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Abstract

In an earlier paper it was argued that two sequences, denoted by {Un} and {Wn},
constitute the sextic analogues of the well-known Lucas sequences {un} and {vn}.
While a number of the properties of {Un} and {Wn} were presented, several arithmetic
properties of these sequences were only mentioned in passing. In this paper we discuss
the derived sequences {Dn} and {En}, where Dn = gcd(Wn − 6Rn, Un) and En =
gcd(Wn, Un), in greater detail and show that they possess many number theoretic
properties analogous to those of {un} and {vn}, respectively.
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1 Introduction

Let p, q ∈ Z be relatively prime and α, β be the zeros of

x2 − px+ q

with discriminant δ = (α − β)2 = p2 − 4q. The well-known Lucas sequences {un} and {vn}
are defined by

un = un(p, q) =
αn − βn

α− β
, vn = vn(p, q) = αn + βn.

These sequences possess many interesting properties and have found applications in primality
testing, integer factorization, solution of quadratic and cubic congruences, and cryptography
(see [4]). We note here that both sequences are linear recurrence sequences of order 2 and
that un, vn ∈ Z whenever n ≥ 0.

Lucas’ problem of extending or generalizing his sequences has been well studied and we
refer the reader to [2, Chapter 1] and [3, Section 1] for further information on this topic.
One possible extension of the Lucas sequences, which involves cubic instead of quadratic
irrationalities, was investigated in [2] (also see Müller, Roettger and Williams [1]). In this
case we let P , Q, R ∈ Z be integers such that gcd(P,Q,R) = 1 and let α, β, γ be the zeros
of

h(x) = x3 − Px2 +Qx−R, (1)

with discriminant

∆ = (α− β)2(β − γ)2(γ − α)2 = Q2P 2 − 4Q3 − 4RP 3 + 18PQR− 27R2 6= 0.

Roettger’s sequences {cn} and {wn} are defined as

cn = cn(P,Q,R) = (αn − βn)(βn − γn)(γn − αn)/((α− β)(β − γ)(γ − α))

and
wn = wn(P,Q,R) = (αn + βn)(βn + γn)(γn + αn)− 2Rn.

Note here that if n ≥ 0, we have cn, wn ∈ Z and {cn}, {wn} are linear recurrence sequences
of order 6.

In [2], it is pointed out that the sequences {cn} and {wn} have many properties analogous
to those of {un} and {vn}, respectively. Recently, these sequences were extended further by
Roettger, Williams and Guy [3]. If we put γ1 = α/β, γ2 = β/γ, γ3 = γ/α, λ = R, then we
can write

cn = λn−1(1− γn
1 )(1− γn

2 )(1− γn
3 )/((1− γ1)(1− γ2)(1− γ3)) and

wn = vn − 2Rn, where

vn = λn(1 + γn
1 )(1 + γn

2 )(1 + γn
3 ).
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One of the most important properties of the Lucas sequence {un} when n ≥ 0 is that it
is a divisibility sequence. An integer sequence {An} is said to be a divisibility sequence if
An | Am whenever n | m and An 6= 0. For example, Roettger’s sequence {cn} (n ≥ 0) is a
divisibility sequence. Suppose we define

Un =
λn−1(1− γn

1 )(1− γn
2 )(1− γn

3 )

(1− γ1)(1− γ2)(1− γ3)
, (2)

Vn = λn(1 + γn
1 )(1 + γn

2 )(1 + γn
3 ), (3)

where λ, γ1, γ2, γ3 ∈ Q̄; γ1, γ2, γ3 6= 1; γi 6= γj when i 6= j and γ1γ2γ3 = 1. In [3], it is shown
that if Un, Vn ∈ Z whenever n ≥ 0, {Un} is a linear recurrence sequence and {Un} is also a
divisibility sequence, then we must have λ = R ∈ Z and ρi = R(γi + 1/γi) (i = 1, 2, 3) must
be the zeros of a cubic polynomial

g(x) = x3 − S1x
2 + S2x− S3, (4)

where
S3 = RS2

1 − 2RS2 − 4R3 (5)

and S1, S2 ∈ Z. The six zeros of

G(x) = (x2 − ρ1x+R2)(x2 − ρ2x+R2)(x2 − ρ3x+R2)

= x6 − S1x
5 + (S2 + 3R2)x4 − (S3 + 2R2S1)x

3 +R2(S2 + 3R2)x2 −R4S1x+R6

are Rγi, R/γi (i = 1, 2, 3). If we define Wn = Vn − 2Rn, then both {Un} and {Wn} are
linear recurrence sequences with characteristic polynomial G(x). Also, U0 = 0, U1 = 1,
U2 = S1 + 2R, U3 = S2

1 + RS1 − S2 − 3R2, W0 = 6, W1 = S1, W2 = S2
1 − 2S2 − 6R2,

W3 = S3
1 − 3S1S2 + 3RS2

1 − 6RS2 − 3R2S1 − 12R3. Furthermore, we have U−n = −Un/R
2n,

W−n = Wn/R
2n; hence, Un, Wn ∈ Z when n ≥ 0. It is also the case that {Un} is a divisibility

sequence.
It is shown in [3] that if

S1 = PQ− 3R, S2 = P 3R +Q3 − 5PQR + 3R2, (6)

then Un(S1, S2, R) = cn(P,Q,R), Wn(S1, S2, R) = wn(P,Q,R). If, in the expression (2), we
define

∆ = λ2(1− γ1)
2(1− γ2)

2(1− γ3)
2

= R2(γ1 + γ2 + γ3 − 1/γ1 − 1/γ2 − 1/γ3)
2, (7)

we find that
∆ = S2

1 − 4S2 + 4RS1 − 12R2, (8)
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but this is the same as Q2P 2−4Q3−4RP 3+18PQR−27R2, the discriminant of h(x), when
S1 and S2 are given by (6). If d denotes the discriminant of g(x), then, as shown in [3], we
have d = ∆Γ, where

Γ = R4(γ1 − γ2)
2(γ2 − γ3)

2(γ3 − γ1)
2 (9)

= S2
2 + 10RS1S2 − 4RS3

1 − 11R2S2
1 + 12R3S1 + 24R2S2 + 36R4. (10)

The discriminant D of G(x) is given by D = Ed2R12, where

E = R2∆(S1 + 2R)2 = (ρ1 − 4R2)(ρ2 − 4R2)(ρ3 − 4R2).

If S1 and S2 are given by (6), then

Γ = (RP 3 −Q3)2. (11)

We remark that the condition analogous to gcd(P,Q,R) = 1 for Roettger’s sequences is
gcd(S1, S2, R) = 1 for the more general {Wn} and {Un} sequences.

The duplication formulas are

2W2n = W 2
n +∆U2

n − 4RnWn, U2n = Un(Wn + 2Rn) (12)

and the triplication formulas are

4W3n = 3∆U2
n(Wn + 2Rn) +W 2

n(Wn − 6Rn) + 24R2n, (13)

4U3n = Un(3W
2
n +∆U2

n). (14)

Since {Un} is a divisibility sequence, we must have U3n/Un ∈ Z (n ≥ 0) and by (14), this
means that 4 | W 2

n −∆U2
n. Thus, if 2 | Un, then 2 | Wn and we have proved Proposition 1.

Proposition 1. If n ≥ 0, then 2 | gcd(Wn, Un) if and only if 2 | Un.

The general multiplication formulas for {Wn} and {Un} are given as [3, (7.7) and (7.8)].
We observe here that in general for a given S1, S2 R ∈ Z there do not always exist, P ,

Q ∈ Z such that (6) holds. As a simple example consider S1 = −1, S2 = −4, and R = 1; it is
not possible to find integers P , Q such that PQ = 2 and P 3 +Q3 = 3. Thus, the sequences
{Wn(S1, S2, R)}, {Un(S1, S2, R)} represent a non-trivial extension of Roettger’s sequences
{wn} and {cn}.

In [3] it is mentioned that if we define

Dn = gcd(Wn − 6Rn, Un) and En = gcd(Wn, Un),

then the sequences {Dn} and {En} possess many number theoretic properties in common
with {un} and {vn}, respectively. Indeed, some of these properties were presented in [3]
without proof. The purpose of this paper is to supply these proofs or sketches thereof and
to develop some new results concerning {Dn} and {En}.
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2 Some properties of {Dn}

In this section we will produce some results concerning {Dn} that are similar to those
possessed by {un}. We begin with two simple propositions that easily follow from Lemma
8.1 of [3] and results immediately following that lemma.

Proposition 2. If gcd(S1, S2, R) = 1, then for n ≥ 0 we have

gcd(Dn, R) | 2.

Proposition 3. If gcd(S1, S2, R) = 1, then for any n ≥ 0, we must have 4 ∤ Dn whenever

2 | R.

In the sequel we will assume that S1, S2, R have been selected such that gcd(S1, S2, R) = 1.
If we define

Fn =

{

∆U2
n, when 2 ∤ ∆Un;

∆U2
n/4, when 2 | ∆Un

we see that since 4 | W 2
n − ∆U2

n, Fn must be an integer. If M is any divisor of Fn and
(M,R) = 1, then we can use [3, (7.7) and (7.8)] to show that

Umn/Un ≡ Rn(m−1)Km(Wn/2R
n) (mod M), (15)

Wmn ≡ 2RmnLm(Wn/2R
n) (mod M), (16)

where the polynomials Km(x) and Lm(x) are respectively defined in [2, §4.3 and §5.1]. Also,
from results in [2] it is easy to show that Lm(3) = 3 and Km(3) = m3. We next establish
that like {un}, {Dn} is a divisibility sequence.

Theorem 4. If n, m ≥ 1, then Dn | Dmn.

Proof. Since {Un} is a divisibility sequence it suffices to show
Dn | Wmn − 6Rmn. We let 2λ || Dn. If λ = 0 or λ ≥ 1 and 2 ∤ R, then Dn | Fn. By
Proposition 2, we have gcd(Dn, R) = 1 and by (16) we get

Wmn ≡ 2RmnLm(Wn/2R
n) ≡ 2RmnLm(3) ≡ 6Rmn (mod Dn).

If λ = 1, then gcd(Dn/2, R) = 1 and Dn/2 | Fn; hence,

Wmn ≡ 6Rmn (mod Dn/2).

Also, since 2 | Un, we have 2 | Umn and 2 | Wmn (Proposition 1). It follows that Wmn ≡ 6Rmn

(mod 2) and since gcd(2, Dn/2) = 1 we get

Wmn ≡ 6Rmn (mod Dn).

There remains the case of λ > 1 and 2 | R, but this is impossible by Proposition 3.
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Let p be any prime. We are next able to present the law of repetition for p in {Dn}. We
denote by νp(x) (x ∈ Z) that value of λ such that pλ || x.

Theorem 5. Let p be any prime such that p > 3 and suppose that νp(Dn) ≥ 1.

1. If νp(Un) > νp(Wn − 6Rn), then νp(Dpn) = νp(Dn) + 2 and

νp(Wpn − 6Rpn) < νp(Upn).

2. If νp(Un) = νp(Wn − 6Rn) and νp(Un) > 1, then
νp(Dpn) = νp(Dn) + 2 and νp(Wpn − 6Rpn) < νp(Upn).

3. If νp(Un) < νp(Wn − 6Rn), then if νp(Un) > 1,
νp(Dpn) = νp(Dn) + 3.

4. If λ = 1, then νp(Dpn) ≥ 2.

Proof. These results can be established by making use of the techniques of [2, §5.2], together
with the polynomial congruence

Lp(x) ≡ 3 + p2(x− 3) + (p2(p2 − 1)/12)(x− 3)2

+ (p2(p2 − 1)(p2 − 4)/360)(x− 3)3 (mod (x− 3)4),

which holds for all primes p ≥ 5.

When p = 3, the law of repetition for 3 in {Dn} is given below.

Theorem 6. Let ν3(Dn) ≥ 1.

1. If ν3(Un) ≥ ν3(Wn − 6Rn) > 1, then ν3(D3n) = ν3(Dn) + 2.

2. If ν3(Un) ≥ ν3(Wn − 6Rn) = 1, then ν3(D3n) ≥ ν3(Dn) + 2.

3. If ν3(Un) < ν3(Wn − 6Rn), then

ν3(D3n) = ν3(Dn) + 3 when ν3(Dn) > 1

or

ν3(D3n) ≥ ν3(Dn) + 3 when ν3(Dn) = 1.

Proof. These results can be easily proved by making use of the the triplication formulas (13)
and (14).

In the case of p = 2, there exists a rather complicated law of repetition for p in {Dn}.
We will not provide the complete law here, but we remark that if ν2(Dn) > 1, then the
duplication formulas (12) can be used to show that ν2(D2n) ≥ ν2(Dn) + 1. The case of
ν2(Dn) = 1, however, is more problematical. Certainly, if 2 | R, there is no law of repetition
for 2 in {Dn} by Proposition 3. Thus, we need only consider the case of 2 || Dn and 2 ∤ R.
In this case, we can use the duplication and triplication formulas to find that if
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i) 4 | Un, 2 || Wn − 6Rn;

ii) 2 || Un, 2 || Wn − 6Rn, 2 | ∆;

iii) 2 || Un, 4 | Wn − 6Rn, 2 ∤ ∆;

then 4 | D3n and 4 ∤ D2n. In all other cases we have 4 | D2n.
We also have the following companion result to the law of repetition for any odd prime

in {Dn}.

Theorem 7. If p is odd and νp(Dn) ≥ 1, then νp(Dmn) = νp(Dn) whenever p ∤ m.

Proof. Since p 6= 2, we have p2λ | Fn when λ = νp(Dn), gcd(p,R) = 1 and Wn ≡ 6Rn

(mod pλ). It follows from (16) that

Wmn ≡ 2RmnLm(Wn/2R
n) ≡ 2RmnLm(3) ≡ 6Rmn (mod pλ)

and by (15) that

Umn/Un ≡ Rn(m−1)Km(3) ≡ m3Rn(m−1) (mod pλ).

Since p ∤ m, it follows that pλ || Umn and pλ | Wmn − 6Rmn; hence pλ || Dmn.

In the case of p = 2, Theorem 7 is not in general true when λ = 1 and 2 ∤ R, as we have
seen in the above remarks. Of course, we could eliminate this problem if we could impose
additional restrictions on S1, S2, R such that none of i), ii) or iii) could occur. If 2 || Dn

and 2 ∤ R, it is easy to show that cases i), ii) or iii) can occur if and only if 2 | Q̃n, where
Q̃n = (W 2

n −∆U2
n)/4. In a later section we will discuss the parity of Q̃n when 2 | Dn. Note

that if 4 | Dn, then 2 ∤ R and
Q̃n ≡ 1 (mod 2). If λ > 1, then we certainly have 2λ | Dmn by Theorem 4 and since
Wn/2R

n ≡ 3 (mod 2λ−1), we get

Umn/Un ≡ m3Rn(m−1) (mod 2λ−1).

Thus, if m is odd, then 2 ∤ Umn/Un and 2λ || Dmn. Hence Theorem 7 is true when p = 2 and
ν2(Dn) > 1.

We conclude this section with a result that is often useful.

Theorem 8. If m, n ≥ 1, then gcd(Umn/Un, Dn) | 2m
3.

Proof. It is easy to show this when 2 ∤ Dn because Dn | Fn and gcd(Dn, R) = 1. Suppose
2 | Dn; then because Un/2 | Fn, we have Dn/2 | Fn. Also, gcd(Dn/2, R) = 1 by Propositions
2 and 3. Hence, by (15)

Umn/Un ≡ m3Rn(m−1) (mod Dn/2).

It follows that
gcd(Umn/Un, Dn/2) | m

3

and
gcd(Umn/Un, Dn) | 2m

3.
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3 The law of apparition for m in {Dn}

In this section we deal with the problem of when m | Dn, when m > 1. We note that if p is
an odd prime and p | R, then p ∤ Dn (n ≥ 0) by Proposition 2. Thus, we may assume that
if m is odd, then gcd(m,R) = 1. We define ω = ω(m), if it exists, to be the least positive
value of n such that m | Dn. We call ω the rank of apparition of m in {Dn}.

We begin by examining the case where m is a prime p where p | d and p ∤ 2R.

Theorem 9. Let p by any prime such that p ∤ 2R and p | d. There exists a rank of apparition

ω of p in {Dn} and if p | Dn for some n ≥ 0, then ω | n. Also, ω = p or ω | p± 1.

Proof. By results in the early part of [3, §9], we know that if
p | S2

1 − 3S2, then p has a simple rank of apparition r1 in {Un}. It is not difficult to show
that p | Dn if and only if r1 | n; hence, ω = r1. If p ∤ S2

1 − 3S2, then p can have two ranks of
apparition in {Un} when p | ∆ and only one when p ∤ ∆. In either case, it is a simple matter
to show that there is a rank of apparition ω of p in {Dn}, that ω 6= p and that if p | Dn,
then ω | n.

We next consider the case of p = 3 and 3 ∤ d.

Lemma 10. If p = 3 and 3 ∤ dR, then ω = ω(3) always exists in {Dn} and if 3 | Dn, then

ω | n.

Proof. We see from [3, Table 2] that there is single rank of apparition r of 3 in {Un}. From
the duplication formulas we see that if 3 | Un and 3 ∤ Wn, then 3 | W2n if and only if Wn ≡ Rn

(mod 3) and 3 | W4n if and only if Wn ≡ −Rn (mod 3). Thus, ω(3) always exists and ω = r,
2r or 4r. Furthermore, if 3 | Dn, then ω | n.

There remains the case of odd p where p ∤ 3dR. We first need to establish a simple lemma
in this case. Here and in the sequel we will denote by Kp the splitting field of G(x) ∈ Fp[x].
We can denote the zeros of G(x) ∈ Fp[x] by Rγi and R/γi (i = 1, 2, 3).

Lemma 11. If p ∤ 2∆R, then p | Dn if and only if γn
1 = γn

2 = γn
3 = 1 in Kp.

Proof. Certainly, if γn
1 = γn

2 = γn
3 = 1 in Kp, then p | Wn − 6Rn and p | Un by (2) and (3);

hence, p | Dn. If p | Dn, then since p | Un and p ∤ ∆, we may assume without loss of generality
that γn

1 = 1. By [3, (8.4)], we have γn
2 − 1 = 0 and therefore γn

3 = 1/(γn
1 γ

n
2 ) = 1.

Corollary 12. If p ∤ 2∆R and ω = ω(p) exists for p in {Dn}, then p | Dn if and only if

ω | n.

Proof. Certainly p | Dn when ω | n because {Dn} is a divisibility sequence. Suppose next
that ω ∤ n and p | Dn. In this case we have n = qw+r, where 0 < r < ω. Also, by the lemma
we must have γn

1 = γn
2 = γn

3 = 1, γω
1 = γω

2 = γω
3 = 1 ∈ Kp. It follows that γ

r
1 = γr

2 = γr
3 = 1

in Kp and p | Dr, which contradicts the definition of ω.
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We now deal with the case of p ∤ 6dR. Under this condition, we say that p is an S-prime,
Q-prime or I-prime if the splitting field of g(x) ∈ Fp[x] is Fp, Fp2 or Fp3 , respectively. The
following theorem follows easily from Lemma 11 and results in [3, §9].

Theorem 13. If p is a prime, p ∤ 6dR and ǫ = (∆/p), then

p | Dp−ǫ when p is an S-prime,

p | Dp2−1 when p is an Q-prime,

p | Dp2+ǫp+1 when p is an I-prime.

We can now assemble the above results in the following theorem.

Theorem 14. If p ∤ 2R, there exists a rank of apparition ω (≤ p2 + p+1) of p in {Dn} and

if p | Dn, then ω | n.

In [2, §4.6], S-, Q-, I-primes are discussed with respect to the polynomial h(x) ∈ Fp[x].
We next show that if S1, S2 are given by (6), then the splitting fields of h(x) and g(x) ∈ Fp[x]
are the same whenever p ∤ Γ. We let L1 denote the splitting field of h(x) ∈ Fp[x], L2 denote
the splitting field of g(x) ∈ Fp[x] and let α, β, γ denote the zeros of h(x) in L1. Since the
zeros of g(x) ∈ Fp[x] are given by

ρ1 = γ(α2 + β2), ρ2 = α(β2 + γ2), ρ3 = β(α2 + γ2),

we see that ρ1, ρ2, ρ3 ∈ L1. If L1 = Fp, then clearly L2 = Fp = L1. If L1 = Fp2 , then
(∆/p) = −1 and by (11), we get (d/p) = (Γ∆/p) = (∆/p) = −1; hence, L2 = Fp2 = L1. If
L1 = Fp3 , then (d/p) = 1 and L2 6= Fp2 . Consider

ρ1 = γ(P 2 − 2Q)− γ3 ∈ L1.

We have
ρp1 = γp(P 2 − 2Q)− γ3p = α(P 2 − 2Q)− α3.

Thus, if ρ1 = ρp1, then since α 6= γ we must have

α2 + αγ + γ2 = P 2 − 2Q

and β2 = αγ or β3 = R. From (1), we get Pβ−Q = 0 and P 3R−Q3 = 0, which is impossible
because p ∤ Γ. Thus, ρ1 6= ρp1, and therefore L2 = Fp3 = L1.

We have not yet discussed the case of p = 2. The reason for this is easily seen in [3, Table
1]. We first observe that if 2 | R, 2 ∤ S1 and 2 | S2, then ω(2) does not exist. Next, if 2 | S1

and 2 ∤ S2R, then ω(2) = 2 by definition, but we also have 2 | D3 and ω(2) ∤ 3. Thus to truly
have a rank of apparition of 2 in the sense of the results given above we should eliminate the
possibility that 2 | S1 and 2 ∤ S2R. When we do this, then by Proposition 2 we have ω(2)
given by Table 1.
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If p ∤ 2R, then p has a rank of apparition ω in {Dn}; we now deal with the case when
m = pα and α > 1. By the law of repetition we know that pα | Dn for some n > 0; hence
ω(pα) must exist. If we put ω = ω(p), then since p | Dω(pα), we must have ω | ω(pα) by
Theorem 14. Put s = ω(pα)/ω and let pν || s, then s = pνt, where p ∤ t. If pλ || Dpνω and
λ < α, then pλ || Dpνωt by Theorem 7, which is a contradiction; thus ω(pα) = pνω. Notice
that ν is the least positive integer such that pα | Dpνω.

Next, suppose that 2 ∤ m and the prime power decomposition of m is

m =
k
∏

i=1

pαi

i ;

we must have
ω(m) = lcm(ω(pαi

i ) : i = 1, 2, . . . , k). (17)

Thus, if (m, 2R) = 1, then ω(m) always exists and is given by (17).

4 The auxiliary sequences {U ∗
n} and {W ∗

n}

In order to prove some results concerning {Un} and {Wn}, it is often useful to make use
of the auxiliary sequences {U∗

n} and {W ∗
n}. We put γ∗

1 = γ2/γ1, γ
∗
2 = γ3/γ2, γ

∗
3 = γ1/γ3,

R∗ = R2 and define

V ∗
n = R∗n(1 + γ∗n

1 )(1 + γ∗n
2 )(1 + γ∗n

3 ),

U∗
n = R∗n−1(1− γ∗n

1 )(1− γ∗n
2 )(1− γ∗n

3 )/((1− γ∗
1)(1− γ∗

2)(1− γ∗
3)),

W ∗
n = V ∗

n − 2R∗n,

where
∆∗ = R∗2(1− γ∗

1)
2(1− γ∗

2)
2(1− γ∗

3)
2 = Γ 6= 0. (18)

Notice also that

Γ∗ = R∗4(γ∗
1 − γ∗

2)
2(γ∗

2 − γ∗
3)

2(γ∗
3 − γ∗

1)
2

= ∆R2U2
3 .

If we put γ∗∗
1 = γ∗

2/γ
∗
1 = 1/γ3

2 , then γ∗∗
1 = 1/γ3

2 . We also have
γ∗∗
2 = γ∗

3/γ
∗
2 = 1/γ3

3 , γ
∗∗
3 = γ∗

1/γ
∗
3 = 1/γ3

1 ; hence,

W ∗∗
n = RnW3n, U∗∗

n = Rn−1U3n/U3. (19)

If we put ρ∗i = R∗(γ∗
i + 1/γ∗

i ) (i = 1, 2, 3), we get

S∗
1 = ρ∗1 + ρ∗2 + ρ∗3 = S2 −RS1 (20)
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and

S∗
2 = ρ∗1ρ

∗
2 + ρ∗2ρ

∗
3 + ρ∗3ρ

∗
1 = RW3 +R2S∗

1

= RS3
1 − 3RS1S2 + 3R2S1 − 5R2S2 − 4R3S1 − 12R4. (21)

Also,

S∗
3 = ρ∗1ρ

∗
2ρ

∗
2

= R∗S∗2
1 − 2R∗S∗

2 − 4R∗3.

It follows, then, from the results mentioned in §1, that if we compute the initial values
of U∗

n and W ∗
n(= V ∗

n − 2R∗n) by replacing R, S1, S2 by R∗, S∗
1 , S

∗
2 , respectively, then we

have both {U∗
n} and {W ∗

n} to be linear recurrence sequences of order 6 with characteristic
polynomial G∗(x) and {U∗

n} is a divisibility sequence. It is easy to show as well that W ∗
−n =

W ∗
n/R

∗2n and U∗
−n = −U∗

n/R
∗2n. We observe further that gcd(S∗

1 , S
∗
2 , S

∗
3) = 1 if and only if

gcd(S1, S2, S3) = 1. Thus, the sequences {U∗
n} and {W ∗

n} have the same properties as {Un}
and {Wn} with R, S1, S2, replaced by R∗, S∗

1 , S
∗
2 , respectively.

We have shown how to relate the {U∗∗
n } and {W ∗∗

n } sequences to {Un} and {Wn} in
(19); we can also relate the {U∗

n} and {W ∗
n} sequences to {Un} and {Wn}. We define

ρ
(n)
i = Rn(γn

i + 1/γn
i ) (i = 1, 2, 3) and find that

S
(n)
1 = ρ

(n)
1 + ρ

(n)
2 + ρ

(n)
3 = Wn (22)

and
S
(n)
2 = ρ

(n)
1 ρ

(n)
2 + ρ

(n)
2 ρ

(n)
3 + ρ

(n)
1 ρ

(n)
3 = W ∗

n +RnWn. (23)

Since

∆U2
n = R2n(1− γn

1 )
2(1− γn

2 )
2(1− γn

3 )
2

= S
(n)2
1 − 4S

(n)
2 + 4RnS

(n)
1 − 12R2n,

we get
∆U2

n = W 2
n − 4W ∗

n − 12R2n (24)

using (22) and (23). This formula, which generalizes (8), is similar to the well-known Lucas
function identity

v2n − δu2
n = 4qn.

Note also that we get
Q̃n = W ∗

n + 3Rn (25)

from (24) and
4W ∗

n = W 2
n −∆U2

n − 12R2n,

11



the relation connecting W ∗
n to Wn and Un. To relate U∗

n to Wn and Un is somewhat more
complicated. From (24), we have

∆∗U∗2
n = W ∗2

n − 4W ∗∗
n − 12R∗2n.

Hence, from (18), (19), and (24), we get

ΓU∗2
n = ((W 2

n −∆U2
n)/4− 3R2n)2 − 4RnW3n − 12R4n.

From (13), we find that

16ΓU∗2
n = W 4

n − 16RnW 3
n − 48Rn∆WnU

2
n + 72R2nW 2

n − 72R2n∆U2
n

− 2∆W 2
nU

2
n +∆2U4

n − 432R4n, (26)

a formula that generalizes (10).
As promised in §2 we will now investigate the parity of Q̃n when 2 ∤ R and 2 | Dn. If

2 ∤ S1 and 2 | S2, then by (20) and (21), we have 2 ∤ S∗
1 and 2 | S∗

2 . It follows that 2 | U∗
n

if and only if 7 | n and 2 | W ∗
n when 2 | Dn. In this case we find from (25) that 2 ∤ Q̃n

whenever 2 | Dn. If 2 | S1 and 2 | S2, then 2 | S∗
1 and 2 | S∗

2 ; hence, 2 | U∗
n if and only

if 2 | n and we get 2 | W ∗
n , Q̃n ≡ 1 (mod 2) whenever 2 | Dn. If 2 ∤ S1 and 2 ∤ S2, then

∆∗ = Γ ≡ (S2 + RS1)
2 ≡ 0 (mod 4) from (10). Since 4 | W ∗2

n −∆∗U∗2
n , we get 2 | W ∗

n and
Q̃n ≡ 1 (mod 2).

The only remaining case is 2 | S1 and 2 ∤ S2. In this case 4 | ∆ and case (iii) can never
occur. We get U2 ≡ S1 + 2 (mod 4) and W2 − 6R2 ≡ 2 (mod 4); thus, we see that cases
(i) and (ii) can always occur, depending on the parity of S1/2. In either of these cases, we
get 4 | D6. It follows that if we eliminate the case of 2 | S1 and 2 ∤ S2R, then Thereom 7,
will be true for all primes p. Also, we have already seen in §3 that if we eliminate this case,
then we have a rank of apparition ω of 2 in {Dn} and 2 | Dn if and only if ω | n; indeed, if
gcd(m,R) = 1, there always exists a rank of apparition ω of m in {Dn} given by (17) such
that m | Dn if and only if ω | n. We remark here that if S1 and S2 are given by (6), then
if 2 ∤ R and 2 | S1, we must have 2 | S2. Thus, for the sequences {cn} and {wn} we cannot
have the case of 2 | S1 and 2 ∤ S2R.

If p is an I-prime and p ≡ ǫ = (∆/p) (mod 3), then 3 | p2+ ǫp+1. Since we know in this
case that p | Dp2+ǫp+1, it is of some interest to determine a criterion for deciding whether
or not p | D(p2+ǫp+1)/3. Roettger showed for the case of the {cn} and {wn} sequences that
p | D(p2+p+1)/3 (ǫ = 1 in this case if p is an I-prime) if and only if R(p−1)/3 ≡ 1 (mod p) in [2,
Theorem 5.14]. In what follows we will extend this result to the {Un} and {Wn} sequences.
We begin with three preliminary lemmas.

Lemma 15. If 3W 2
1 ≡ −∆ (mod p), then p cannot be an I-prime.

Proof. We have W1 = S1 and by (8) we find that

S2 ≡ RS2
1 − 2RS1 − 4R3 (mod p)

12



and by (5)
S3 ≡ −RS2

1 − 2R2S1 + 2R3 (mod p).

Hence
g(x) ≡ (x+R)(x2 − (S1 +R)x+ S2

1 + 2RS1 − 2R2) (mod p).

Since g(x) is reducible modulo p, p cannot be an I-prime.

Lemma 16. Let p be an I-prime and let Kp be the splitting field of G(x) ∈ F[x]. If ζ is a

primitive cube root of unity in Kp, then in Kp we can have

ζk(γ1 + γ2 + γ3) + ζ−k(γ−1
1 + γ−1

2 + γ−1
3 ) = γ1 + γ2 + γ3 + γ−1

1 + γ−1
2 + γ−1

3 (27)

if and only if 3 | k.

Proof. If 3 | k it is trivial that (27) must hold. If 3 ∤ k, we first observe that ζk + ζ−k = −1
and we have

ζk + 1/2 = (ζk − ζ−k)/2, ζ−k + 1/2 = (ζ−k − ζk)/2.

Thus (27) can hold only if

ζk − ζ−k

2
(γ1 + γ2 + γ3 − γ−1

1 − γ−1
2 − γ−1

3 ) =
3

2
(γ1 + γ2 + γ3 + γ−1

1 + γ−1
2 + γ−1

3 ).

On multiplying both sides by 2R and squaring we find that

3W 2
1 ≡ −∆ (mod p),

which by the previous lemma is impossible.

Lemma 17. If p is an I-prime and p | Un, then p | Dn.

Proof. Since p | Un, we must have γn
i = 1 in Kp for some i ∈ {1, 2, 3} by (2). We may assume

that γn
1 = 1. From the proof of [3, Theorem 9.8], we have 1 = γpn

1 = γ±n
2 ; hence, γn

2 = 1 and
γn
3 = 1/(γn

1 γ
n
2 ) = 1. The result now follows by Lemma 11.

We are now able to derive our criterion for when p | D(p2+ǫp+1)/3.

Theorem 18. If p is an I-prime and p ≡ ǫ (mod 3), then p | D(p2+ǫp+1)/3 if and only if

W ∗
(p−ǫ)/3 ≡ R2(p−ǫ)/3−1W1 (mod p).

Proof. We first note by Lemma 17 and 11 that p | U(p2+ǫp+1)/3 if and only if γ
(p2+ǫp+1)/3
i = 1

in Kp for all i ∈ {1, 2, 3}. Since γp2+ǫp+1
1 = 1 in Kp, we must have

γ
p2+ǫp+1

3

1 = ζk,

13



where ζ is a primitive cube root of unity in Kp. It follows that
p | D(p2+ǫp+1)/3 if and only if 3 | k. Now

(p2 + ǫp+ 1)/3 = (p− ǫ)(p+ 2ǫ)/3 + 1.

Hence,

ζk = γ
(p2+ǫp+1)/3
1 = (γp+2ǫ

1 )(p−ǫ)/3γ1.

Since γp
1 = γǫ

2 (see the proof of [3, Theorem 9.8]), we get

ζk = (γ2γ
2
1)

ǫ(p−ǫ)/3γ1 = γ
∗ǫ(p−ǫ)/3
3 γ1

and
γ
∗(p−ǫ)/3
3 = (ζk/γ1)

ǫ.

Since γ∗p
3 = γp

1/γ
p
3 = γǫ

2/γ
ǫ
1 = γ∗ǫ

1 , we get

γ
∗ǫ(p−ǫ)/3
1 = (ζkp/γp

1)
ǫ = ζk/γ2

and
γ
∗(p−ǫ)/3
1 = (ζk/γ2)

ǫ.

Similarly γ
∗(p−ǫ)/3
2 = (ζk/γ3)

ǫ. It follows that

W ∗
(p−ǫ)/3 = R∗(p−ǫ)/3[ζ−kǫ(γǫ

1 + γǫ
2 + γǫ

3) + ζkǫ(γ−ǫ
1 + γ−ǫ

2 + γ−ǫ
3 )].

By Lemma 16, we see that 3 | k if an only if

W ∗
(p−ǫ)/3 ≡ R2(p−ǫ)/3−1W1 (mod p).

This criterion can easily be converted to one that involves only the {Un} and {Wn}
sequences by using (24). At first glance, the criterion of Theorem 18 does not resemble the
more elegant rule for p | D(p2+ǫp+1)/3 when dealing with Roettger’s sequences. In this case
we have γ1 = α/β, γ2 = β/γ, γ3 = γ/α and R = αβγ. We can deduce Roettger’s rule in the
following corollary of Theorem 18.

Corollary 19. Suppose Dn = gcd(wn − 6Rn, cn) and p is an I-prime with respect to h(x) ∈
Fp[x], then if p ≡ 1 (mod 3), we have

p | D(p2+ǫp+1)/3 ⇔ R(p−1)/3 ≡ 1 (mod p).

14



Proof. Suppose first that p ∤ Γ. In this case p is an I-prime with respect to g(x) ∈ Fp[x]
and 1 = (d/p) = (Γ∆/p) = (∆/p) = ǫ. By Theorem 18 we have p | D(p2+ǫp+1)/3 if and only
if W ∗

(p−ǫ)/3 ≡ R2(p−ǫ)/3−1W1 (mod p). But in Kp, we have γ∗
1 = γ2/γ1 = β2/(αγ) = β3/R;

hence,

γ
∗ p−1

3

1 = βp−1/R(p−1)/3 = (α/β)/R(p−1)/3 = γ−1
2 /R(p−1)/3.

Similarly, γ
∗ p−1

3

2 = γ−1
3 /R(p−1)/3, γ

∗ p−1

3

3 = γ−1
1 /R(p−1)/3. It follows that

W ∗
p−1

3

= R∗(p−1)/3(R(p−1)/3(γ1 + γ2 + γ3) +R−(p−1)/3(γ−1
1 + γ−1

2 + γ−1
3 ))

and by Lemma 16 W ∗
p−1

3

≡ R2(p−1)/3−1W1 (mod p), if and only if R(p−1)/3 = 1 in Kp.

Suppose next that p | Γ. In this case, p cannot be an I-prime with respect to g(x). If p ∤ P ,
then by (11) we have R ≡ (Q/P )3 (mod p) and h(Q/P ) ≡ 0 (mod p). In this case p is not
an I-prime with respect to h(x), a contradiction. If p | P , then p | Q and α3 = β3 = γ3 = R
in L1. We have αp−1 = βp−1 = γp−1 = R(p−1)/3 and if R(p−1)/3 ≡ 1 (mod p), we get αp = α,
and p is not an I-prime with respect to h(x) ∈ Fp[x], a contradiction. Now p | D3 and
since 3 ∤ (p2 + ǫp + 1)/3, we have p ∤ D(p2+ǫp+1)/3. Thus, if p is an I-prime with respect to
h(x) ∈ Fp[x], then R(p−1)/3 6≡ 1 (mod p) and p ∤ D(p2+ǫp+1)/3.

We conclude this section with the following result concerning

D∗
n = gcd(W ∗

n − 6R∗n, Un).

Theorem 20. If p is an I-prime and p ≡ ǫ (mod 3), then p | D∗
(p2+ǫp+1)/3.

Proof. We observe as above that γ∗
1 = γ2/γ1 and

(p2 + ǫp+ 1)/3 = (p− ǫ)(p+ 2ǫ)/3 + 1.

Hence
γ
∗(p2+ǫp+1)/3
1 = (γ2/γ1)((γ2/γ1)

p+2ǫ)(p−ǫ)/3

in Kp. Now γp
2 = γǫ

3, γ
p
1 = γǫ

2; hence,

(γ2/γ1)
p+2ǫ = (γ2γ3/γ

2
1)

ǫ = γ−3ǫ
1 .

It follows that
((γ2/γ1)

p+2ǫ)(p−ǫ)/3 = γ
−ǫ(p−ǫ
1 = γ1/γ2

and
γ
∗(p2+ǫp+1)/3
1 = 1.

Hence, p | D∗
(p2+ǫp+1)/3.
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5 Some properties of {En}

We will devote the major portion of this section to the proof that if p (> 3) is a prime and
p | En, then p ≡ (Γ/p) (mod 3). This generalizes [2, Theorem 6.2]. We observe that by
Proposition 2 we have gcd(En, R) = 2. We now need some preliminary results.

Lemma 21. Let p be any prime such that p > 3. If p | En, then in Kp we must have

γn
i = 1, γ2n

j + γn
j + 1 = 0,

where i ∈ {1, 2, 3} and all j ∈ {1, 2, 3} such that j 6= i.

Proof. If p ∤ ∆ and p | Un, we may assume with no loss of generality that γn
1 = 1 in Kp. If

p | ∆ we may assume with no loss of generality that γ1 = 1 (and γn
1 = 1) in Kp. Now

Wn = Vn − 2Rn = Rn(1 + γn
1 )(1 + γn

2 )(1 + γn
3 )− 2Rn

= 2Rn(γn
2 γ

n
3 + γn

2 + γn
3 )

= 2Rn(1 + γn
2 + 1/γn

2 )

= 2Rn(1 + 1/γn
3 + γn

3 ),

the latter results following from γn
1 = 1 and γn

1 γ
n
2 γ

n
3 = 1. Since Wn = 0 in Kp, we have

γ2n
2 + γn

2 + 1 = γ2n
3 + γn

3 + 1 = 0.

Lemma 22. If p (> 3) is a prime, then p ∤ (En,Γ).

Proof. If p | Γ, then γ1 = γ2, γ2 = γ3 or γ3 = γ1 in Kp by (10). If p | En, then we may
assume that γn

1 = 1 and γ2n
2 + γn

2 + 1 = 0 in Kp by Lemma 21. If γ1 = γ2, then γn
2 = 1,

which is impossible because p > 3. The same is true if γ2 = γ3 or γ3 = γ1.

Lemma 23. If p (> 3) is a prime, p | ∆ and p | En, then

p ≡ (Γ/p) (mod 3).

Proof. Since p | ∆, we may assume with no loss of generality that γ1 = 1 and therefore
γ2γ3 = 1 in Kp = Fp2 . Also, by Lemma 21 we may assume that if p | En, then

γ2n
2 + γn

2 + 1 = 0

in Kp. Hence, γ
3n
2 = 1 and γn

2 6= 1 in Kp. By Lemma 22, p ∤ Γ and

Γ
p−1

2 = (γ1 − γ2)
p−1(γ2 − γ3)

p−1(γ3 − γ1)
p−1

=
(1− γp

2)(γ
p
2 − γp

3)(γ
p
3 − 1)

(1− γ2)(γ2 − γ3)(γ3 − 1)
. (28)

If γ2 ∈ Fp, then Γ
p−1

2 = 1. Also, from γpn
2 = γn

2 , we get γ
(p−1)n
2 = 1, which, since γn

2 6= 1

means that 3 | p− 1 and p ≡ (Γ/p) (mod 3). If γ2 ∈ Fp2\Fp, then γp
2 = γ3 and γ

(p−1)n
2 = −1

by (28). Since γpn
2 = γn

3 = 1/γn
2 and γ

(p+1)n
2 = 1, we see that 3 | p + 1 and p ≡ (Γ/p)

(mod 3).
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We now show that if p is an I-prime, then p ∤ En.

Theorem 24. If p is an I-prime, then p ∤ En.

Proof. As noted above we know that if p is an I-prime, then γp
1 = γǫ

2, γ
p
2 = γǫ

3, γ
p
3 = γǫ

1 in Kp.

If p | En, then by Lemma 21, we have γn
1 = 1 and γ2n

2 +γn
2 +1 = 0. Now γp2

2 = γǫp
3 = γǫ2

1 = γ1
and γp2n

2 = γn
1 . Hence,

0 = (γ2n
2 + γn

2 + 1)p
2

= 3,

which is a contradiction.

We next deal with the case where p | S1 + 2R.

Lemma 25. If p (> 3) is a prime, p ∤ d, p | S1 + 2R and p | En, then

p ≡ (Γ/p) (mod 3).

Proof. Since p | S1 + 2R and S1 + 2R = R(γ1 + 1)(γ2 + 1)(γ3 + 1), we may assume in Kp

that γ1 = −1 and γ2γ3 = −1. We get

(γ1 + γ2)(γ2 + γ3)(γ3 + γ1) = −(γ2
2 + 1/γ2

2 − 2).

Since S1 ≡ −2R (mod p), we get S3 ≡ −2RS2 (mod p) from (5) and

g(x) = (x+ 2R)(x2 + S2) ∈ Fp[x].

Since ρ1 = R(γ1 + 1/γ1) = −2R, we get ρ22 = ρ23 = −S2 and γ2
2 + 1/γ2

2 = ρ22/R
2 − 2 =

−S2/R
2 − 2 ∈ Fp. It follows that (γ1 + γ2)(γ2 + γ3)(γ3 + γ1) ∈ Fp and

((γ2
1 − γ2

2)(γ
2
2 − γ2

3)(γ
2
3 − γ2

1))
p−1 = ((γ1 − γ2)

2(γ2 − γ3)
2(γ3 − γ1)

2)
p−1

2

= (Γ/p). (29)

As γ2
2 + 1/γ2

2 ∈ Fp, we must have γ2
2 , 1/γ

2
2 ∈ Fp2 and γ2p

2 = γ2
2 or γ2p

2 = γ2
3 . Since p ∤ d, we

see from (29), that (Γ/p) = 1, when γ2p
2 = γ2

2 and (Γ/p) = −1, when γ2p
2 = γ2

3 .
If p | En, then by Lemma 21, we have γn

i = 1 for some i ∈ {1, 2, 3} and γ2n
j + γn

j + 1 = 0
(i 6= j). Since γ1 = −1, we see that i = 1 and 2 | n. If (Γ/p) = 1, then γnp

2 = γn
2 and

γ
n(p−1)
2 = 1. Since γ3n

2 = 1 and γn
2 6= 1, we see that 3 | p − 1 and p ≡ (Γ/p) (mod 3).

If (Γ/p) = −1, then γnp
2 = γn

3 = 1/γn
2 and γ

n(p+1)
2 = 1; hence 3 | p + 1 and p ≡ (Γ/p)

(mod 3).

We are now ready to prove our main result.

Theorem 26. If p (> 3) is a prime divisor of En, then p ≡ (Γ/p) (mod 3).
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Proof. We have already proved this result when p | d and when p ∤ d and p | S1 + 2R. We
may assume, then, that p ∤ d and p ∤ S1 + 2R. Since p | En, p can only be an S-prime or a
Q-prime by Theorem 24. If p is an S-prime, then 1 = (d/p) = (∆/p)(Γ/p) and (Γ/p) = ǫ; if p
is an Q-prime, then −1 = (d/p) = (∆/p)(Γ/p) and (Γ/p) = −ǫ. Suppose p is an S-prime. By
results in the proof of [3, Theorem 9.4], we have γp

i = γǫ
i (i = 1, 2, 3) in Kp. By Lemma 21,

we get γ3n
2 = 1, γn

2 6= 1; also, γnp
2 = γnǫ

2 means that γ
(p−ǫ)n
2 = 1 and 3 | p− ǫ. Similarly, if p

is a Q-prime, then by the results in the proof of [3, Theorem 9.6], we have

γp
2 = γǫ

3, γp
3 = γǫ

2, γp
3 = γǫ

1

in Kp. In this case we get γpn
2 = γǫn

3 = (1/γ2)
ǫn and γ

n(p+ǫ)
2 = 1, γ3n

2 = 1 and γn
2 6= 1. Hence

3 | p+ ǫ and in either case p ≡ (Γ/p) (mod 3).

In order to extend Theorem 26, we need to prove the following result.

Theorem 27. For any n > 0, we have En | D3n.

Proof. We can rewrite (13) as

W3n − 6R3n = (Wn − 6Rn)Q̃n +∆WnU
2
n, (30)

where Q̃n = (W 2
n −∆Un)/4. Suppose p is any odd prime and pλ || En, where λ ≥ 1. Since

pλ | Un, we must have pλ | U3n. Also, p2λ | Q̃n and pλ | W3n − 6R3n by (30). Next, suppose
that 2λ || En and λ ≥ 1. We have 2 | Wn − 6Rn and 22λ−2 | Q̃n, 2

λ | Un. By (30) we see that
22λ−1 | W3n − 6R3n and since λ ≥ 1, we have 2λ− 1 ≥ λ and 2λ | D3n. Hence, En | D3n.

We next prove a result which is analogous to the theorem that states that if p is an odd
prime and p | vn, then p ≡ ±1 (mod 2ν+1), where 2ν || n. (See [2, Theorem 2.20]).

Theorem 28. If p (> 3) is a prime and p | En, then p ≡ (Γ/p) (mod 3ν+1), where 3ν || n.

Proof. Since p | En and p > 3, we have p ∤ Dn, as p ∤ 6R. But, by Theorem 27, we know
that p | D3n. Thus, if ω is the rank of apparition of p in {Dn}, we have ω | 3n and ω ∤ n.
It follows that 3ν+1 | ω. Also, since p is not an I-prime and p ∤ 6R, we must have ω = p or
ω | p2 − 1 by results in §3. Since 3 | ω we cannot have ω = p and therefore ω | p2 − 1 and
3ν+1 | p2 − 1. Since p ∤ Γ, we have p2 − 1 = (p− (Γ/p))(p+ (Γ/p)) and 3 | p− (Γ/p). Hence
3ν+1 | p− (Γ/p).

6 Primality tests

In Williams [4], it is shown how Lucas used the properties of {un} and {vn} to develop
primality tests for certain families of integers. In this section we will indicate how the
properties of {Un} and {Wn} can be used to produce some primality tests. We begin with
a simple result concerning integers of the form A3n + η, where η2 = 1.
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Theorem 29. Let N = A3n + η, where 2 | A, n ≥ 2, 3 ∤ A, η ∈ {1,−1} and A < 3n. If

N | UN−η/U(N−η)/3,

then N is a prime.

Proof. Let p be any prime divisor of N and put m = (N − η)/3. We note that p 6= 2, 3 and
by (14)

4U3m/Um = 3W 2
m +∆U2

m.

Since p | U3m, there must exist some rank of apparition r of p in {Un} such that r | 3m. If
p | Um and p | Wm, then p | Em and p ≡ (Γ/p) (mod 3n) by Theorem 28. If p ∤ Um, then
r ∤ m and r | 3m means that 3n | r. Suppose p ∤ dR. If p is an S-prime or a Q-prime, then by
[3, Corollary 9.5 and Theorem 9.7] we must have r | p−ǫ, where ǫ = (∆/p); hence p ≡ (∆/p)
(mod 3n). If p is an I-prime, then r | p2 + ǫp + 1 by Theorem 9.9 of [3]. Since 9 | r, this is
impossible. If p | dR, then r = 3, p or divides p ± 1. Since 9 | r, r 6= 3 and since p ∤ N − η,
we cannot have r = p. Thus, in all possible cases, we find that p ≡ ±1 (mod 3n) and since
p is odd, we have p ≥ 2 · 3n − 1. Since (2 · 3n − 1)2 > N , N can only be a prime.

We also note that if N obeys the conditions in the first line of Theorem 29 and N | E(N−η)/3,
then N must be a prime.

By extending the results in [2, Chapter 7] it is possible to select the parameters of S1,
S2 to make Theorem 29 both a necessary and sufficient test for the primality of N , but this
test is much less efficient than one based on the Lucas Functions.

In [3, §9] several primality tests for N are presented. These tests can be easily proved
by using the techniques in [2, Chapter 7], but to be usable they require that we know the
complete factorization of

N2 +N + 1 or N2 −N + 1.

Of course, such a circumstance is very unlikely, but we might have a partial factorization of
N2 ± N + 1. In what follows we will devise a test for the primality of N in this case. We
first require a simple lemma.

Lemma 30. If p and q are distinct primes, p > 3 and p | Dqn and p | Uqn/Un, then qλ+1 | ω,
where ω is the rank of apparition of p in {Dn} and qλ || n.

Proof. Suppose p | Dn. If p | Uqn/Un, then by Theorem 8, we get p | 2q3, which is impossible.
Hence, p ∤ Dn. It follows that since p | Dqn ({Dn} is a divisibility sequence), we get ω | qn
and ω ∤ n, which means that qλ+1 | ω.

We will also need the easily established technical lemma below.

Lemma 31. If x ≥ 5, then

(x2 + x+ 1)2 < 2(x4 − x2 + 1).
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Theorem 32. Let N be a positive integer such that gcd(N, 6) = 1 and put η = 1 or −1.
Let T = N2 + ηN + 1 and suppose that T ′ | T , where gcd(T ′, T/T ′) = 1 and T ′2 > 2T . If

N | DT and N | UT/UT/q for all distinct primes q such that q | T ′, then N is a prime.

Proof. Let p be any prime divisor of N and q be any prime divisor of T ′; then p ≥ 5 and
by Lemma 30 we have qλ | ω(p), where ω(p) is the rank of apparition of p in {Dn} and
qλ || T . Since gcd(T ′, T/T ′) = 1, we have qλ || T ′; hence, T ′ | ω(p). Let ω denote the rank
of apparition of T in {Dn}. We have ω | T and ω/q ∤ T ; hence, qλ | ω, where qλ || T and
therefore T ′ | ω.

By (17), we have
ω = lcm(ω(pαi

i ) : i = 1, 2, . . . , j),

where

N =

j
∏

i=1

pαi

i

is the prime power factorization of N . Since ω(pαi

i ) = pνii ω(pi), we must have νi = 1 because
pi ∤ T . We get

ω = lcm(ω(pi) : i = 1, 2, . . . , j|T
′

j
∏

i=1

ω(pi)

T ′
.

If we put T = kω, then

T ≤ kT ′

j
∏

i=1

ω(pi)

T ′
≤ kT ′

j
∏

i=1

p2i + pi + 1

T ′

by Theorem 13. Also, since

T = N2 + ηN + 1 > 2

j
∏

i=1

p2i + pi + 1

2
,

([3, Lemma 9.11], cf. [2, Lemma 7.1]) we get

kT ′

j
∏

i=1

p2i + pi + 1

T ′
> 2

j
∏

i=1

p2i + pi + 1

2

and
kT ′2j > 2(T ′)j.

Hence,
k > (T ′/2)j−1 ≥ T ′/2 (when j ≥ 2).

But since T/T ′ = kω/T ′, we have k ≤ T/T ′ < T ′/2, a contradiction; consequently, we
can only have j = 1 and N = pα. Since ω(N) = pνω(p) and gcd(p, ω(N)) = 1, we get
ω(pα) = ω(p). It follows that

ω(N) = ω(p) ≤ p2 + p+ 1.
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Now T ′ | ω(p) means that ω(p) ≥ T ′ and p2 + p+1 ≥ T ′. Since T ′2 > 2T , we have for α ≥ 2

(p2 + p+ 1)2 > 2(p2α + ηpα + 1) ≥ 2(p2α − pα + 1) ≥ 2(p4 − p2 + 1)

which is impossible by Lemma 31. Hence we can only have N = p.

Many other primality tests can be devised by making use of the ideas in [2, Chapter 7],
but the above should suffice to illustrate the kind of results that can be established.

7 Conclusions

In [3] we showed that the {Un} and {Wn} sequences can be considered respectively as the
sextic analogues of Lucas’ {un} and {vn} sequences. In this paper we have produced a
number of results that are the number-theoretic analogues of well-known properties of the
Lucas functions. Of course, there are many other properties of {Dn} and {En} that are
similar to those of the {Dn} and {En} sequences discussed at some length in [2], and these
can be proved by using the results presented here and the techniques of [2].
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