1}, \quad 2=[3,3,4]_{1}, \quad-7=[1,1,3]_{1}, \quad 7=[2,2,1]_{1}, \\
& -3=[3,2,4]_{1}, \quad 3=[6,4,7]_{1}, \quad-8=[2,2,4]_{1}, \quad 8=[4,1,3]_{1}, \\
& -4=[2,1,3]_{1}, \quad 4=[2,1,1]_{1}, \quad-9=[6,2,7]_{1}, \quad 9=[3,1,1]_{1}, \\
& -5=[4,2,5]_{1}, \quad 5=[5,4,6]_{1}, \quad-10=[5,1,6]_{1}, \quad 10=[5,1,4]_{1} .
\end{aligned}
$$

One of the problems presented in [3, Problem L25] states that every integer is of the form $[a, b, c]_{1}$, where a, b, c are integers. We will show that every integer is of the form $[a, b, c]_{1}$ where a, b, c are nonzero integers.

Proposition 1. The number 1 is special, that is, for every integer m there exist nonzero integers a, b, c such that $m=a^{2}+b^{2}-c^{2}$.

Proof. It follows from the following equalities:

$$
2 k-1=[2, k-2, k-3]_{1}, \quad 2 k=[k, 1, k-1]_{1}
$$

for $k \in \mathbb{Z}$, and $3=[6,4,7]_{1}, 5=[5,4,6]_{1}, 2=[3,3,4]_{1}$.
It is known [1, p. 38] that the equation $x^{2}+y^{2}-z^{2}=3$ has infinitely many solutions in positive integers. The equation $x^{2}+y^{2}-z^{2}=1997$ has also infinitely many solutions in positive integers [7, p. 9]. In the next proposition we show that the same is true for every integer.

Proposition 2. For every integer m there are infinitely many triples (a, b, c) of nonzero integers such that $m=a^{2}+b^{2}-c^{2}$.

Proof. This is a consequence of the following two equalities.

$$
\begin{aligned}
2 k-1 & =(2 t)^{2}+\left(2 t^{2}-k\right)^{2}-\left(2 t^{2}-k+1\right)^{2} \\
2 k & =\left(2 t^{2}-2 t-k\right)^{2}+(2 t-1)^{2}-\left(2 t^{2}-2 t-k+1\right)^{2}
\end{aligned}
$$

where k, t are integers.

3 Properties of special numbers

In this section we present some elementary properties of special numbers. The following, well known lemma (see, for example, [5]), will play an important role.

Lemma 3. A positive integer m is a sum of two integer squares if and only if all prime factors of m of the form $4 k+3$ have even exponent in the prime factorization of m.

Now we prove
Proposition 4. Every special number is a sum of two integer squares. If a non-square positive integer d is special, then d is a sum of two nonzero integer squares.

Proof. Let d be a special number. There exist nonzero integers a, b, c such that $[a, b, c]_{d}=d$. Thus, we have the equality

$$
a^{2}+b^{2}=d\left(c^{2}+1\right)
$$

which says that $d\left(c^{2}+1\right)$ ia a sum of two squares. Hence, by Lemma 3, all prime factors of $d\left(c^{2}+1\right)$ of the form $4 k+3$ have even exponent in the prime factorization of $d\left(c^{2}+1\right)$. Since $c^{2}+1$ is also a sum of two squares, all prime factors of d of the form $4 k+3$ have even exponent in the prime factorization of d. Hence, again by Lemma 3, d is a sum of two integer squares. Now it is also clear that if additionally d is non-square, then d is a sum of two nonzero integer squares.

Note that $4=2^{2}+0^{2}$ is a sum of two integer squares and the number 4 is not special. The number $8=2^{2}+2^{2}$ is a sum of two nonzero squares and 8 is not special. In general we have

Proposition 5. If a positive integer d is divisible by 4, then d is not special.
Proof. Let $d=4 k$ where k is a positive integer, and assume that d is special. Then $a^{2}+b^{2}-$ $d c^{2}=3$ for some nonzero integers a, b, c. This implies that the number $a^{2}+b^{2}$ is of the form $4 k+3$. But integers of the form $4 k+3$ are not sums of two squares. Thus the assumption that d is special leads to a contradiction.

Proposition 6. If a positive integer d is divisible by a prime number of the form $4 k+3$, then d is not special.

Proof. Let p be a prime number of the form $4 k+3$. Assume that $p \mid d$ and d is special. Then d is a sum of two squares (by Proposition 4) and this implies (by Lemma 3) that $p^{2} \mid d$. Moreover, there exist nonzero integers a, b, c such that $a^{2}+b^{2}-d c^{2}=p$. In this case p divides the sum of two squares $a^{2}+b^{2}$ and so, again by Lemma 3, the integer $a^{2}+b^{2}$ is divisible by p^{2}. Hence, p^{2} divides p. Thus the assumption that d is special leads to a contradiction.

As a consequence of the above propositions we obtain the following theorem.
Theorem 7. Every special number is of the form q or $2 q$, where either $q=1$ or q is a product of prime numbers of the form $4 k+1$.

Question 8. Let $d=q$ or $d=2 q$, where q is a product of prime numbers of the form $4 k+1$. Is it true that d is a special number?

We do not know the answer to the above question.
Proposition 9. Let d be a non-square positive integer and let m be an integer. Assume that there exists a triple (a, b, c) of positive integers such that $[a, b, c]_{d}=m$. Then such triples (a, b, c) are infinitely many.
Proof. Let $[a, b, c]_{d}=m$ for some positive integers a, b, c. Then the Pell equation

$$
x^{2}-d z^{2}=m-b^{2}
$$

has a solution in positive integers $(x, z)=(a, c)$. It follows from the theory of Pell equations $[5,2,4]$ that then this equation has infinitely many positive solutions. Let (u, v) be such a solution. Then the triple (u, b, v) is a solution in positive integers of the equation $x^{2}+y^{2}-$ $d z^{2}=m$.

4 Examples

We already know that the number 1 is special. In this section we present the all special numbers smaller than 50 .

Consider the case $d=2$. Let us recall that $[a, b, c]_{2}=a^{2}+b^{2}-2 c^{2}$. Observe that $0=[1,1,1]_{2}$ and we have

$$
\begin{array}{rlrrrl}
-1=[4,1,3]_{2}, & 1 & =[8,3,6]_{2}, & -6 & =[1,1,2]_{2}, & \\
-2=[12,4,9]_{2}, & 2=[3,1,2]_{2}, & -7 & =[4,3,4]_{2}, & 7]_{2}, \\
-3=[2,1,2]_{2}, & 3=[2,1,1]_{2}, & -8 & =[3,1,3]_{2}, & 8 & =[3,3,3]_{2}, \\
-4=[8,2,6]_{2}, & 4=[16,6,12]_{2}, & -9 & =[5,4,5]_{2}, & 9 & =[4,1,2]_{2}, \\
-5=[3,2,3]_{2}, & 5=[3,2,2]_{2}, & -10 & =[2,2,3]_{2}, & 10 & =[3,3,2]_{2} .
\end{array}
$$

Proposition 10. The number 2 is special, that is, for every integer m there exist nonzero integers a, b, c such that $m=a^{2}+b^{2}-2 c^{2}$.

Proof. This is a consequence of the equalities $2 k-1=[k-1, k, k-1]_{2}$, $4 k=[k-1, k+1, k-1]_{2}, \quad 4 k+2=[k-3, k+1, k-2]_{2}$ (where k is an integer), and $1=[8,3,6]_{2},-1=[4,1,3]_{2},-4=[9,2,6]_{2} . \quad 4=[16,6,12],-2=[12,4,9]_{2}, \quad 10=[3,3,2]_{2}$, $14=[4,4,3]_{2}$.

Note the following consequence of Propositions 10 and 9.
Proposition 11. For every integer m there are infinitely many triples (a, b, c), of nonzero integers such that $m=a^{2}+b^{2}-2 c^{2}$.

Example 12. Some solutions (x, y, z) of the equation $x^{2}+y^{2}-2 z^{2}=1$:
$(8,3,6)$,
$(15,8,12)$,
$(24,15,20)$,
$(33,8,24)$,
$(48,3,34)$,
$(48,17,36)$,
$(48,35,42)$,
$(63,48,56)$,
$(35,24,30)$,
$(72,15,52)$,
(80, 63, 72),
$(93,8,66)$,
$(93,48,74)$,
(72, 33, 56),
(99, 80, 90).

Example 13. For every integer a we have $[a+2, a, a+1]_{2}=2$.
Consider now the case $d=5$. Let us recall that $[a, b, c]_{5}=a^{2}+b^{2}-5 c^{2}$. Observe that $0=[1,2,1]_{5}$ and we have

$$
\begin{array}{rrrr}
-1=[12,10,7]_{5}, & 1=[10,9,6]_{5}, & -2=[3,3,2]_{5}, & 2=[9,1,4]_{5}, \\
-3=[1,1,1]_{5}, & 3=[2,2,1]_{5}, & -4=[5,4,3]_{5}, & 4=[20,3,9]_{5}, \\
-5=[6,2,3]_{5}, & 5=[3,1,1]_{5}, & -6=[7,5,4]_{5}, & 6=[5,1,2]_{5}, \\
-7=[3,2,2]_{5}, & 7=[6,4,3]_{5}, & -8=[6,1,3]_{5}, & 8=[3,2,1]_{5}, \\
-9=[10,4,5]_{5}, & 9=[5,2,2]_{5}, & -10=[7,11,6]_{5}, & 10=[3,9,4]_{5},
\end{array}
$$

Proposition 14. The number 5 is special, that is, for every integer m there exist nonzero integers a, b, c such that $m=a^{2}+b^{2}-5 c^{2}$.

Proof. It follows from the equalities

$$
k^{2}+(2 k-2)^{2}-5(k-1)^{2}=2 k-1, \quad(k-2)^{2}+(2 k-1)^{2}-5(k-1)^{2}=2 k,
$$

and $=-1=[12,10,7]_{5}, \quad 1=[10,9,6]_{5}, 2=[9,1,4]_{5}, \quad 4=[20,3,9]_{5}$.
Note the following consequence of Propositions 14 and 9.
Proposition 15. For every integer m there are infinitely many triples (a, b, c), of positive integers such that $m=a^{2}+b^{2}-5 c^{2}$.

Proposition 16. Let $d=q$ or $d=2 q$, where q is a product of prime numbers of the form $4 k+1$. If $d \leqslant 50$, then d is special.

Proof. If $d<10$, then $d=1,2$ or 5 , and we already know that in this case d is special. If $d \geqslant 10$, then we have the following equalities:

$$
\begin{aligned}
& {[k, 3 k-3, k-1]_{10}=[k-5,3 k-8, k-3]_{10}=2 k-1,} \\
& {[k+1,3 k-3, k-1]_{10}=[k-9,3 k-13, k-5]_{10}=4 k,} \\
& {[k-1,3 k+1, k]_{10}=[k-21,3 k-39, k-14]_{10}=4 k+2 .} \\
& {[2 k-4,3 k-10, k-3]_{13}=[2 k-30,3 k-36, k-13]_{13}=2 k-1 \text {, }} \\
& {[2 k-3,3 k-2, k-1]_{13}=[2 k-29,3 k-54, k-17]_{13}=2 k .} \\
& {[k, 4 k-4, k-1]_{17}=[k-34,4 k-106, k-27]_{17}=2 k-1,} \\
& {[k-8,4 k-19, k-5]_{17}=[k-76,4 k-357, k-65]_{17}=2 k .} \\
& {[3 k-18,4 k-30, k-7]_{25}=[3 k-68,4 k-80, k-21]_{25}=2 k-1 \text {, }} \\
& {[3 k-4,4 k-3, k-1]_{25}=[3 k-104,4 k-153, k-37]_{25}=2 k .} \\
& {[k, 5 k-5, k-1]_{26}=[k-13,5 k-44, k-9]_{26}=2 k-1 .} \\
& {[k+1,5 k-5, k-1]_{26}=[k-25,5 k-83, k-17]_{26}=4 k,} \\
& {[k-5,5 k-9, k-2]_{26}=[k-57,5 k-217, k-44]_{26}=4 k+2 .} \\
& {[2 k-8,5 k-14, k-3]_{29}=[2 k-66,5 k-188, k-37]_{29}=2 k-1,} \\
& {[2 k-7,5 k-26, k-5]_{29}=[2 k-65,5 k-142, k-29]_{29}=2 k .}
\end{aligned}
$$

$$
\begin{array}{rll}
{[3 k-7,5 k-16, k-3]_{34}} & =[3 k-24,5 k-33, k-7]_{34} & =2 k-1, \\
{[3 k-11,5 k-27, k-5]_{34}} & =[3 k-45,5 k-61, k-13]_{34} & =4 k \\
{[3 k-1,5 k+1, k]_{34}} & =[3 k-69,5 k-135, k-26]_{34} & =4 k+2 . \\
{[k, 6 k-6, k-1]_{37}} & =[k-74,6 k-376, k-63]_{37} & =2 k-1, \\
{[k-18,6 k-77, k-13]_{37}} & =[k-166,6 k-891, k-149]_{37} & =2 k . \\
{[4 k-48,5 k-68, k-13]_{41}} & =[4 k-130,5 k-150, k-31]_{41} & =2 k-1, \\
{[4 k-5,5 k-4, k-1]_{41}} & =[4 k-251,5 k-332, k-65]_{41} & =2 k . \\
{[k, 7 k-7, k-1]_{50}} & =[k-25,7 k-132, k-19]_{50} & =2 k-1, \\
{[k+1,7 k-7, k-1]_{50}} & =[k-49,7 k-257, k-37]_{50} & =4 k \\
{[k-11,7 k-41, k-6]_{50}} & =[k-111,7 k-641, k-92]_{50} & =4 k+2 .
\end{array}
$$

By similar methods we are ready to prove, using a computer, that the same is true for $d<1000$. Hence, we know that if $d<1000$, then the answer to Question 8 is affirmative.

5 An infinite sequence of special numbers

In this section we prove that the set of special numbers is infinite. In our proof we use the following well known lemma [5, 2, 4] concerned with the sequence [6, A001110]. Let us recall that every number of the form $t_{n}=\frac{n(n+1)}{2}=1+2+\cdots+n$ is called triangular .

Lemma 17. There are infinitely many square triangular numbers. Examples:

$$
t_{1}=1^{2}, \quad t_{8}=6^{2}, \quad t_{49}=35^{2}, \quad t_{288}=204^{2}, \quad t_{1681}=1189^{2}
$$

Proof. The Pell equation $x^{2}-8 y^{2}=1$ has infinitely many solutions in positive integers. Let (x, y) be one of such solutions. Then x is odd. Let $x=2 n+1$ where n is a positive integer. Then we have $t_{n}=\frac{n(n+1)}{2}=y^{2}$.

Theorem 18. There are infinitely many special numbers.
Proof. We know from the previous lemma that there are infinitely many positive integers u such that $u^{2}=\frac{k(k+1)}{2}$ for some positive integer k. Let $d=(2 u)^{2}+1$ with $u \geqslant 2$. Observe that $d=k^{2}+(k+1)^{2}$. We will show that the number d is special. Let m be an integer.

First assume that m is even. Let $m=2 s$, where s is an integer. We have the equality

$$
((k+1)(s-1)+1)^{2}+(k(s-1)-1)^{2}-d(s-1)^{2}=2 s
$$

Thus, if $m=2 s$ with $s \neq 1$, then there exist nonzero integers a, b, c such that $[a, b, c]_{d}=m$. Consider the case $s=1$, that is, $m=2$. Since d is non-square, the Pell equation $x^{2}-d z^{2}=$ 1 has a solution (x, z) such that x, z are positive integers. Then we have $[x, 1, z]_{d}=2$. Therefore, every even integer m is of the form $[a, b, c]_{d}$ with nonzero integers a, b, c.

Now assume that m is odd. Let $m=2 s-1$ where s is an integer. We have the equality

$$
s^{2}+(2 u s-2 u)^{2}-d(s-1)^{2}=2 s-1
$$

Thus, if $m=2 s-1$ with $s \neq 1$, then there exist positive integers a, b, c such that $[a, b, c]_{d}=m$. Consider the case $s=1$, that is, $m=1$. Since $d-4$ is non-square (because $d=4 u^{2}+1$ with $u \geqslant 2$), the Pell equation $x^{2}-(d-4) z^{2}=1$ has a solution (x, z) such that x, z are positive integers. Then we have $[x, 2 z, z]_{d}=1$. Therefore, every odd integer m is also of the form $[a, b, c]_{d}$ with nonzero integers a, b, c.

References

[1] T. Andreescu and K. Kedlaya, Mathematical Olympiads, Problems and Solutions, From Around the World 1996-1997, American Mathematics Competitions, 1998.
[2] E. Barbeau, Pell's Equation, Problem Books in Mathematics, Springer, 2003.
[3] H. Lee, Problems in Elementary Number Theory, Version 04526, 2007. Available at http://www.h1tv.fr.yuku.com/attach/ma/post-6-1151321263.pdf.
[4] A. Nowicki, Pell's Equation (in Polish), Podróże po Imperium Liczb 14, Second Edition, OWSIiZ, Olsztyn, Toruń, 2014.
[5] W. Sierpiński, Elementary Theory of Numbers, North-Holland Mathematical Library, Vol. 31, 1988.
[6] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, http://oeis.org.
[7] A. M. Storozhev, International Mathematics Tournament of Towns 1997-2002, Book 5, AMT Publishing, 2006.

2010 Mathematics Subject Classification: Primary 11D09; Secondary 11B99.
Keywords: Pell's equation, sum of squares.
(Concerned with sequences A000217 and A001110.)

Received November 18 2014; revised versions received December 16 2014; December 182014. Published in Journal of Integer Sequences, January 242015.

Return to Journal of Integer Sequences home page.

