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Abstract

H. J. S. Smith proved Fermat’s two-square theorem using the notion of palindromic

continuants. In this paper we extend Smith’s approach to proper binary quadratic form

representations in some commutative Euclidean rings, including rings of integers and

rings of polynomials over fields of odd characteristic. Also, we present new deterministic

algorithms for finding the corresponding proper representations.
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1 Introduction

Fermat’s two-square theorem is without doubt a remarkable result. Many proofs of the
theorem have been provided; see, for instance, [28, 11, 21, 4, 1]. It is also true that most
proofs have much in common, for instance, Smith’s proof is very similar to Hermite’s [11],
Serret’s [21], and Brillhart’s [1].

Let us recall here, for convenience, suitable definitions of Euclidean rings and continuant.

Definition 1 ([12, Section 2.15]). Euclidean rings are rings R with no zero divisors which
are endowed with a Euclidean function N from R to the nonnegative integers such that for
all τ1, τ2 ∈ R with τ1 6= 0, there exist q, r ∈ R such that τ2 = qτ1 + r and N(r) < N(τ1).

Well-known examples of Euclidean rings include the integers with N(u) = |u|, and the
polynomials over a field with N(0) = 0 and N(P ) = 2degree(P ). In this paper we only consider
Euclidean commutative rings.

Definition 2 (Continuants in arbitrary rings, [9, Sec. 6.7]). Let Q be a sequence of elements
q1, q2, . . . , qn of a ring R. We associate withQ an element [Q] of R via the following recurrence
formula

[ ] = 1, [q1] = q1, [q1, q2] = q1q2 + 1, and

[q1, q2, . . . , qn] = [q1, . . . , qn−1]qn + [q1, . . . , qn−2], if n ≥ 3.

The value [Q] is called the continuant of the sequence Q.

Properties of continuants in commutative rings are given by Graham et al. [9, Sec. 6.7].

Lemma 3 (Carroll’s identity, [8]). Let C be an n × n matrix in a commutative ring. Let
Ci1,...,is;j1,...,js denote the matrix obtained from C by omitting the rows i1, . . . , is and the
columns j1, . . . , js. Then

det(C) det(Ci,j;i,j) = det(Ci;i) det(Cj;j)− det(Ci;j) det(Cj;i)

where det(M) denotes the determinant of a matrix M , and the determinant of the 0 × 0
matrix is 1 for convenience.

The use of Carroll’s identity provides two more properties.

P–1 [q1, q2, . . . , qn][q2, . . . , qn−1] = [q1, . . . , qn−1][q2, . . . , qn] + (−1)n (n ≥ 2).

P–2 [q1, q2, . . . , qn] = [qn, . . . , q2, q1].

Given two elements m1 and m2 in a Euclidean ring R, the Euclidean algorithm outputs a
sequence (q1, q2, . . . , qn) of quotients and a greatest common divisor (gcd) h of m1 and m2. A
sequence of quotients given by the Euclidean algorithm is called a continuant representation
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of m1 and m2 as we have the equalities m1 = [q1, q2, . . . , qn]h and m2 = [q2, . . . , qn]h, unless
m2 = 0.

A representation of an element m by the form Q(x, y) = αx2+ γxy+βy2 is called proper
if gcd(x, y) = 1. In this paper we are mostly concerned with proper representations.

For us the quadratic forms f(x, y) = ax2 + bxy + cy2 and g(x, y) = Ax2 + Bxy + Cy2

are equivalent if there is a 2 × 2 matrix M = (aij) with determinant 1 such that g(x, y) =
f(a11x + a12y, a21x + a22y). For equivalent forms f and g it follows that an element m is
(properly) represented by f iff m is (properly) represented by g.

1.1 Our work

This paper can be considered as a follow-up to our earlier paper [7]. In that paper we
studied the use of continuants in some integer representations (e.g., sums of four squares)
and sums of two squares in rings of polynomials over fields of characteristic different from 2.
Here we deal with the following problems. We let u denote a unit in a ring; the ring under
consideration will become clear from the context.

Problem 4 (From x2 + gxy + hy2 to z2 + gz + h). If m = u(x2 + gxy + hy2) and x, y are
coprime, can we find z such that z2 + gz + h is a multiple of m using “continuants”?

Problem 5 (From z2 + gz + h to x2 + gxy + hy2). If m divides z2 + gz + h, can we find x, y
such that m = u(x2 + gxy + hy2) using “continuants”?

We emphasize that, while Problem 5 has a positive answer in some situations (see below),
in general it has a negative answer. More information is given in Subsection 3.2.

In this paper we use a generalization of continuants [22] to produce proper representations
Q(x, y) = x2+gxy+hy2, up to multiplication by a unit u, of an element m in some Euclidean
rings. This generalization allows us to present the following new deterministic algorithms.

1. Algorithm 1: for every m in a commutative Euclidean ring, it finds a solution z0 of
Q(z, 1) ≡ 0 (mod m), given a proper representation uQ(x, y) of m.

2. Algorithm 2: for every polynomial m ∈ F[X], where F is a field of odd characteristic,
it finds a proper representation u(x2 + hy2) of m, given a solution z0 of Q(z, 1) ≡ 0
(mod m). Here h is a polynomial in F[X] of degree at most one.

3. Algorithm 3: for all negative fundamental discriminants of class number one, it finds
a representation uQ(x, y) of an integer m, given a solution z0 of Q(z, 1) ≡ 0 (mod m).

A simple modification of Algorithm 3 produces representations uQ(x, y) for some positive
discriminants of class number one, including all the determinants studied by Matthews [15].
This modification is discussed in Section 5.

Recall the class number of a determinant ∆ ∈ Z [2, p. 7] gives the number of equivalence
classes of integral binary quadratic forms with discriminant ∆. As is customary, we ignore
negative definite forms; see [2, p. 7] and [16, p. 152].
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When trying to extend Smith’s approach to other Euclidean rings R, one is confronted by
the lack of uniqueness of the continuant representation. The uniqueness of the continuant
representation boils down to the uniqueness of the quotients and the remainders in the
division algorithm. This uniqueness is achieved only when R is a field or R = F[X], the
polynomial algebra over a field F [13] (considering the degree as the Euclidean function).

1.2 A short review of related results

Let p be a prime number of the form 4k + 1. In his proof of Fermat’s two-square theorem,
Smith [4] first shows the existence of a palindromic sequence Q = (q1, . . . , qs, qs, . . . , q1) such
that p = [Q] through an elegant parity argument. This sequence then allows him to derive
a solution for z2 + 1 ≡ 0 (mod p) and a representation x2 + y2 for p.

With regard to the question of finding square roots modulo a prime p, Schoof [20] pre-
sented a deterministic algorithm and Wagon [24] wrote an interesting article on the topic.

Brillhart’s refinement [1] of Smith’s construction took full advantage of the palindromic
structure of the sequence (q1, . . . , qs−1, qs, qs, qs−1, . . . , q1) given by the Euclidean algorithm
on p and z0, a solution of z2 + 1 ≡ 0 (mod p). He noted that the Euclidean algorithm gives
the remainders

ri = [qi+2, . . . , qs−1, qs, qs, qs−1, . . . , q1] (i = 1, . . . , 2s− 1), and

r2s = 0.

So, by virtue of Smith’s construction, rather than computing the whole sequence, we only
need to obtain x = rs−1 = [qs, qs−1, . . . , q1] and y = rs = [qs−1, . . . , q1]. In this case, we have
y < x <

√
p, Brillhart’s stopping criterium.

In the ring of integers, Cornacchia [5] extended Smith’s ideas to cover representations of
numbers m = p, with p prime, by forms x2 + hy2. It has been noticed that Cornacchia’s
algorithm can be used to obtain representations for all 1 ≤ h < m, with m not necessarily
prime [14]. Further extensions of Smith’s and Brillhart’s ideas have appeared in the literature
[10, 25, 26], where the authors provided algorithms for finding proper representations of nat-
ural numbers as primitive, positive-definite, integral and binary quadratic forms. Matthews
[15] provided representations of certain integers as x2−hy2, where h = 2, 3, 5, 6, 7. In all these
papers continuants have featured as numerators (and denominators) of continued fractions.
For instance, the continuant [q1, q2, q3] equals the numerator of the continued fraction

q1 +
1

q2 +
1

q3

,

while the continuant [q2, q3] equals its denominator.
For us the set of natural numbers N includes the zero.
Concerning other rings, one of the most important results is due to Choi, Lam, Reznick

and Rosenberg [3]. They [3] proved the following theorem.
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Theorem 6 ([3, Thm. 2.5]). Let R be an integral domain, let FR be its field of fractions, let
−h be a non-square in FR, and let R[

√
−h] be the smallest ring containing R and

√
−h.

If both R and R[
√
−h] are UFDs (unique factorisation domains), then the following

assertions hold.

(1) Any element m ∈ R which is representable by the form x′2 + hy′2 with x′, y′ ∈ FR is
also representable by the form x2 + hy2 with x, y ∈ R.

(2) Any element m ∈ R which is representable by the form x2 + hy2 can be factored into
p21 · · · p2kq1 · · · ql where pi, qj are irreducible elements in R and qj is representable by
x2 + hy2 for all j.

(3) Some associate of a non-null prime element p ∈ R is representable by x2 + hy2 iff −h
is a square in FR/Rp, where FR/Rp denotes the field of fractions of the quotient ring
R/Rp.

The rest of the paper is structured as follows. In Section 2 we define a generalization of
the notion of continuant and describe some of its properties. Section 3 is devoted to studying
proper representations x2 + gxy + hy2 in some commutative Euclidean rings, mainly in the
ring of polynomials over a field of odd characteristic. In Section 4 we consider proper
representations x2 + gxy + hy2 in the ring of integers. Some final remarks are presented in
Section 5.

2 Generalized continuants

With the aim of considering the problem of properly representing an element m as x2+gxy+
hy2, we extend the notion of continuants. Generalizations of continuants have previously
appeared in the literature, mainly in commutative rings, where these generalizations can be
considered determinants of certain matrices; see [23, Sec. 8] and [22].

Definition 7 (Generalized Continuants in Arbitrary Rings). In a ring R we associate with
the element [Q;h, s] the 3-tuple formed from a sequence Q of elements q1, q2, . . . , qn of R, an
element h of R and an integer s ≥ 1 via the following recurrence formula

[q1, . . . qn;h, s] =











[q1, . . . , qn], if s ≥ n;

[q1, . . . , qn−1]qn + [q1, . . . , qn−2]h, if s = n− 1;

[q1, . . . , qn−1;h, s]qn + [q1, . . . , qn−2;h, s], if s < n− 1.

This definition of generalized continuants carries several consequences, all of which are
proved in Appendix A. These properties are referred to as Generalized Continuant Proper-
ties.

P–3 [q1, . . . , qn;h, s] = [q1, . . . , qs−1]h[qs+2, . . . , qn] + [q1, . . . , qs][qs+1, . . . , qn], for s < n.
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P–4 If in a ring R we find a unit u commuting with each element qi, then

[u−1q1, uq2, . . . , u
(−1)nqn;h, s] =

{

[q1, . . . , qn;h, s], for even n;

u−1[q1, . . . , qn;h, s], for odd n.

The next two properties pertain to commutative rings.

P–5 The generalized continuant [q1, . . . , qn;h, s] is the determinant of the tridiagonal n× n
matrix A = (aij) with ai,i = qi for 1 ≤ i ≤ n, ai,i+1 = 1 for 1 ≤ i < n, as+1,s = −h and
ai+1,i = −1 for 1 ≤ i < n and i 6= s. See the determinant of the matrix below for a
small example.

[q1, q2, q3, q4, q5;h, 3] = det













q1 1
−1 q2 1

−1 q3 1
−h q4 1

−1 q5













P–6 [q1, q2, . . . , qn;h, n− s] = [qn, . . . , q2, q1;h, s].

3 From Q(x, y) to Q(z, 1) and back

In this section, considering the form Q(x, y) = x2 + gxy + hy2, we deal with the problem of
going from a representation Q(x, y) of an element m to a multiple Q(z, 1) of m and back.

3.1 From Q(x, y) to Q(z, 1)

We begin with a general proposition which is valid for every commutative ring.

Proposition 8. If Rx + Ry = R then there exist z ∈ R such that Q(x, y) divides Q(z, 1),
where Rm denotes the ideal generated by m.

If R is Euclidean, we can explicitly find z and the quotient Q(z, 1)/Q(x, y) with generalized
continuants.

Proof. We have u and v such that xu+ yv = 1. Then, computation with norms in the ring
obtained from R by adjoining formally a root of the polynomial T 2 − gT + h provides the
identity

Q(x, y)Q(v − ug, u) = Q(xv − xug − yuh, xu+ yv),

which proves the first assertion. This identity can be interpreted also as a kind of Carroll’s
identity.
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The determinant of the tridiagonal matrix

M =

































qs 1

−1 . . . . . .
. . . q2

. . .

−1 q1
. . .

−h q1 + g
. . .

−1 q2
. . .

. . . . . . 1
−1 qs

































(1)

is Q(x, y) with x = [q1, . . . , qs] and y = [q2, . . . , qs] if s ≥ 1.
Also, Q(x, y)Q([q1, . . . qs−1], [q2, . . . qs−1]) = Q(z, 1), where z = (−1)s+1c and c is the

determinant of the matrix formed by the 2s− 1 first rows and columns of M .

The proof of Proposition 8 can be readily converted into a deterministic algorithm which
finds a solution z0 of Q(z, 1) ≡ 0 (mod m), given a representation uQ(x, y) of an element m
in a Euclidean ring R with a computable function N. See Algorithm 1.

Algorithm 1: Deterministic algorithm for constructing a solution z0 of Q(z, 1) ≡ 0
(mod m), given a proper representation uQ(x, y) of an element m.

input : A commutative Euclidean ring R with a computable function N.
An element m ∈ R.
A proper representation uQ(x, y) of m, where Q(x, y) = x2 + gxy + hy2.

output: A solution z0 of Q(z, 1) ≡ 0 (mod m) with N(1) ≤ N(z0).
/* Apply the Euclidean algorithm to x and y and obtain a sequence

(q1, . . . , qs) of quotients. */

s← 0;
m0 ← m;
r0 ← z;
repeat

s← s+ 1;
ms ← rs−1;
find qs, rs ∈ R such that ms−1 = qsms + rs with N(rs) < N(ms);

until rs = 0 ;
z0 ← (−1)s+1[qs, qs−1, . . . , q1, q1 + g, q2, . . . , qs−1;h, s];
return z0

3.2 From Q(z, 1) to Q(x, y)

We begin the subsection with the following remark.
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Remark 9. Let R be a commutative ring.
If 2 is invertible, the form x2 + gxy+ hy2 can be rewritten as (x+ gy/2)2 + (h− g2/4)y2.

We may then assume g = 0 without loss of generality.

If moreover −h is an invertible square, say h+ k2 = 0, then x =
(

x+1
2

)2
+ h

(

x−1
2k

)2

Below we provide a proposition which can be considered as an extension of [7, Prop. 16].

Proposition 10. Let R = F[X] be the ring of polynomials over a field F with characteristic
different from 2, and let −h be a (non-null) non-square of F.

If m divides z2 + ht2 with z, t coprime, then m is an associate of some x2 + hy2 with x, y
coprime.

Proof. We introduce the extension G of F by a square root ω of −h. The ring G[X] is
principal and z2 + ht2 factorizes as (z − ωt)(z + ωt). The two factors are coprime, since 2
and ω are units, and any common divisor must divide their sum 2z and their difference 2ωt.

Introduce x + ωy = gcd(m, z + ωt). Then x − ωy is a gcd of m and z − ωt, using the
natural automorphism of G. The polynomials x − ωy and x + ωy are coprime and both
divide m. Thus, m is divisible by (x−ωy)(x+ωy) = x2+hy2. On the other hand, m divides
(z − ωt)(z + ωt). Consequently, m is an associate of x2 + hy2. Since x− ωy and x+ ωy are
coprime, x and y are also coprime.

In the case of m being prime, Proposition 10 is embedded in Theorem 2.5 of the afore-
mentioned paper of Choi et al. [3].

Proposition 11. Let R = F[X] be the ring of polynomials over a field F with characteristic
different from 2, and let h be a polynomial of degree 1.

If m divides z2 + ht2 with z, t coprime, then m is an associate of some x2 + hy2 with x, y
coprime.

Proof. Consider the extension of the ring R = F[X] by a root of T 2 + h; this extension of R
is isomorphic to F[T ].

First assume that h does not dividem. If h and z are not coprime, then z can be rewritten
as z = z1h. Thus, m dividing h(hz21 + t2) implies that m divides hz21 + t2, with h and t being
coprime. Thus, we can assume that h and z are coprime. Consequently, z2 + ht2 factors as
(z−Tt)(z+Tt), with the two factors being coprime. Reasoning as in Proposition 10, we let
x + Ty be the gcd of m and z + Tt and we obtain that x − Ty is the gcd of m and z − Tt
and that m is an associate of x2 + hy2 with x, y coprime.

If m is a multiple of h, then h does not divide m/h, since z and t are coprime. From
the previous case it then follows that m/h is an associate of some x2 + hy2, with x and y
coprime. Thus, m is an associate of (hy)2 + hx2, with hy and x coprime.

The next remark generalizes [7, Rem. 19].
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Remark 12 (Algorithmic considerations). For the cases covered in Propositions 10 and 11,
given an element m and a solution z0 of z

2+h ≡ 0 (mod m), we can obtain a representation
x2 + hy2 of an associate of m via generalized continuants and Brillhart’s [1] optimisation.
Indeed, divide m by z0 and stop when a remainder rs−1 with degree at most deg(m)/2 is
encountered. This will be the (s− 1)-th remainder, and (uqs, u

−1qs−1, . . . , u
(−1)s−2

q2) will be
the quotients so far obtained. Then

x =

{

rs−1, for odd s;

u−1rs−1, for even s.

y =

{

[uqs, u
−1qs−1, . . . , u

(−1)s−2

q2], for odd s;

u−1[uqs, u
−1qs−1, . . . , u

(−1)s−2

q2], for even s.

This conclusion follows from dividing

m/u = [qs, . . . , q1, q1, . . . , qs;h, s] by

z0 = [qs−1, . . . , q1, q1, . . . , qs;h, s− 1],

using generalized continuant properties.

Remark 12 can be readily translated into a deterministic algorithm for computing repre-
sentations Q(x, y); see Algorithm 2.

The argument presented in [7, Prop. 17] can be applied to the form x2+hy2 in polynomials
over a field F of characteristic different from 2, where −h is either a non-square ∈ F or a
polynomial in F[X] of degree 1. This argument implicitly invokes the uniqueness of the
quotients and the remainders in the division algorithm.

Corollary 13 (of Proposition 10: −h a non-square unit in F[X]). Let m be a non-unit of
F[X] and a divisor of z2+h for some z ∈ F[X] with deg(z) < deg(m). Then, m = (x2+hy2)u
for some unit u and the Euclidean algorithm on m and z gives the unit u and the sequence

(uqs, u
−1qs−1, . . . , u

(−1)s+1

q1, u
(−1)sh−1q1, . . . , u

−1h(−1)sqs)

such that x = [q1, . . . qs] and y = [q2, . . . , qs].

In the next example we illustrate Remark 12 and the method of Corollary 13, in this
order, for the case of F = Q. Let h = 3 and m = 1+2X +3X2+2X3+X4. Then m divides
((5 + 12X + 6X2 + 4X3)/3)2 + 3. The Euclidean division gives

1 + 2X + 3X2 + 2X3 +X4 =((5 + 12X + 6X2 + 4X3)/3)(3X/4 + 3/8)

+ 3/8− 3X/4− 3X2/4.

Here the first remainder has degree at most deg(m)/2, thus we stop the division process and
obtain s = 2, x = (3/8 − 3X/4 − 3X2/4)/u and y = [3X/4 + 3/8]/u. It is now routine to
get u = 9/16.

9



If instead we use the method of Corollary 13, then we obtain the unit u = 9/16 and the
sequence

(9/16 · 2/3 · (1 + 2X), 16/9 · (−1/2−X), 9/16 · 1/3 · (−1/2−X), 16/9 · 3 · 2/3 · (1 + 2X)).

From this sequence we conclude that

x = [2/3 · (1 + 2X),−1/2−X],

y = [2/3 · (1 + 2X)].

Corollary 14 (of Proposition 11: h of degree 1 in F[X]). Let m be a polynomial over F[X]
and a divisor of z2 + h for some z ∈ F[X] with deg(z) < deg(m) and z, h coprime. Then,
m = (x2 + hy2)u for some unit u and the values of x and y can be obtained by Remark 12.

Consider the following example. Let h = X, m = 1+X+X3+X4 and z = (X3+2X2+
1)/2. Then, the division gives

1 +X +X3 +X4 =(X3 + 2X2 + 1)/2 · (−2 + 2X) + 2 + 2X2.

At this step we should stop the division process as the first remainder has at most half
the degree of m. Now we know that s = 2, x = (2 + 2X2)/u and y = u−1[−2 + 2X] for a
unit u. It plainly follows that u = 4.

We may now wonder how far can we push this method for polynomials over a field of
characteristic different from 2? That is, will the method work for h with deg(h) > 1 over
any such field?

We first note that the property
“m|z2 + h⇒ ∃x, y, u (m = u(x2 + y2h) ∧ u unit)”

does not hold in general for h reducible. Consider h = X3 +X2 +X in polynomials over a
field of characteristic 6= 3. Then, X2 + X + 1 divides 02 + 12h and is certainly not of the
form x2 + y2h. Indeed, here we have either y2h null or of odd degree ≥ 3. In the former
case, it follows that x2 + y2h = x2 is a square, but X2 +X + 1 is not a square in a field of
characteristic 6= 3, while in the latter case x2 + y2h has degree ≥ 3 > degree(X2 +X + 1).

What about irreducible h with deg(h) ≥ 2? Already for degree 2 the property does
not hold in general. Indeed, consider in Q[X] the polynomials h = X2 − 2, z = X2 and
m = X − 1. Observe that X − 1 divides X4 + X2 − 2 and that X − 1 is not of the form
u(x2 + y2(X2− 2)). To see this, note that the degree of x2 + y2(X2− 2) is either 2 deg(x) or
2 + 2 deg(y).
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Algorithm 2: Deterministic algorithm for constructing a proper representation
uQ(x, y) = u(x2 + hy2) of an element m.

input : A field F with characteristic different from 2.
The ring R = F[X] of polynomials over F.
A square-free element h ∈ F or a polynomial h ∈ R of degree 1.
A polynomial m with N(1) < N(m).
A solution z0 of Q(z, 1) ≡ 0 (mod m) with N(1) < N(z0) < N(m0).

output: A unit u and a proper representation uQ(x, y) of m.
assumptions: The polynomials z and h are coprime.
/* Divide m by z using the Euclidean algorithm until we find a

remainder rs−1 with degree at most deg(m)/2. */

s← 1;
m0 ← m;
r0 ← z;
repeat

s← s+ 1;
ms−1 ← rs−2;
find ks−1, rs−1 ∈ R such that ms−2 = ks−1ms−1 + rs−1 with N(rs−1) < N(ms−1);

until deg(rs−1) ≤ deg(m)/2 ;
/* Here we have a sequence (k1, . . . , ks−1) of quotients. */

xtemp ← rs−1;
ytemp ← [k1, . . . , ks−1];
/* We obtain a unit u. */

if s is odd then Solve m = u(x2
temp + hy2temp) for u else Solve um = x2

temp + hy2temp for
u
/* We obtain (x, y) so that m = (x2 + hy2)u. */

if s is odd then x← xtemp else x← u−1xtemp;
if s is odd then y ← ytemp else y ← u−1ytemp;
return (x, y, u)

For specific fields we find situations where the property holds. Take, for instance, the
field R of reals, h = X2 + 1 and every real polynomial m taking only positive values over R.
It is known that any polynomial m over R, which takes at every point of R a positive value,
has the form

∏

(akX
2 + 2bkX + ck), where ak, bk, ck ∈ R and b2k − akck < 0. Thus, it suffices

to consider the case of m = aX2 + 2bX + c with a > 0, c > 0 and b2 − ac < 0. If b = 0, then

m =

{

(
√
a− cX)2 +

√
c
2
(X2 + 1), if a ≥ c;√

c− a
2
+
√
a
2
(X2 + 1), if a ≤ c.

If instead b 6= 0, then, setting d =
√

(a+ c−
√

(a− c)2 + 4b2)/2, we obtain m =

(
√
a− d2X + e

√
c− d2)2 + d2(X2 + 1), where e = ±1 is the sign of b.
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For h = −X2 − 1 and every real polynomial m over R, we have another situation where
the property holds. Observe that the form Q(x, y) = x′2 + (−X2 − 1)y′2 is equivalent to
the form Q(x, y) = x2 + 2Xxy − y2 (by Remark 9). Any polynomial of degree 1 is an
associate of some a2 − b2 + 2abX with units a and b. We now take care of polynomials
m = k(X2 + 2vX + w) with no real zeros and k, v, w ∈ R. Here note that v2 < w. Set
p(X) = (X + a)2 + 2b(X + a)X − b2. We solve the equation p(X) = m in (a, b, k). We first
find that k = 1 + 2b, a = kv/(1 + b) (if b 6= −1) and w = (a2 − b2)/k = −X2 − 2vX. If
b = −1 then v = 0, k = −1 and a = ±

√
1− w with 0 < w ≤ 1. If instead b 6= −1, then,

substituting a = kv/(1 + b) into −(1 + b)2p(X), we obtain

b4 + 2(w + 1)b3 + (5w − 4v2 + 1)b2 + 4(w − v2)b+ w − v2 = 0.

This expression in b is 1/16 when b = −1/2 and −v2 when b = −1. Hence there is a
solution b in the open interval (−1,−1/2) for w > 1. Consequently, each real polynomial is
an associate of some polynomial x2 + 2xyX − y2 = (x+Xy)2 + (−1−X2)y2.

Using the automorphisms of R[x], both previous approaches can easily be applied to any
real polynomial of degree 2 with no real roots.

4 From Q(z, 1) to Q(x, y): integral quadratic forms

In this section, given integers m, z such m|Q(z, 1), we provide an algorithm that proves the
existence of representations Q(x, y)u of m for a unit u and certain forms Q.

Since 2 is not invertible in Z, we have to consider the rings of algebraic integers ofQ[
√
−h],

that is, the rings Z[
√
−h] for forms x2 + hy2 with |h| square-free and h 6≡ −1 (mod 4), and

the ring Z[(1+
√
1− 4h)/2] for forms x2 + xy+hy2 with |1− 4h| square-free; see [19, p. 35].

What are those rings of integers for which the following property holds?
“m|Q(z, 1)⇒ ∃x, y, u (m = uQ(x, y) ∧ u unit).”
The answer is given by the rings whose corresponding forms have class number H(∆)

equal to one [2, pp. 6–7, pp. 81–84]. Here ∆ denotes the form discriminant. In the case
of ∆ < 0, all the principal rings satisfy the property; these values of ∆ are the following:
−3,−4,−7,−8,−11,−19,−43,−67,−163; see [17, A014602] and [2, pp. 81]. For these neg-
ative fundamental discriminants, generalized continuants provide a constructive proof of the
property. It is also known that there are four negative non-fundamental discriminants of
class number one, namely −12,−16,−27 and −28; see [2, pp. 81] and [6, Thm. 7.30]. For
the case of ∆ > 0, while we do not even know whether the list of such determinants is
infinite, it is conjectured this is the case; see [2, pp. 81–82] and [17, A003655].

Recall the class number H(∆) [2, p. 7] gives the number of equivalence classes of integral
binary quadratic forms with discriminant ∆ ∈ Z.

Next we recall the following well-known result of Rabinowitsch [18].

Theorem 15 ([18]). For a fundamental discriminant ∆ = 1 − 4κ ≤ −7, it follows that
H(∆) = 1 iff x2 + x+ κ attains only prime values for −(κ− 1) ≤ x ≤ κ− 2.
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Below we present a division algorithm (Algorithm 3) which, for any negative fundamental
discriminant of class number one, gives a proper representation Q(x, y) of m, provided that
m divides Q(z, 1).

Since m = 1 trivially admits the proper representation (1, 0) of Q(x, y) = x2+ gxy+hy2,
Algorithm 3 assumes |m| > 1.

Algorithm 3: Deterministic algorithm for constructing a proper representation
Q(x, y) = x2 + gxy + hy2 of an element m.

input : A negative fundamental discriminant ∆ of class number one.
An integer m0 with 1 < |m0|.
A solution z0 of Q(z, 1) ≡ 0 (mod m0) with 1 < |z0| < |m0|.

output: A proper representation Q(x, y) of m0/u (u = ±1).
s← 0;
while |ms| 6= 1 do

s← s+ 1;
4 ms ← Q(zs−1, 1)/ms−1;
5 find ks, zs ∈ R such that zs−1 = ksms + zs with |zs| < |ms|;
/* We prioritize non-null quotients ks. */

end

/* Here we have the unit ms and sequence (k1, . . . , ks). */

/* To keep consistency with the previous sections of the paper we

reverse the subscripts of the quotients */

(q1, q2, . . . , qs)← (ks, ks−1, . . . , k1);

x← [msq1,m
−1
s q2, . . . ,m

(−1)s−2

s qs−1,m
(−1)s−1

s qs];

y ← [m−1
s q2, . . . ,m

(−1)s−2

s qs−1,m
(−1)s−1

s qs];
return (x, y)

Remark 16 (Algorithm 3: Prioritizing non-null quotients). In the Euclidean division of zs−1

by ms with |zs−1| < |ms|, a valid quotient ks could be ±1 or 0. By “prioritizing non-null
quotients ks” we mean that, in this situation, we always choose the ks which is not null.

Proposition 17 (Algorithm 3 Correctness). Let h, g,∆, u,m0, z0, andmi, zi, qi (i = 1, . . . , s)
be as in Algorithm 3. Then, Algorithm 3 produces a proper representation Q(x, y) of m0/u.

Proof. In the ring Z[(1 +
√
1− 4h)/2] we consider the form Q(x, y) = x2 + xy + hy2, while

in the ring Z[
√
−h] we consider the form Q(x, y) = x2 + hy2. As the proof method is the

same in both cases, we restrict ourselves to the former case, that is, to the case of ∆ = −3,
−7, −11, −19, −43, −67, −163 and h = 1, 2, 3, 5, 11, 17, 41.

Claim 1. Algorithm 3 terminates with the last mj being ±1.
As a general approach we show that the sequence |mi| (i = 0, . . . , s − 1) is decreasing,

that is, |mi+1| < |mi| . Once this decreasing character fails, we show that the algorithm
stops with the last mi being a unit.
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Recall we have |mi| ≥ |zi|+ 1 for i = 1, . . . , s− 1.

Case (∆, h) = (−3, 1), (−7, 2): |mi||mi| ≥ z2i + 2|zi| + 1 > |z2i + zi + h| = |mi||mi+1|, and
thus |mi| > |mi+1| for |zi| > 1. Assume that for a certain zi, say zs−1, |zs−1| = 1. If h = 1
then Line 4 (z2s−1 + zs−1 + 1 = ms−1ms) gives that |ms| = 1, as desired. In the case of h = 2
and zs−1 = −1, we have that z2s−1 + zs−1 + 2 = 2 and |ms| = 1. If h = 2 and zs−1 = 1, we
have from Line 4 again that 1 + 1 + 2 = ms−1ms. Then we deduce that either |ms−1| = 2
and |ms| = 2 or |ms−1| = 4 and |ms| = 1. The configuration |ms−1| = 4 and |ms| = 1 will
cause the algorithm to stop with ms being a unit. In the case of |ms−1| = 2 and |ms| = 2,
in Line 5 we have zs−1 = ksms + zs and the algorithm would give zs = −1, which implies
|ms+1| = 1.

Consequently, in these two cases Algorithm 3 terminates with the last mj being a unit.

Case (∆, h) = (−11, 3), (−19, 5), (−43, 11), (−67, 17), (−163, 41):
Reasoning as in the previous case, we have that |mi||mi| ≥ z2i +2|zi|+1 > |z2i + zi+h| =

|mi||mi+1|, unless |zi| ≤ h− 1. Suppose |zs−1| ≤ h− 1. Note that |ms−1| > 1, otherwise the
algorithm would have stopped. By Theorem 15, the polynomial Q(zs−1, 1) = z2s−1 + zs−1 + h
is prime for −(h− 1) ≤ zs−1 ≤ h− 2. Thus, we have that |ms−1| > |ms| with |ms| = 1.

If instead zs−1 = h − 1, then |ms−1| = |ms| = h, which implies that zs = −1 and
|ms+1| = 1, causing the algorithm to stop.

Claim 2. Algorithm 3 produces a proper representation Q(x, y).
It only remains to prove that x and y have the required form. First we reverse the

subscripts of the quotients, that is, the quotient ks becomes q1, the quotient ks−1 becomes
q2, and so on. Thus, after the “while” loop we have that zs−1 = msq1, where ms is a unit.
We know that Q(msq1, 1) = ms−1ms. Consequently, ms−1ms = [msq1 + 1,msq1;h, 1]. Then,
by Property P–6 and Property P–3 it follows

zs−2 = [m−1
s q2,msq1 + 1,msq1;h, 2].

Then, from the equation ms−2ms−1 = Q(zs−2, 1) we obtain

ms−2m
−1
s = [m−1

s q2,msq1 + 1,msq1,m
−1
s q2;h, 2] = Q([msq1,m

−1
s q2], [m

−1
s q2]).

Continuing this process, we have

z0 = [m(−1)s−1

s qs, K,msq1 + 1,msq1, K
−1;h, s],

m0m
(−1)s+1

s = [m(−1)s−1

s qs, K,msq1 + 1,msq1, K
−1,m(−1)s−1

s qs;h, s],

where K = m
(−1)s−2

s qs−1, . . . ,m
−1
s q2 and K−1 = m−1

s q2, . . . ,m
(−1)s−2

s qs−1.

Consequently, from Property P–4 it follows that m0m
(−1)s+1

s = Q(x, y), where

x =[msq1,m
−1
s q2, . . . ,m

(−1)s−2

s qs−1,m
(−1)s−1

s qs],

y =[m−1
s q2, . . . ,m

(−1)s−2

s qs−1,m
(−1)s−1

s qs].
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Using Property P–6 we can write m0m
(−1)s+1

s as follows; see Equation (1).

m0m
(−1)s+1

s = [m(−1)s−1

s qs, K,msq1,msq1 + 1, K−1,m(−1)s−1

s qs;h, s].

Remark 18. Note that we require all the numbers mi to be represented by the form Q(x′, y′).
This is assured by the fact that Q has class number one.

As a result, each root z0 of Q(z, 1) ≡ 0 (mod m0) with 1 < |z0| < |m0| gives rise to

a proper representation of m0m
(−1)s+1

s as Q(x, y). The coprimality of x and y follows from
Property P–1.

Let us see an example. For the ring Z[(1 +
√
−19)/2] the form is x2 + xy + 5y2. Take

m0 = 251 and z0 = 52. Then 251 · 11 = 522 + 52 + 5, and the division gives

251 · 11 = 522 + 52 + 5 → 52 = 4 · 11 + 8,

11 · 7 = 82 + 8 + 5 → 8 = 1 · 7 + 1,

7 · 1 = 12 + 1 + 5 → 1 = 1 · 1.

Thus, we have m3 = 1 and (q3, q2, q1) = (4, 1, 1). From this we recover the continuant
representation of m0 = 251

251 = det

















4 1
−1 1 1

−1 1 1
−5 1 + 1 1

−1 1 1
−1 4

















.

Consequently, we conclude that 251 = x2+xy+5y2 with x = [1, 1, 4] = 9 and y = [1, 4] = 5.

5 Final remarks

In Algorithm 3 we require ms to be ±1. However, this may be an unnecessarily strong
restriction. If in Algorithm 3 we replace the condition of the while loop by zs 6= 0, then
this modified Algorithm 3 may also end with the last mj, say ms, being different from ±1.
Further, if such ms admits a representation as Q(x, y), then the formula

(x2 + gxy + hy2)(z2 + gzw + hw2) =(xz − hyw)2 + g(xz − hyw)× (2)

× (xw + yz + gyw)+

+ h(xw + yz + gyw)2

will provide a desired representation of m = m0 for a larger number of forms Q(x, y). First
recall that in Algorithm 3

m0m
(−1)s+1

s =x2 + gxy + hy2,
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where

x =[msq1,m
−1
s q2, . . . ,m

(−1)s−2

s qs−1,m
(−1)s−1

s qs],

y =[m−1
s q2, . . . ,m

(−1)s−2

s qs−1,m
(−1)s−1

s qs].

Then, to recover the representation of m0 (associated with z0) we just need to express ms or
−ms as Q(x, y). This simple modification of Algorithm 3 will provide proper representations
Q(x, y) of ±m for some forms Q with discriminant ∆ > 0 and H(∆) = 1; see [?]. The
following two examples illustrate this idea. Recall that the condition of the “while” loop is
now zs 6= 0.

For the ring Z[(1 +
√
17)/2] the form is x2 + xy − 4y2. Take m0 = 3064 and z0 = 564.

Noticing 3064 · 104 = 5642 + 564− 4, the division gives

3064 · 104 = 5642 + 564− 4 → 564 = 5 · 104 + 44,

104 · 19 = 442 + 44− 4 → 44 = 2 · 19 + 6,

19 · 2 = 62 + 6− 4 → 6 = 3 · 2.

Thus, we have s = 3, m3 = 2 and (q3, q2, q1) = (5, 2, 3). From this we recover the continuant
representation of m0 · 2 = 6128

6128 = det

















10 1
−1 1 1

−1 6 1
4 6 + 1 1
−1 1 1

−1 10

















.

The representation Q(x, y) of 6128 is given by x = [2 · 3, 2−1 · 2, 2 · 5] = 76 and y =
[2−1 · 2, 2 · 5] = 11. Note that 2 = 22 + 2 · 1 − 4 · 12. Using Equation (2) in the form
3064·(22+2·1−4·1) = 762+76·11−4·112, we conclude that 3064 = 922+92·(−27)−4(−27)2.

For the ring Z[
√
6] the form is Q(x, y) = x2 − 6y2. Take m0 = 37410 and z0 = 1326.

Noticing 37410 · 47 = 13262 − 6, the division gives

37410 · 47 = 13262 − 6 → 1326 = 28 · (47) + 10,

47 · 2 = 102 − 6 → 10 = 5 · 2.

Thus, we have s = 2, m2 = 2 and (q2, q1) = (28, 5). The representation Q(x, y) of 37410 · 2−1

is x = [2 ·5, 2−1 ·28] = 141 and y = [2−1 ·28] = 14. Note that −2 = 22−6 ·12. Using Equation
(2) in the form (1412−6 ·142)(22−6 ·12) = −37410, we have that −37410 = 3662−6×1692.

Below we present some of the forms Q(x, y) for which the proposed modification of
Algorithm 3 will give the representation of m0 associated with the given z0. The forms are
given in the format (Q, {list of possible values of ms}). Note that ms is a divisor of h and
that, for every case, either ms or −ms is represented by the form.
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(x2 − 2y2, {±1,±2}) (x2 + xy − 4y2, {±1,±2,±4})
(x2 − 3y2, {±1,±3}) (x2 + xy − 7y2, {±1,±7})
(x2 − 6y2, {±1,±2,±3,±6}) (x2 + xy − 9y2, {±1,±3,±9})
(x2 − 7y2, {±1,±7}) (x2 + xy − 10y2, {±1,±2,±5,±10})
(x2 + xy − y2, {±1}) (x2 + xy − 13y2, {±1,±13})
(x2 + xy − 3y2, {±1}) (x2 + xy − 15y2, {±1,±3,±5,±15})

Recall that Matthews [15] provided representations of certain integers as x2−hy2, where
h = 2, 3, 5, 6, 7. From the previous remarks it follows that the modified Algorithm 3 covers all
the cases studied by Matthews [15]. Observe that the form x2 − 5y2, studied by Matthews
[15] and associated with the non-principal ring Z[

√
5], has been superseded by the form

x2+xy−y2 associated with the integral closure of Z[
√
5], that is, Z[(1+

√
5)/2]. It is known

that the forms x2+xy−y2 and x2−5y2 represent the same integers. Indeed, if an integer m
is represented by x2− 5y2 then the identity x2− 5y2 = (x− y)2 + (x− y)(2y)− (2y)2 gives a
representation, not necessarily proper, of m by the form x′2+x′y′− y′2. If instead an integer
m is represented by the form x2 + xy − y2, then, depending on the parity of x and y, one of
the identities

x2 + xy − y2 =

(

x+ y +
x+ 2y

2

)2

− 5

(

x+ 2y

2

)2

,

=

(

2x− y +
−x+ y

2

)2

− 5

(−x+ y

2

)2

,

=
(

x+
y

2

)2

− 5
(y

2

)2

gives a representation by the form x′2 − 5y′2.
Unsatisfactorily, our algorithm does not terminate for every ∆ > 0 with H(∆) = 1.

For instance, take ∆ = 73, m0 = 267 and z0 = 23. The corresponding quadratic form is
x2 + xy− 18y2, and we have that 267 = (−69)2 + (−69) · 14− 18 · 142 and 267|232 +23− 18.

The approach presented in the paper is likely to work for other representations if new
generalized continuants are defined.

Mathematicar[27] implementations of most of the algorithms presented in the paper and
other related algorithms are available at

http://guillermo.com.au/wiki/List_of_Publications

under the name of this paper.
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A Proofs of some of the generalized continuant prop-

erties

Proposition 19 (Property P–3). For integers n, h, s such that 1 ≤ s < n and elements
q1, . . . , qn of a ring R, the following identity holds:

[q1, . . . , qn;h, s] = [q1, . . . , qs−1]h[qs+2, . . . , qn] + [q1, . . . , qs][qs+1, . . . , qn].

Proof. In the case of h = 1 generalized continuants reduce to the traditional continuants and
Property P–3 reduces to the well-known identity

[q1, . . . , qn] = [q1, . . . , qs−1][qs+2, . . . , qn] + [q1, . . . , qs][qs+1, . . . , qn].

This identity is proved for commutative rings in [4, Lem. 1] and [9, Sec. 6.7], but the approach
by Graham et al. [9, Sec. 6.7] works for any ring.

For any h > 1 and s = n − 1, Property P–3 follows from the definition of generalized
continuants.

Consider any h > 1 and s = n− 2. Then, from Definition 7 it follows that

[q1, . . . qn;h, n− 2] = [q1, . . . , qn−1;h, n− 2]qn + [q1, . . . , qn−2;h, n− 2],

= ([q1, . . . , qn−3]h+ [q1, . . . , qn−2][qn−1])qn + [q1, . . . , qn−2],

= [q1, . . . , qn−3]hqn + [q1, . . . , qn−2]([qn−1])qn + 1),

= [q1, . . . , qn−3]hqn + [q1, . . . , qn−2][qn−1, qn].

Finally, fix h > 1 and s < n− 2 and proceed by induction on n. The base cases n = 1, 2 fall
in the previous cases. From Definition 7 it follows that

[q1, . . . qn;h, s] = [q1, . . . , qn−1;h, s]qn + [q1, . . . , qn−2;h, s].

By the induction hypothesis we have the following.

[q1, . . . , qn−1;h, s] = [q1, . . . , qs−1]h[qs+2, . . . , qn−1] + [q1, . . . , qs][qs+1, . . . , qn−1];

[q1, . . . , qn−2;h, s] = [q1, . . . , qs−1]h[qs+2, . . . , qn−2] + [q1, . . . , qs][qs+1, . . . , qn−2].

Thus

[q1, . . . qn;h, s] = ([q1, . . . , qs−1]h[qs+2, . . . , qn−1] + [q1, . . . , qs][qs+1, . . . , qn−1])qn

+ [q1, . . . , qs−1]h[qs+2, . . . , qn−2] + [q1, . . . , qs][qs+1, . . . , qn−2],

= [q1, . . . , qs−1]h ([qs+2, . . . , qn−1]qn + [qs+2, . . . , qn−2])

+ [q1, . . . , qs]([qs+1, . . . , qn−1]qn + [qs+1, . . . , qn−2]),

= [q1, . . . , qs−1]h[qs+2, . . . , qn] + [q1, . . . , qs][qs+1, . . . , qn].
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Proposition 20 (Property P–4). Let n, h, s be integers such that 1 ≤ s, and let q1, . . . , qn
be elements of a ring R. If there is a unit u in R commuting with each qi, then

[u−1q1, uq2, . . . , u
(−1)nqn;h, s] =

{

[q1, . . . , qn;h, s], for even n;

u−1[q1, . . . , qn;h, s], for odd n.

Proof. Fix s ≥ 1 and h and proceed by induction on n. If n = 1, 2 then the property follows
from Definition 7.

If s ≥ n then [u−1q1, uq2, . . . , u
(−1)nqn;h, s] becomes [u−1q1, uq2, . . . , u

(−1)nqn] and the
result follows from induction by using

[u−1q1, uq2, . . . , u
(−1)nqn] = [u−1q1, uq2, . . . , u

(−1)n−1

qn−1]u
(−1)nqn

+ [u−1q1, uq2, . . . , u
(−1)n−2

qn−2].

If s = n− 1 then we have

[u−1q1, uq2, . . . , u
(−1)nqn] = [u−1q1, uq2, . . . , u

(−1)n−1

qn−1]u
(−1)nqn

+ [u−1q1, uq2, . . . , u
(−1)n−2

qn−2]h,

and the result follows from induction.
If s < n− 1 then Definition 7 gives that

[u−1q1, uq2, . . . , u
(−1)nqn;h, s] = [u−1q1, uq2, . . . , u

(−1)n−1

qn−1;h, s]u
(−1)nqn

+ [u−1q1, uq2, . . . , u
(−1)n−2

qn−2;h, s].

Then the induction hypothesis gives that

[u−1q1, uq2, . . . , u
(−1)n−1

qn−1;h, s]u
(−1)nqn = u−1[q1, q2, . . . , qn−1;h, s]uqn,

if n is even; and it gives that

[u−1q1, uq2, . . . , u
(−1)n−1

qn−1;h, s]u
(−1)nqn = [q1, q2, . . . , qn−1;h, s]u

−1qn,

if n is odd.
Furthermore, the induction hypothesis gives the following.

[u−1q1, uq2, . . . , u
(−1)n−2

qn−2;h, s] =

{

[q1, q2, . . . , qn−2;h, s], if n is even;

u−1[q1, q2, . . . , qn−2;h, s], if n is odd.

As a consequence, the result follows.

Proposition 21 (Property P–5). Let n, h, s be integers such that 1 ≤ s, and let q1, . . . , qn
be elements of a commutative ring R. Then the generalized continuant [q1, . . . , qn;h, s] is the
determinant of the tridiagonal n× n matrix A = (aij) with ai,i = qi for 1 ≤ i ≤ n, ai,i+1 = 1
for 1 ≤ i < n, as+1,s = −h and ai+1,i = −1 for 1 ≤ i < n and i 6= s.
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Proof. The result follows from using the Laplace expansion on the determinant along the
last row.

Proposition 22 (Property P–6). Let n, h, s be integers such that 1 ≤ s, and let q1, . . . , qn
be elements of a commutative ring R. Then [q1, q2, . . . , qn;h, n− s] = [qn, . . . , q2, q1;h, s].

Proof. Apply Property P–3 on both sides of the equality, and then use Property P–2.
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