Journal of Integer Sequences, Vol. 18 (2015), Article 15.8.2

A Note on Catalan's Identity for the k-Fibonacci Quaternions

Emrah Polatlı and Seyhun Kesim
Department of Mathematics
Bülent Ecevit University
67100 Zonguldak
Turkey
emrahpolatli@gmail.com
seyhun.kesim@beun.edu.tr

Abstract

Ramírez recently conjectured a version of Catalan's identity for the k-Fibonacci quaternions. In this note we give a proof of (a suitably reformulated version of) this identity.

1 Introduction

For any positive real number k, define the k-Fibonacci and k-Lucas sequences, $\left(F_{k, n}\right)_{n \in \mathbb{N}}$ and $\left(L_{k, n}\right)_{n \in \mathbb{N}}$, as follows:

$$
F_{k, 0}=0, F_{k, 1}=1, \text { and } F_{k, n}=k F_{k, n-1}+F_{k, n-2}, n \geq 2
$$

and

$$
L_{k, 0}=2, \quad L_{k, 1}=k, \text { and } L_{k, n}=k L_{k, n-1}+L_{k, n-2}, n \geq 2,
$$

respectively.
Let α and β be the roots of the characteristic equation $x^{2}-k x-1=0$. Then the Binet formulas for the k-Fibonacci and k-Lucas sequences are

$$
F_{k, n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}
$$

and

$$
L_{k, n}=\alpha^{n}+\beta^{n},
$$

where $\alpha=\left(k+\sqrt{k^{2}+4}\right) / 2$ and $\beta=\left(k-\sqrt{k^{2}+4}\right) / 2$.
A quaternion p, with real components $a_{0}, a_{1}, a_{2}, a_{3}$ and basis $\mathbf{1}, \boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$, is an element of the form

$$
p=a_{0}+a_{1} \boldsymbol{i}+a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}=\left(a_{0}, a_{1}, a_{2}, a_{3}\right), \quad\left(a_{0} \mathbf{1}=a_{0}\right),
$$

where

$$
\begin{aligned}
\boldsymbol{i}^{2} & =\boldsymbol{j}^{2}=\boldsymbol{k}^{2}=-1 \\
\boldsymbol{i} \boldsymbol{j} & =\boldsymbol{k}=-\boldsymbol{j} \boldsymbol{i}, \boldsymbol{j} \boldsymbol{k}=\boldsymbol{i}=-\boldsymbol{k} \boldsymbol{j}, \boldsymbol{k} \boldsymbol{i}=\boldsymbol{j}=-\boldsymbol{i} \boldsymbol{k}
\end{aligned}
$$

Ramírez [1] defined the nth k-Fibonacci quaternion, $D_{k, n}$, as follows:

$$
D_{k, n}=F_{k, n}+F_{k, n+1} \boldsymbol{i}+F_{k, n+2} \boldsymbol{j}+F_{k, n+3} \boldsymbol{k}, n \geq 0
$$

where $F_{k, n}$ is the nth k-Fibonacci number. Ramírez [1] also gave the Binet formula for the k-Fibonacci quaternion as follows:

$$
D_{k, n}=\frac{\widehat{\alpha} \alpha^{n}-\widehat{\beta} \beta^{n}}{\alpha-\beta}
$$

where $\widehat{\alpha}=1+\alpha \boldsymbol{i}+\alpha^{2} \boldsymbol{j}+\alpha^{3} \boldsymbol{k}$ and $\widehat{\beta}=1+\beta \boldsymbol{i}+\beta^{2} \boldsymbol{j}+\beta^{3} \boldsymbol{k}$.
Ramírez [1] conjectured that the Catalan identity for the k-Fibonacci quaternions is

$$
D_{k, n-r} D_{k, n+r}-D_{k, n}^{2}=(-1)^{n-r}\left(2 F_{k, r} D_{k, r}-G_{k, r} \boldsymbol{k}\right),
$$

for $n \geq r \geq 1$, where $G_{k, r}$ is the sequence satisfying the following recurrence:

$$
G_{k, 0}=0, G_{k, 1}=k^{2}+2 k, \text { and } G_{k, n}=\left(k^{2}+2\right) G_{k, n-1}-G_{k, n-2}, n \geq 2
$$

However, in this short paper, we show that this conjecture is incorrect, by giving the correct Catalan identity and proving it.

2 Catalan identity for the k-Fibonacci quaternions

We need the following lemma.
Lemma 1. For $r \geq 1$, we have

$$
\frac{\widehat{\alpha} \widehat{\beta} \beta^{r}-\widehat{\beta} \widehat{\alpha} \alpha^{r}}{\alpha-\beta}=-2 D_{k, r}+L_{k, 2} L_{k, r} \boldsymbol{k} .
$$

Proof. Since

$$
\widehat{\alpha} \widehat{\beta}=2+2 \beta \boldsymbol{i}+2 \beta^{2} \boldsymbol{j}+\left(\alpha^{3}+\beta^{3}+\alpha-\beta\right) \boldsymbol{k}
$$

and

$$
\widehat{\beta} \widehat{\alpha}=2+2 \alpha \boldsymbol{i}+2 \alpha^{2} \boldsymbol{j}+\left(\alpha^{3}+\beta^{3}+\beta-\alpha\right) \boldsymbol{k}
$$

we get

$$
\begin{aligned}
\frac{\widehat{\alpha} \widehat{\beta} \beta^{r}-\widehat{\beta} \widehat{\alpha} \alpha^{r}}{\alpha-\beta} & =-2 F_{k, r}-2 F_{k, r+1} \boldsymbol{i}-2 F_{k, r+2} \boldsymbol{j}+\left(-2 F_{k, r+3}+L_{k, 2} L_{k, r}\right) \boldsymbol{k} \\
& =-2 D_{k, r}+L_{k, 2} L_{k, r} \boldsymbol{k}
\end{aligned}
$$

Theorem 2. For $n \geq r \geq 1$, Catalan identity for the k-Fibonacci quaternions is

$$
D_{k, n-r} D_{k, n+r}-D_{k, n}^{2}=(-1)^{n-r+1}\left(2 F_{k, r} D_{k, r}-L_{k, 2} F_{k, 2 r} \boldsymbol{k}\right) .
$$

Proof. By considering the Binet formula for the k-Fibonacci quaternions, quaternion multiplication and Lemma 1, we obtain

$$
\begin{aligned}
D_{k, n-r} D_{k, n+r}-D_{k, n}^{2} & =\left(\frac{\widehat{\alpha} \alpha^{n-r}-\widehat{\beta} \beta^{n-r}}{\alpha-\beta}\right)\left(\frac{\widehat{\alpha} \alpha^{n+r}-\widehat{\beta} \beta^{n+r}}{\alpha-\beta}\right)-\left(\frac{\widehat{\alpha} \alpha^{n}-\widehat{\beta} \beta^{n}}{\alpha-\beta}\right)^{2} \\
& =\frac{(\alpha \beta)^{n}}{(\alpha-\beta)^{2}}\left(\widehat{\alpha} \widehat{\beta}\left(1-\frac{\beta^{r}}{\alpha^{r}}\right)+\widehat{\beta} \widehat{\alpha}\left(1-\frac{\alpha^{r}}{\beta^{r}}\right)\right) \\
& =(\alpha \beta)^{n} \frac{\alpha^{r}-\beta^{r}}{(\alpha-\beta)^{2}}\left(\frac{\widehat{\alpha} \widehat{\beta}}{\alpha^{r}}-\frac{\widehat{\beta} \widehat{\alpha}}{\beta^{r}}\right) \\
& =(\alpha \beta)^{n-r} \frac{\alpha^{r}-\beta^{r}}{\alpha-\beta}\left(\frac{\widehat{\alpha} \widehat{\beta} \beta^{r}-\widehat{\beta} \widehat{\alpha} \alpha^{r}}{\alpha-\beta}\right) \\
& =(\alpha \beta)^{n-r} F_{k, r}\left(-2 D_{k, r}+L_{k, 2} L_{k, r} \boldsymbol{k}\right) \\
& =(-1)^{n-r+1}\left(2 F_{k, r} D_{k, r}-L_{k, 2} F_{k, 2 r} \boldsymbol{k}\right) .
\end{aligned}
$$

References

[1] J. L. Ramírez, Some combinatorial properties of the k-Fibonacci and the k-Lucas quaternions, An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 23 (2015), 201-212.

2010 Mathematics Subject Classification: Primary 11B39.
Keywords: k-Fibonacci quaternion, Catalan's identity.

Received May 18 2015; revised version received May 20 2015; June 18 2015; June 242015. Published in Journal of Integer Sequences, July 162015.

Return to Journal of Integer Sequences home page.

