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Abstract

We say that a positive integer d is special if for every integer m there exist nonzero

integers a, b, c such that m = a2+ b2− dc2. In this note we present examples and some

properties of special numbers. Moreover, we present an infinite sequence of special

numbers.

1 Introduction

Let d be a positive integer. If a, b, c are integers, then let [a, b, c]d denote the number a2 +
b2 − dc2. We say that d is special if for every integer m there exist nonzero integers a, b, c

such that m = [a, b, c]d.
We present examples and some properties of special numbers. Moreover, we present an

infinite sequence of special numbers.

2 The numbers a2 + b2 − c2

Observe that 0 = [3, 4, 5]1 and

−1 = [2, 2, 3]1, 1 = [1, 1, 1]1, −6 = [3, 1, 4]1, 6 = [3, 1, 2]1,

−2 = [1, 1, 2]1, 2 = [3, 3, 4]1, −7 = [1, 1, 3]1, 7 = [2, 2, 1]1,

−3 = [3, 2, 4]1, 3 = [6, 4, 7]1, −8 = [2, 2, 4]1, 8 = [4, 1, 3]1,

−4 = [2, 1, 3]1, 4 = [2, 1, 1]1, −9 = [6, 2, 7]1, 9 = [3, 1, 1]1,

−5 = [4, 2, 5]1, 5 = [5, 4, 6]1, −10 = [5, 1, 6]1, 10 = [5, 1, 4]1.
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One of the problems presented in [3, Problem L25] states that every integer is of the form
[a, b, c]1, where a, b, c are integers. We will show that every integer is of the form [a, b, c]1
where a, b, c are nonzero integers.

Proposition 1. The number 1 is special, that is, for every integer m there exist nonzero

integers a, b, c such that m = a2 + b2 − c2.

Proof. It follows from the following equalities:

2k − 1 = [2, k − 2, k − 3]1, 2k = [k, 1, k − 1]1

for k ∈ Z, and 3 = [6, 4, 7]1, 5 = [5, 4, 6]1, 2 = [3, 3, 4]1.

It is known [1, p. 38] that the equation x2 + y2 − z2 = 3 has infinitely many solutions
in positive integers. The equation x2 + y2 − z2 = 1997 has also infinitely many solutions in
positive integers [7, p. 9]. In the next proposition we show that the same is true for every
integer.

Proposition 2. For every integer m there are infinitely many triples (a, b, c) of nonzero

integers such that m = a2 + b2 − c2.

Proof. This is a consequence of the following two equalities.

2k − 1 = (2t)2 + (2t2 − k)2 − (2t2 − k + 1)2,

2k = (2t2 − 2t− k)2 + (2t− 1)2 − (2t2 − 2t− k + 1)2,

where k, t are integers.

3 Properties of special numbers

In this section we present some elementary properties of special numbers. The following,
well known lemma (see, for example, [5]), will play an important role.

Lemma 3. A positive integer m is a sum of two integer squares if and only if all prime

factors of m of the form 4k + 3 have even exponent in the prime factorization of m.

Now we prove

Proposition 4. Every special number is a sum of two integer squares. If a non-square

positive integer d is special, then d is a sum of two nonzero integer squares.

Proof. Let d be a special number. There exist nonzero integers a, b, c such that [a, b, c]d = d.
Thus, we have the equality

a2 + b2 = d(c2 + 1),
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which says that d(c2 + 1) ia a sum of two squares. Hence, by Lemma 3, all prime factors
of d(c2 + 1) of the form 4k + 3 have even exponent in the prime factorization of d(c2 + 1).
Since c2 + 1 is also a sum of two squares, all prime factors of d of the form 4k + 3 have
even exponent in the prime factorization of d. Hence, again by Lemma 3, d is a sum of two
integer squares. Now it is also clear that if additionally d is non-square, then d is a sum of
two nonzero integer squares.

Note that 4 = 22 + 02 is a sum of two integer squares and the number 4 is not special.
The number 8 = 22 + 22 is a sum of two nonzero squares and 8 is not special. In general we
have

Proposition 5. If a positive integer d is divisible by 4, then d is not special.

Proof. Let d = 4k where k is a positive integer, and assume that d is special. Then a2+ b2−
dc2 = 3 for some nonzero integers a, b, c. This implies that the number a2 + b2 is of the form
4k + 3. But integers of the form 4k + 3 are not sums of two squares. Thus the assumption
that d is special leads to a contradiction.

Proposition 6. If a positive integer d is divisible by a prime number of the form 4k + 3,
then d is not special.

Proof. Let p be a prime number of the form 4k+3. Assume that p | d and d is special. Then
d is a sum of two squares (by Proposition 4) and this implies (by Lemma 3) that p2 | d.
Moreover, there exist nonzero integers a, b, c such that a2+b2−dc2 = p. In this case p divides
the sum of two squares a2 + b2 and so, again by Lemma 3, the integer a2 + b2 is divisible by
p2. Hence, p2 divides p. Thus the assumption that d is special leads to a contradiction.

As a consequence of the above propositions we obtain the following theorem.

Theorem 7. Every special number is of the form q or 2q, where either q = 1 or q is a

product of prime numbers of the form 4k + 1.

Question 8. Let d = q or d = 2q, where q is a product of prime numbers of the form 4k+ 1.
Is it true that d is a special number?

We do not know the answer to the above question.

Proposition 9. Let d be a non-square positive integer and let m be an integer. Assume that

there exists a triple (a, b, c) of positive integers such that [a, b, c]d = m. Then such triples

(a, b, c) are infinitely many.

Proof. Let [a, b, c]d = m for some positive integers a, b, c. Then the Pell equation

x2 − dz2 = m− b2

has a solution in positive integers (x, z) = (a, c). It follows from the theory of Pell equations
[5, 2, 4] that then this equation has infinitely many positive solutions. Let (u, v) be such a
solution. Then the triple (u, b, v) is a solution in positive integers of the equation x2 + y2 −
dz2 = m.

3



4 Examples

We already know that the number 1 is special. In this section we present the all special
numbers smaller than 50.

Consider the case d = 2. Let us recall that [a, b, c]2 = a2 + b2 − 2c2. Observe that
0 = [1, 1, 1]2 and we have

−1 = [4, 1, 3]2, 1 = [8, 3, 6]2, −6 = [1, 1, 2]2, 6 = [2, 2, 1]2,

−2 = [12, 4, 9]2, 2 = [3, 1, 2]2, −7 = [4, 3, 4]2, 7 = [4, 3, 3]2,

−3 = [2, 1, 2]2, 3 = [2, 1, 1]2, −8 = [3, 1, 3]2, 8 = [3, 1, 1]2,

−4 = [8, 2, 6]2, 4 = [16, 6, 12]2, −9 = [5, 4, 5]2, 9 = [4, 1, 2]2,

−5 = [3, 2, 3]2, 5 = [3, 2, 2]2, −10 = [2, 2, 3]2, 10 = [3, 3, 2]2.

Proposition 10. The number 2 is special, that is, for every integer m there exist nonzero

integers a, b, c such that m = a2 + b2 − 2c2.

Proof. This is a consequence of the equalities 2k − 1 = [k − 1, k, k − 1]2,
4k = [k − 1, k + 1, k − 1]2, 4k + 2 = [k − 3, k + 1, k − 2]2 (where k is an integer), and
1 = [8, 3, 6]2, −1 = [4, 1, 3]2, −4 = [9, 2, 6]2. 4 = [16, 6, 12], −2 = [12, 4, 9]2, 10 = [3, 3, 2]2,
14 = [4, 4, 3]2.

Note the following consequence of Propositions 10 and 9.

Proposition 11. For every integer m there are infinitely many triples (a, b, c), of nonzero
integers such that m = a2 + b2 − 2c2.

Example 12. Some solutions (x, y, z) of the equation x2 + y2 − 2z2 = 1 :

(8, 3, 6), (15, 8, 12), (24, 15, 20), (33, 8, 24), (35, 24, 30),

(48, 3, 34), (48, 17, 36), (48, 35, 42), (63, 48, 56), (72, 33, 56),

(72, 15, 52), (80, 63, 72), (93, 8, 66), (93, 48, 74), (99, 80, 90).

Example 13. For every integer a we have [a+ 2, a, a+ 1]2 = 2.

Consider now the case d = 5. Let us recall that [a, b, c]5 = a2 + b2 − 5c2. Observe that
0 = [1, 2, 1]5 and we have

−1 = [12, 10, 7]5, 1 = [10, 9, 6]5, −2 = [3, 3, 2]5, 2 = [9, 1, 4]5,

−3 = [1, 1, 1]5, 3 = [2, 2, 1]5, −4 = [5, 4, 3]5, 4 = [20, 3, 9]5,

−5 = [6, 2, 3]5, 5 = [3, 1, 1]5, −6 = [7, 5, 4]5, 6 = [5, 1, 2]5,

−7 = [3, 2, 2]5, 7 = [6, 4, 3]5, −8 = [6, 1, 3]5, 8 = [3, 2, 1]5,

−9 = [10, 4, 5]5, 9 = [5, 2, 2]5, −10 = [7, 11, 6]5, 10 = [3, 9, 4]5.
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Proposition 14. The number 5 is special, that is, for every integer m there exist nonzero

integers a, b, c such that m = a2 + b2 − 5c2.

Proof. It follows from the equalities

k2 + (2k − 2)2 − 5(k − 1)2 = 2k − 1, (k − 2)2 + (2k − 1)2 − 5(k − 1)2 = 2k,

and = −1 = [12, 10, 7]5, 1 = [10, 9, 6]5, 2 = [9, 1, 4]5, 4 = [20, 3, 9]5.

Note the following consequence of Propositions 14 and 9.

Proposition 15. For every integer m there are infinitely many triples (a, b, c), of positive
integers such that m = a2 + b2 − 5c2.

Proposition 16. Let d = q or d = 2q, where q is a product of prime numbers of the form

4k + 1. If d 6 50, then d is special.

Proof. If d < 10, then d = 1, 2 or 5, and we already know that in this case d is special. If
d > 10, then we have the following equalities:

[k, 3k − 3, k − 1]10 = [k − 5, 3k − 8, k − 3]10 = 2k − 1,

[k + 1, 3k − 3, k − 1]10 = [k − 9, 3k − 13, k − 5]10 = 4k,

[k − 1, 3k + 1, k]10 = [k − 21, 3k − 39, k − 14]10 = 4k + 2.

[2k − 4, 3k − 10, k − 3]13 = [2k − 30, 3k − 36, k − 13]13 = 2k − 1,

[2k − 3, 3k − 2, k − 1]13 = [2k − 29, 3k − 54, k − 17]13 = 2k.

[k, 4k − 4, k − 1]17 = [k − 34, 4k − 106, k − 27]17 = 2k − 1,

[k − 8, 4k − 19, k − 5]17 = [k − 76, 4k − 357, k − 65]17 = 2k.

[3k − 18, 4k − 30, k − 7]25 = [3k − 68, 4k − 80, k − 21]25 = 2k − 1,

[3k − 4, 4k − 3, k − 1]25 = [3k − 104, 4k − 153, k − 37]25 = 2k.

[k, 5k − 5, k − 1]26 = [k − 13, 5k − 44, k − 9]26 = 2k − 1.

[k + 1, 5k − 5, k − 1]26 = [k − 25, 5k − 83, k − 17]26 = 4k,

[k − 5, 5k − 9, k − 2]26 = [k − 57, 5k − 217, k − 44]26 = 4k + 2.

[2k − 8, 5k − 14, k − 3]29 = [2k − 66, 5k − 188, k − 37]29 = 2k − 1,

[2k − 7, 5k − 26, k − 5]29 = [2k − 65, 5k − 142, k − 29]29 = 2k.

5



[3k − 7, 5k − 16, k − 3]34 = [3k − 24, 5k − 33, k − 7]34 = 2k − 1,

[3k − 11, 5k − 27, k − 5]34 = [3k − 45, 5k − 61, k − 13]34 = 4k,

[3k − 1, 5k + 1, k]34 = [3k − 69, 5k − 135, k − 26]34 = 4k + 2.

[k, 6k − 6, k − 1]37 = [k − 74, 6k − 376, k − 63]37 = 2k − 1,

[k − 18, 6k − 77, k − 13]37 = [k − 166, 6k − 891, k − 149]37 = 2k.

[4k − 48, 5k − 68, k − 13]41 = [4k − 130, 5k − 150, k − 31]41 = 2k − 1,

[4k − 5, 5k − 4, k − 1]41 = [4k − 251, 5k − 332, k − 65]41 = 2k.

[k, 7k − 7, k − 1]50 = [k − 25, 7k − 132, k − 19]50 = 2k − 1,

[k + 1, 7k − 7, k − 1]50 = [k − 49, 7k − 257, k − 37]50 = 4k,

[k − 11, 7k − 41, k − 6]50 = [k − 111, 7k − 641, k − 92]50 = 4k + 2.

By similar methods we are ready to prove, using a computer, that the same is true for
d < 1000. Hence, we know that if d < 1000, then the answer to Question 8 is affirmative.

5 An infinite sequence of special numbers

In this section we prove that the set of special numbers is infinite. In our proof we use the
following well known lemma [5, 2, 4] concerned with the sequence [6, A001110]. Let us recall

that every number of the form tn = n(n+1)
2

= 1 + 2 + · · ·+ n is called triangular .

Lemma 17. There are infinitely many square triangular numbers. Examples:

t1 = 12, t8 = 62, t49 = 352, t288 = 2042, t1681 = 11892.

Proof. The Pell equation x2 − 8y2 = 1 has infinitely many solutions in positive integers. Let
(x, y) be one of such solutions. Then x is odd. Let x = 2n+ 1 where n is a positive integer.

Then we have tn = n(n+1)
2

= y2.

Theorem 18. There are infinitely many special numbers.

Proof. We know from the previous lemma that there are infinitely many positive integers u
such that u2 = k(k+1)

2
for some positive integer k. Let d = (2u)2 + 1 with u > 2. Observe

that d = k2 + (k + 1)2. We will show that the number d is special. Let m be an integer.
First assume that m is even. Let m = 2s, where s is an integer. We have the equality

(

(k + 1)(s− 1) + 1
)2

+
(

k(s− 1)− 1
)2

− d
(

s− 1
)2

= 2s.
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Thus, if m = 2s with s 6= 1, then there exist nonzero integers a, b, c such that [a, b, c]d = m.
Consider the case s = 1, that is, m = 2. Since d is non-square, the Pell equation x2 − dz2 =
1 has a solution (x, z) such that x, z are positive integers. Then we have [x, 1, z]d = 2.
Therefore, every even integer m is of the form [a, b, c]d with nonzero integers a, b, c.

Now assume that m is odd. Let m = 2s− 1 where s is an integer. We have the equality

s2 + (2us− 2u)2 − d(s− 1)2 = 2s− 1.

Thus, ifm = 2s−1 with s 6= 1, then there exist positive integers a, b, c such that [a, b, c]d = m.
Consider the case s = 1, that is, m = 1. Since d− 4 is non-square (because d = 4u2+1 with
u > 2), the Pell equation x2 − (d− 4)z2 = 1 has a solution (x, z) such that x, z are positive
integers. Then we have [x, 2z, z]d = 1. Therefore, every odd integer m is also of the form
[a, b, c]d with nonzero integers a, b, c.
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