On a Conjecture on the Representation of Positive Integers as the Sum of Three Terms of the Sequence $\left\lfloor\frac{n^{2}}{a}\right\rfloor$

Sebastian Tim Holdum
Niels Bohr Institute
University of Copenhagen
Denmark
sebastian.holdum@nbi.dk

Frederik Ravn Klausen and Peter Michael Reichstein Rasmussen
Department of Mathematics
University of Copenhagen
Denmark
tlk870@alumni.ku.dk
nmq584@alumni.ku.dk

Abstract

We prove some cases of a conjecture by Farhi on the representation of every positive integer as the sum of three terms of the sequence $\left\lfloor\frac{n^{2}}{a}\right\rfloor$. This is done by generalizing a method used by Farhi in his original paper.

1 Introduction

In the following we let \mathbb{N} denote the set of non-negative integers, $\lfloor\cdot\rfloor$ denote the greatest integer function, and $\langle\cdot\rangle$ denote the fractional part function.

A classical result by Legendre [3] states that every natural number not of the form $4^{s}(8 t+7), s, t \in \mathbb{N}$ can be written as the sum of three squares.

In relation to this, Farhi recently conjectured the following:
Conjecture 1 (Farhi [2]). Let $a \geq 3$ be an integer. Then every natural number can be represented as the sum of three terms of the sequence $\left(\left\lfloor\frac{n^{2}}{a}\right\rfloor\right)_{n \in \mathbb{N}}$.

The conjecture was confirmed by Farhi [1] and Mezroui, Azizi, and Ziane [4] for $a \in$ $\{3,4,8\}$.

In this paper we generalize the method used by Farhi for $a=4$, and partially for $a=3$, to prove that the conjecture holds for $a \in\{4,7,8,9,20,24,40,104,120\}$. The method uses Legendre's three-square theorem and properties of quadratic residues.

We also note that the set of integers a such that Conjecture 1 holds is closed under multiplication by a square.

2 Method and results

We start by introducing the following sets:
Definition 2. For any nonzero $a \in \mathbb{N}$ we define

$$
\mathcal{Q}_{a}=\left\{0<\varphi<a \mid \exists x \in \mathbb{Z}: \varphi \equiv x^{2} \quad(\bmod a)\right\}
$$

Therefore, \mathcal{Q}_{a} is the set of quadratic residues modulo a.
Definition 3. For any nonzero $a \in \mathbb{N}$ we define

$$
\mathcal{A}_{a}=\left\{\varphi \in \mathbb{N} \mid \exists x, y, z \in \mathcal{Q}_{a} \cup\{0\}: \varphi=x+y+z\right\} .
$$

Thus, \mathcal{A}_{a} is the set of integers that can be written as the sum of three elements of $\mathcal{Q}_{a} \cup\{0\}$.
Definition 4. For any nonzero $a \in \mathbb{N}$ we define

$$
\mathcal{R}_{a}=\left\{\varphi \in \mathcal{A}_{a} \mid \forall \psi \in \mathcal{A}_{a}: \varphi \equiv \psi \quad(\bmod a) \Rightarrow \varphi=\psi\right\} .
$$

So, \mathcal{R}_{a} is the set of integers that can be written as the sum of three elements of $\mathcal{Q}_{a} \cup\{0\}$, and such that no other integer in the same residue class modulo a has this property.

Now we are ready to formulate the main result.
Theorem 5. Let $a \in \mathbb{N}$ be nonzero and assume that for every $k \in \mathbb{N}$ there exists an $r \in \mathcal{R}_{a}$ such that $a k+r \neq 4^{s}(8 t+7)$ for any $s, t \in \mathbb{N}$. Then every $N \in \mathbb{N}$ can be written as the sum of three terms of the sequence $\left(\left\lfloor\frac{n^{2}}{a}\right\rfloor\right)_{n \in \mathbb{N}}$.

Proof. Let $N \in \mathbb{N}$ be fixed. By assumption we can choose $r \in \mathcal{R}_{a}$ such that $a N+r \neq$ $4^{s}(8 t+7)$ for any $s, t \in \mathbb{N}$. By Legendre's theorem it follows that $a N+r$ can be written of the form

$$
\begin{equation*}
a N+r=A^{2}+B^{2}+C^{2} \tag{1}
\end{equation*}
$$

for some $A, B, C \in \mathbb{N}$. Now we have

$$
r \equiv A^{2}+B^{2}+C^{2} \quad(\bmod a)
$$

so

$$
\begin{equation*}
r=\left(A^{2} \bmod a\right)+\left(B^{2} \bmod a\right)+\left(C^{2} \bmod a\right) \tag{2}
\end{equation*}
$$

since $r \in \mathcal{R}_{a}$. Dividing by a and separating the integer and fractional parts of the right hand side in (1), we get

$$
N+\frac{r}{a}=\left\lfloor\frac{A^{2}}{a}\right\rfloor+\left\lfloor\frac{B^{2}}{a}\right\rfloor+\left\lfloor\frac{C^{2}}{a}\right\rfloor+\left\langle\frac{A^{2}}{a}\right\rangle+\left\langle\frac{B^{2}}{a}\right\rangle+\left\langle\frac{C^{2}}{a}\right\rangle,
$$

and from (2) we have

$$
\frac{r}{a}=\left\langle\frac{A^{2}}{a}\right\rangle+\left\langle\frac{B^{2}}{a}\right\rangle+\left\langle\frac{C^{2}}{a}\right\rangle
$$

so

$$
N=\left\lfloor\frac{A^{2}}{a}\right\rfloor+\left\lfloor\frac{B^{2}}{a}\right\rfloor+\left\lfloor\frac{C^{2}}{a}\right\rfloor .
$$

Since we can find the sets \mathcal{R}_{a} by computation, we can now apply the main theorem to get the following corollary.

Corollary 6. Conjecture 1 is satisfied for $a \in\{4,7,8,9,20,24,40,104,120\}$.
Proof. Consider the following table:

a	\mathcal{R}_{a}
4	$\{0,1,2,3\}$
7	$\{4,6\}$
8	$\{2,3,5,6\}$
9	$\{1,4,7,8\}$
20	$\{11,15,18,19\}$
24	$\{11,14,19,21,22\}$
40	$\{27,38\}$
104	$\{99\}$
120	$\{107\}$

Calculating modulo 8 it can be checked fairly easily that for each $a \in\{4,7,8,9,20,24$, $40,104,120\}$ and every $k \in \mathbb{N}$ there exists an $r \in \mathcal{R}_{a}$ such that $a k+r$ is not of the form $4^{s}(8 t+7), s, t \in \mathbb{N}$, and thus every natural number can be written as the sum of three terms of the sequence $\left(\left\lfloor\frac{n^{2}}{a}\right\rfloor\right)_{n \in \mathbb{N}}$.

To demonstrate this, we show the case $a=7$. All the other cases are done in exactly the same way.

For $k \equiv 1,2,3,6$ or $7(\bmod 8)$ we have $7 k+4 \equiv 3,2,1,6$ and $5(\bmod 8)$, respectively, and for $k \equiv 0,4$ or $5(\bmod 8)$ we have $7 k+6 \equiv 6,2$ and $1(\bmod 8)$, respectively. Since $4^{s}(8 t+7) \equiv 0,4$ or $7(\bmod 8), s, t \in \mathbb{N}$, we conclude that for every $k \in \mathbb{N}$ we can write $7 k+r$, for $r \in \mathcal{R}_{7}=\{4,6\}$, such that it is not of the form $4^{s}(8 t+7), s, t \in \mathbb{N}$. The case now follows from Theorem 5 .

Further, one should note that the set of integers satisfying Conjecture 1 is closed under multiplication by a square.

Observation 7. Let \mathcal{M} be the set of integers satisfying Conjecture 1. If $a \in \mathcal{M}$, then $a k^{2} \in \mathcal{M}$ for any integer $k>0$.

Proof. This follows easily since for any n we can find $A, B, C \in \mathbb{N}$ such that

$$
\begin{aligned}
n & =\left\lfloor\frac{A^{2}}{a}\right\rfloor+\left\lfloor\frac{B^{2}}{a}\right\rfloor+\left\lfloor\frac{C^{2}}{a}\right\rfloor \\
& =\left\lfloor\frac{(A k)^{2}}{a k^{2}}\right\rfloor+\left\lfloor\frac{(B k)^{2}}{a k^{2}}\right\rfloor+\left\lfloor\frac{(C k)^{2}}{a k^{2}}\right\rfloor .
\end{aligned}
$$

Knowing this, we see that since Conjecture 1 is satisfied for $a=3,9,4$, and 8 , it must also hold for $a=3^{k}$ for any positive integer k and for $a=2^{k}, k>1$.

Finally, using Observation 7, Corollary 6, and the fact [4] that Conjecture 1 holds for $a=3$, we get that the conjecture holds for the following values up to 120 .

$$
\begin{aligned}
a \in\{ & \{3,4,7,8,9,12,16,20,24,27,28,32,36,40,48 \\
& 63,64,72,75,80,81,96,100,104,108,112,120\} .
\end{aligned}
$$

Unfortunately, it seems that the method deployed in Theorem 5 is not extendable to other cases, since its success relies on \mathcal{R}_{a}, and in general \mathcal{R}_{a} does not contain the necessary elements for the condition in the theorem to be satisfied.

3 Acknowledgment

The authors would like to thank Jan Agentoft Nielsen for his suggestions that helped to improve the manuscript.

References

[1] B. Farhi, On the representation of the natural numbers as the sum of three terms of the sequence $\left\lfloor\frac{n^{2}}{a}\right\rfloor$, J. Integer Seq., 16 (2013), Article 13.6.4.
[2] B. Farhi, An elementary proof that any natural number can be written as the sum of three terms of the sequence $\left\lfloor\frac{n^{2}}{3}\right\rfloor$, J. Integer Seq., $\mathbf{1 7}$ (2014), Article 14.7.6.
[3] A. M. Legendre, Théorie des Nombres, 3rd ed., Vol. 2, 1830.
[4] S. Mezroui, A. Azizi, and M. Ziane, On a conjecture of Farhi, J. Integer Seq., 17 (2014), Article 14.1.8.

2010 Mathematics Subject Classification: Primary 11B13.
Keywords: additive base, Legendre's theorem.

Received September 29 2014; revised version received March 5 2015; May 19 2015. Published in Journal of Integer Sequences, May 312015.

Return to Journal of Integer Sequences home page.

