Some Arithmetic Properties of Certain Sequences

E. L. Roettger
Department of General Education
Mount Royal University
4825 Mount Royal Gate SW
Calgary, AB T3E 6K6
Canada
eroettger@mtroyal.ca
H. C. Williams ${ }^{1}$
Department of Mathematics and Statistics
University of Calgary
2500 University Drive NW
Calgary, AB T2N 1N4
Canada
williams@math.ucalgary.ca

Abstract

In an earlier paper it was argued that two sequences, denoted by $\left\{U_{n}\right\}$ and $\left\{W_{n}\right\}$, constitute the sextic analogues of the well-known Lucas sequences $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$. While a number of the properties of $\left\{U_{n}\right\}$ and $\left\{W_{n}\right\}$ were presented, several arithmetic properties of these sequences were only mentioned in passing. In this paper we discuss the derived sequences $\left\{D_{n}\right\}$ and $\left\{E_{n}\right\}$, where $D_{n}=\operatorname{gcd}\left(W_{n}-6 R^{n}, U_{n}\right)$ and $E_{n}=$ $\operatorname{gcd}\left(W_{n}, U_{n}\right)$, in greater detail and show that they possess many number theoretic properties analogous to those of $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$, respectively.

[^0]
1 Introduction

Let $p, q \in \mathbb{Z}$ be relatively prime and α, β be the zeros of

$$
x^{2}-p x+q
$$

with discriminant $\delta=(\alpha-\beta)^{2}=p^{2}-4 q$. The well-known Lucas sequences $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ are defined by

$$
u_{n}=u_{n}(p, q)=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, \quad \quad v_{n}=v_{n}(p, q)=\alpha^{n}+\beta^{n}
$$

These sequences possess many interesting properties and have found applications in primality testing, integer factorization, solution of quadratic and cubic congruences, and cryptography (see [4]). We note here that both sequences are linear recurrence sequences of order 2 and that $u_{n}, v_{n} \in \mathbb{Z}$ whenever $n \geq 0$.

Lucas' problem of extending or generalizing his sequences has been well studied and we refer the reader to [2, Chapter 1] and [3, Section 1] for further information on this topic. One possible extension of the Lucas sequences, which involves cubic instead of quadratic irrationalities, was investigated in [2] (also see Müller, Roettger and Williams [1]). In this case we let $P, Q, R \in \mathbb{Z}$ be integers such that $\operatorname{gcd}(P, Q, R)=1$ and let α, β, γ be the zeros of

$$
\begin{equation*}
h(x)=x^{3}-P x^{2}+Q x-R, \tag{1}
\end{equation*}
$$

with discriminant

$$
\Delta=(\alpha-\beta)^{2}(\beta-\gamma)^{2}(\gamma-\alpha)^{2}=Q^{2} P^{2}-4 Q^{3}-4 R P^{3}+18 P Q R-27 R^{2} \neq 0
$$

Roettger's sequences $\left\{c_{n}\right\}$ and $\left\{w_{n}\right\}$ are defined as

$$
c_{n}=c_{n}(P, Q, R)=\left(\alpha^{n}-\beta^{n}\right)\left(\beta^{n}-\gamma^{n}\right)\left(\gamma^{n}-\alpha^{n}\right) /((\alpha-\beta)(\beta-\gamma)(\gamma-\alpha))
$$

and

$$
w_{n}=w_{n}(P, Q, R)=\left(\alpha^{n}+\beta^{n}\right)\left(\beta^{n}+\gamma^{n}\right)\left(\gamma^{n}+\alpha^{n}\right)-2 R^{n} .
$$

Note here that if $n \geq 0$, we have $c_{n}, w_{n} \in \mathbb{Z}$ and $\left\{c_{n}\right\},\left\{w_{n}\right\}$ are linear recurrence sequences of order 6 .

In [2], it is pointed out that the sequences $\left\{c_{n}\right\}$ and $\left\{w_{n}\right\}$ have many properties analogous to those of $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$, respectively. Recently, these sequences were extended further by Roettger, Williams and Guy [3]. If we put $\gamma_{1}=\alpha / \beta, \gamma_{2}=\beta / \gamma, \gamma_{3}=\gamma / \alpha, \lambda=R$, then we can write

$$
\begin{aligned}
c_{n} & =\lambda^{n-1}\left(1-\gamma_{1}^{n}\right)\left(1-\gamma_{2}^{n}\right)\left(1-\gamma_{3}^{n}\right) /\left(\left(1-\gamma_{1}\right)\left(1-\gamma_{2}\right)\left(1-\gamma_{3}\right)\right) \text { and } \\
w_{n} & =v_{n}-2 R^{n}, \quad \text { where } \\
v_{n} & =\lambda^{n}\left(1+\gamma_{1}^{n}\right)\left(1+\gamma_{2}^{n}\right)\left(1+\gamma_{3}^{n}\right)
\end{aligned}
$$

One of the most important properties of the Lucas sequence $\left\{u_{n}\right\}$ when $n \geq 0$ is that it is a divisibility sequence. An integer sequence $\left\{A_{n}\right\}$ is said to be a divisibility sequence if $A_{n} \mid A_{m}$ whenever $n \mid m$ and $A_{n} \neq 0$. For example, Roettger's sequence $\left\{c_{n}\right\}(n \geq 0)$ is a divisibility sequence. Suppose we define

$$
\begin{align*}
& U_{n}=\frac{\lambda^{n-1}\left(1-\gamma_{1}^{n}\right)\left(1-\gamma_{2}^{n}\right)\left(1-\gamma_{3}^{n}\right)}{\left(1-\gamma_{1}\right)\left(1-\gamma_{2}\right)\left(1-\gamma_{3}\right)} \tag{2}\\
& V_{n}=\lambda^{n}\left(1+\gamma_{1}^{n}\right)\left(1+\gamma_{2}^{n}\right)\left(1+\gamma_{3}^{n}\right) \tag{3}
\end{align*}
$$

where $\lambda, \gamma_{1}, \gamma_{2}, \gamma_{3} \in \overline{\mathbb{Q}} ; \gamma_{1}, \gamma_{2}, \gamma_{3} \neq 1 ; \gamma_{i} \neq \gamma_{j}$ when $i \neq j$ and $\gamma_{1} \gamma_{2} \gamma_{3}=1$. In [3], it is shown that if $U_{n}, V_{n} \in \mathbb{Z}$ whenever $n \geq 0,\left\{U_{n}\right\}$ is a linear recurrence sequence and $\left\{U_{n}\right\}$ is also a divisibility sequence, then we must have $\lambda=R \in \mathbb{Z}$ and $\rho_{i}=R\left(\gamma_{i}+1 / \gamma_{i}\right)(i=1,2,3)$ must be the zeros of a cubic polynomial

$$
\begin{equation*}
g(x)=x^{3}-S_{1} x^{2}+S_{2} x-S_{3} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{3}=R S_{1}^{2}-2 R S_{2}-4 R^{3} \tag{5}
\end{equation*}
$$

and $S_{1}, S_{2} \in \mathbb{Z}$. The six zeros of

$$
\begin{aligned}
G(x) & =\left(x^{2}-\rho_{1} x+R^{2}\right)\left(x^{2}-\rho_{2} x+R^{2}\right)\left(x^{2}-\rho_{3} x+R^{2}\right) \\
& =x^{6}-S_{1} x^{5}+\left(S_{2}+3 R^{2}\right) x^{4}-\left(S_{3}+2 R^{2} S_{1}\right) x^{3}+R^{2}\left(S_{2}+3 R^{2}\right) x^{2}-R^{4} S_{1} x+R^{6}
\end{aligned}
$$

are $R \gamma_{i}, R / \gamma_{i}(i=1,2,3)$. If we define $W_{n}=V_{n}-2 R^{n}$, then both $\left\{U_{n}\right\}$ and $\left\{W_{n}\right\}$ are linear recurrence sequences with characteristic polynomial $G(x)$. Also, $U_{0}=0, U_{1}=1$, $U_{2}=S_{1}+2 R, U_{3}=S_{1}^{2}+R S_{1}-S_{2}-3 R^{2}, W_{0}=6, W_{1}=S_{1}, W_{2}=S_{1}^{2}-2 S_{2}-6 R^{2}$, $W_{3}=S_{1}^{3}-3 S_{1} S_{2}+3 R S_{1}^{2}-6 R S_{2}-3 R^{2} S_{1}-12 R^{3}$. Furthermore, we have $U_{-n}=-U_{n} / R^{2 n}$, $W_{-n}=W_{n} / R^{2 n}$; hence, $U_{n}, W_{n} \in \mathbb{Z}$ when $n \geq 0$. It is also the case that $\left\{U_{n}\right\}$ is a divisibility sequence.

It is shown in [3] that if

$$
\begin{equation*}
S_{1}=P Q-3 R, \quad S_{2}=P^{3} R+Q^{3}-5 P Q R+3 R^{2} \tag{6}
\end{equation*}
$$

then $U_{n}\left(S_{1}, S_{2}, R\right)=c_{n}(P, Q, R), W_{n}\left(S_{1}, S_{2}, R\right)=w_{n}(P, Q, R)$. If, in the expression (2), we define

$$
\begin{align*}
\Delta & =\lambda^{2}\left(1-\gamma_{1}\right)^{2}\left(1-\gamma_{2}\right)^{2}\left(1-\gamma_{3}\right)^{2} \\
& =R^{2}\left(\gamma_{1}+\gamma_{2}+\gamma_{3}-1 / \gamma_{1}-1 / \gamma_{2}-1 / \gamma_{3}\right)^{2} \tag{7}
\end{align*}
$$

we find that

$$
\begin{equation*}
\Delta=S_{1}^{2}-4 S_{2}+4 R S_{1}-12 R^{2} \tag{8}
\end{equation*}
$$

but this is the same as $Q^{2} P^{2}-4 Q^{3}-4 R P^{3}+18 P Q R-27 R^{2}$, the discriminant of $h(x)$, when S_{1} and S_{2} are given by (6). If d denotes the discriminant of $g(x)$, then, as shown in [3], we have $d=\Delta \Gamma$, where

$$
\begin{align*}
\Gamma & =R^{4}\left(\gamma_{1}-\gamma_{2}\right)^{2}\left(\gamma_{2}-\gamma_{3}\right)^{2}\left(\gamma_{3}-\gamma_{1}\right)^{2} \tag{9}\\
& =S_{2}^{2}+10 R S_{1} S_{2}-4 R S_{1}^{3}-11 R^{2} S_{1}^{2}+12 R^{3} S_{1}+24 R^{2} S_{2}+36 R^{4} \tag{10}
\end{align*}
$$

The discriminant D of $G(x)$ is given by $D=E d^{2} R^{12}$, where

$$
E=R^{2} \Delta\left(S_{1}+2 R\right)^{2}=\left(\rho_{1}-4 R^{2}\right)\left(\rho_{2}-4 R^{2}\right)\left(\rho_{3}-4 R^{2}\right)
$$

If S_{1} and S_{2} are given by (6), then

$$
\begin{equation*}
\Gamma=\left(R P^{3}-Q^{3}\right)^{2} \tag{11}
\end{equation*}
$$

We remark that the condition analogous to $\operatorname{gcd}(P, Q, R)=1$ for Roettger's sequences is $\operatorname{gcd}\left(S_{1}, S_{2}, R\right)=1$ for the more general $\left\{W_{n}\right\}$ and $\left\{U_{n}\right\}$ sequences.

The duplication formulas are

$$
\begin{equation*}
2 W_{2 n}=W_{n}^{2}+\Delta U_{n}^{2}-4 R^{n} W_{n}, \quad U_{2 n}=U_{n}\left(W_{n}+2 R^{n}\right) \tag{12}
\end{equation*}
$$

and the triplication formulas are

$$
\begin{align*}
& 4 W_{3 n}=3 \Delta U_{n}^{2}\left(W_{n}+2 R^{n}\right)+W_{n}^{2}\left(W_{n}-6 R^{n}\right)+24 R^{2 n} \tag{13}\\
& 4 U_{3 n}=U_{n}\left(3 W_{n}^{2}+\Delta U_{n}^{2}\right) \tag{14}
\end{align*}
$$

Since $\left\{U_{n}\right\}$ is a divisibility sequence, we must have $U_{3 n} / U_{n} \in \mathbb{Z}(n \geq 0)$ and by (14), this means that $4 \mid W_{n}^{2}-\Delta U_{n}^{2}$. Thus, if $2 \mid U_{n}$, then $2 \mid W_{n}$ and we have proved Proposition 1.

Proposition 1. If $n \geq 0$, then $2 \mid \operatorname{gcd}\left(W_{n}, U_{n}\right)$ if and only if $2 \mid U_{n}$.
The general multiplication formulas for $\left\{W_{n}\right\}$ and $\left\{U_{n}\right\}$ are given as [3, (7.7) and (7.8)].
We observe here that in general for a given $S_{1}, S_{2} R \in \mathbb{Z}$ there do not always exist, P, $Q \in \mathbb{Z}$ such that (6) holds. As a simple example consider $S_{1}=-1, S_{2}=-4$, and $R=1$; it is not possible to find integers P, Q such that $P Q=2$ and $P^{3}+Q^{3}=3$. Thus, the sequences $\left\{W_{n}\left(S_{1}, S_{2}, R\right)\right\},\left\{U_{n}\left(S_{1}, S_{2}, R\right)\right\}$ represent a non-trivial extension of Roettger's sequences $\left\{w_{n}\right\}$ and $\left\{c_{n}\right\}$.

In [3] it is mentioned that if we define

$$
D_{n}=\operatorname{gcd}\left(W_{n}-6 R^{n}, U_{n}\right) \quad \text { and } \quad E_{n}=\operatorname{gcd}\left(W_{n}, U_{n}\right)
$$

then the sequences $\left\{D_{n}\right\}$ and $\left\{E_{n}\right\}$ possess many number theoretic properties in common with $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$, respectively. Indeed, some of these properties were presented in [3] without proof. The purpose of this paper is to supply these proofs or sketches thereof and to develop some new results concerning $\left\{D_{n}\right\}$ and $\left\{E_{n}\right\}$.

2 Some properties of $\left\{D_{n}\right\}$

In this section we will produce some results concerning $\left\{D_{n}\right\}$ that are similar to those possessed by $\left\{u_{n}\right\}$. We begin with two simple propositions that easily follow from Lemma 8.1 of [3] and results immediately following that lemma.

Proposition 2. If $\operatorname{gcd}\left(S_{1}, S_{2}, R\right)=1$, then for $n \geq 0$ we have

$$
\operatorname{gcd}\left(D_{n}, R\right) \mid 2
$$

Proposition 3. If $\operatorname{gcd}\left(S_{1}, S_{2}, R\right)=1$, then for any $n \geq 0$, we must have $4 \nmid D_{n}$ whenever $2 \mid R$.

In the sequel we will assume that S_{1}, S_{2}, R have been selected such that $\operatorname{gcd}\left(S_{1}, S_{2}, R\right)=1$.
If we define

$$
F_{n}= \begin{cases}\Delta U_{n}^{2}, & \text { when } 2 \nmid \Delta U_{n} ; \\ \Delta U_{n}^{2} / 4, & \text { when } 2 \mid \Delta U_{n}\end{cases}
$$

we see that since $4 \mid W_{n}^{2}-\Delta U_{n}^{2}, F_{n}$ must be an integer. If M is any divisor of F_{n} and $(M, R)=1$, then we can use $[3,(7.7)$ and (7.8)] to show that

$$
\begin{align*}
& U_{m n} / U_{n} \equiv R^{n(m-1)} K_{m}\left(W_{n} / 2 R^{n}\right) \quad(\bmod M), \tag{15}\\
& W_{m n} \equiv 2 R^{m n} L_{m}\left(W_{n} / 2 R^{n}\right) \quad(\bmod M), \tag{16}
\end{align*}
$$

where the polynomials $K_{m}(x)$ and $L_{m}(x)$ are respectively defined in [2, $\S 4.3$ and $\left.\S 5.1\right]$. Also, from results in [2] it is easy to show that $L_{m}(3)=3$ and $K_{m}(3)=m^{3}$. We next establish that like $\left\{u_{n}\right\},\left\{D_{n}\right\}$ is a divisibility sequence.

Theorem 4. If n, $m \geq 1$, then $D_{n} \mid D_{m n}$.
Proof. Since $\left\{U_{n}\right\}$ is a divisibility sequence it suffices to show
$D_{n} \mid W_{m n}-6 R^{m n}$. We let $2^{\lambda} \| D_{n}$. If $\lambda=0$ or $\lambda \geq 1$ and $2 \nmid R$, then $D_{n} \mid F_{n}$. By Proposition 2, we have $\operatorname{gcd}\left(D_{n}, R\right)=1$ and by (16) we get

$$
W_{m n} \equiv 2 R^{m n} L_{m}\left(W_{n} / 2 R^{n}\right) \equiv 2 R^{m n} L_{m}(3) \equiv 6 R^{m n} \quad\left(\bmod D_{n}\right) .
$$

If $\lambda=1$, then $\operatorname{gcd}\left(D_{n} / 2, R\right)=1$ and $D_{n} / 2 \mid F_{n}$; hence,

$$
W_{m n} \equiv 6 R^{m n} \quad\left(\bmod D_{n} / 2\right)
$$

Also, since $2 \mid U_{n}$, we have $2 \mid U_{m n}$ and $2 \mid W_{m n}$ (Proposition 1). It follows that $W_{m n} \equiv 6 R^{m n}$ $(\bmod 2)$ and since $\operatorname{gcd}\left(2, D_{n} / 2\right)=1$ we get

$$
W_{m n} \equiv 6 R^{m n} \quad\left(\bmod D_{n}\right)
$$

There remains the case of $\lambda>1$ and $2 \mid R$, but this is impossible by Proposition 3 .

Let p be any prime. We are next able to present the law of repetition for p in $\left\{D_{n}\right\}$. We denote by $\nu_{p}(x)(x \in \mathbb{Z})$ that value of λ such that $p^{\lambda} \| x$.

Theorem 5. Let p be any prime such that $p>3$ and suppose that $\nu_{p}\left(D_{n}\right) \geq 1$.

1. If $\nu_{p}\left(U_{n}\right)>\nu_{p}\left(W_{n}-6 R^{n}\right)$, then $\nu_{p}\left(D_{p n}\right)=\nu_{p}\left(D_{n}\right)+2$ and $\nu_{p}\left(W_{p n}-6 R^{p n}\right)<\nu_{p}\left(U_{p n}\right)$.
2. If $\nu_{p}\left(U_{n}\right)=\nu_{p}\left(W_{n}-6 R^{n}\right)$ and $\nu_{p}\left(U_{n}\right)>1$, then $\nu_{p}\left(D_{p n}\right)=\nu_{p}\left(D_{n}\right)+2$ and $\nu_{p}\left(W_{p n}-6 R^{p n}\right)<\nu_{p}\left(U_{p n}\right)$.
3. If $\nu_{p}\left(U_{n}\right)<\nu_{p}\left(W_{n}-6 R^{n}\right)$, then if $\nu_{p}\left(U_{n}\right)>1$, $\nu_{p}\left(D_{p n}\right)=\nu_{p}\left(D_{n}\right)+3$.
4. If $\lambda=1$, then $\nu_{p}\left(D_{p n}\right) \geq 2$.

Proof. These results can be established by making use of the techniques of [2, §5.2], together with the polynomial congruence

$$
\begin{aligned}
L_{p}(x) \equiv 3+p^{2}(x-3)+\left(p^{2}\left(p^{2}-1\right)\right. & / 12)(x-3)^{2} \\
& +\left(p^{2}\left(p^{2}-1\right)\left(p^{2}-4\right) / 360\right)(x-3)^{3} \quad\left(\bmod (x-3)^{4}\right)
\end{aligned}
$$

which holds for all primes $p \geq 5$.
When $p=3$, the law of repetition for 3 in $\left\{D_{n}\right\}$ is given below.
Theorem 6. Let $\nu_{3}\left(D_{n}\right) \geq 1$.

1. If $\nu_{3}\left(U_{n}\right) \geq \nu_{3}\left(W_{n}-6 R^{n}\right)>1$, then $\nu_{3}\left(D_{3 n}\right)=\nu_{3}\left(D_{n}\right)+2$.
2. If $\nu_{3}\left(U_{n}\right) \geq \nu_{3}\left(W_{n}-6 R^{n}\right)=1$, then $\nu_{3}\left(D_{3 n}\right) \geq \nu_{3}\left(D_{n}\right)+2$.
3. If $\nu_{3}\left(U_{n}\right)<\nu_{3}\left(W_{n}-6 R^{n}\right)$, then

$$
\nu_{3}\left(D_{3 n}\right)=\nu_{3}\left(D_{n}\right)+3 \quad \text { when } \quad \nu_{3}\left(D_{n}\right)>1
$$

or

$$
\nu_{3}\left(D_{3 n}\right) \geq \nu_{3}\left(D_{n}\right)+3 \quad \text { when } \quad \nu_{3}\left(D_{n}\right)=1 .
$$

Proof. These results can be easily proved by making use of the the triplication formulas (13) and (14).

In the case of $p=2$, there exists a rather complicated law of repetition for p in $\left\{D_{n}\right\}$. We will not provide the complete law here, but we remark that if $\nu_{2}\left(D_{n}\right)>1$, then the duplication formulas (12) can be used to show that $\nu_{2}\left(D_{2 n}\right) \geq \nu_{2}\left(D_{n}\right)+1$. The case of $\nu_{2}\left(D_{n}\right)=1$, however, is more problematical. Certainly, if $2 \mid R$, there is no law of repetition for 2 in $\left\{D_{n}\right\}$ by Proposition 3. Thus, we need only consider the case of $2 \| D_{n}$ and $2 \nmid R$. In this case, we can use the duplication and triplication formulas to find that if
i) $4\left|U_{n}, 2\right| \mid W_{n}-6 R^{n}$;
ii) $2\left\|U_{n}, 2\right\| W_{n}-6 R^{n}, 2 \mid \Delta$;
iii) $2\left|\left|U_{n}, 4\right| W_{n}-6 R^{n}, 2 \nmid \Delta\right.$;
then $4 \mid D_{3 n}$ and $4 \nmid D_{2 n}$. In all other cases we have $4 \mid D_{2 n}$.
We also have the following companion result to the law of repetition for any odd prime in $\left\{D_{n}\right\}$.
Theorem 7. If p is odd and $\nu_{p}\left(D_{n}\right) \geq 1$, then $\nu_{p}\left(D_{m n}\right)=\nu_{p}\left(D_{n}\right)$ whenever $p \nmid m$.
Proof. Since $p \neq 2$, we have $p^{2 \lambda} \mid F_{n}$ when $\lambda=\nu_{p}\left(D_{n}\right), \operatorname{gcd}(p, R)=1$ and $W_{n} \equiv 6 R^{n}$ $\left(\bmod p^{\lambda}\right)$. It follows from (16) that

$$
W_{m n} \equiv 2 R^{m n} L_{m}\left(W_{n} / 2 R^{n}\right) \equiv 2 R^{m n} L_{m}(3) \equiv 6 R^{m n} \quad\left(\bmod p^{\lambda}\right)
$$

and by (15) that

$$
U_{m n} / U_{n} \equiv R^{n(m-1)} K_{m}(3) \equiv m^{3} R^{n(m-1)} \quad\left(\bmod p^{\lambda}\right)
$$

Since $p \nmid m$, it follows that $p^{\lambda} \| U_{m n}$ and $p^{\lambda} \mid W_{m n}-6 R^{m n}$; hence $p^{\lambda} \| D_{m n}$.
In the case of $p=2$, Theorem 7 is not in general true when $\lambda=1$ and $2 \nmid R$, as we have seen in the above remarks. Of course, we could eliminate this problem if we could impose additional restrictions on S_{1}, S_{2}, R such that none of i), ii) or iii) could occur. If $2 \| D_{n}$ and $2 \nmid R$, it is easy to show that cases i), ii) or iii) can occur if and only if $2 \mid \tilde{Q}_{n}$, where $\tilde{Q}_{n}=\left(W_{n}^{2}-\Delta U_{n}^{2}\right) / 4$. In a later section we will discuss the parity of \tilde{Q}_{n} when $2 \mid D_{n}$. Note that if $4 \mid D_{n}$, then $2 \nmid R$ and
$\tilde{Q}_{n} \equiv 1(\bmod 2)$. If $\lambda>1$, then we certainly have $2^{\lambda} \mid D_{m n}$ by Theorem 4 and since $W_{n} / 2 R^{n} \equiv 3\left(\bmod 2^{\lambda-1}\right)$, we get

$$
U_{m n} / U_{n} \equiv m^{3} R^{n(m-1)} \quad\left(\bmod 2^{\lambda-1}\right)
$$

Thus, if m is odd, then $2 \nmid U_{m n} / U_{n}$ and $2^{\lambda} \| D_{m n}$. Hence Theorem 7 is true when $p=2$ and $\nu_{2}\left(D_{n}\right)>1$.

We conclude this section with a result that is often useful.
Theorem 8. If $m, n \geq 1$, then $\operatorname{gcd}\left(U_{m n} / U_{n}, D_{n}\right) \mid 2 m^{3}$.
Proof. It is easy to show this when $2 \nmid D_{n}$ because $D_{n} \mid F_{n}$ and $\operatorname{gcd}\left(D_{n}, R\right)=1$. Suppose $2 \mid D_{n}$; then because $U_{n} / 2 \mid F_{n}$, we have $D_{n} / 2 \mid F_{n}$. Also, $\operatorname{gcd}\left(D_{n} / 2, R\right)=1$ by Propositions 2 and 3. Hence, by (15)

$$
U_{m n} / U_{n} \equiv m^{3} R^{n(m-1)} \quad\left(\bmod D_{n} / 2\right)
$$

It follows that

$$
\operatorname{gcd}\left(U_{m n} / U_{n}, D_{n} / 2\right) \mid m^{3}
$$

and

$$
\operatorname{gcd}\left(U_{m n} / U_{n}, D_{n}\right) \mid 2 m^{3}
$$

3 The law of apparition for m in $\left\{D_{n}\right\}$

In this section we deal with the problem of when $m \mid D_{n}$, when $m>1$. We note that if p is an odd prime and $p \mid R$, then $p \nmid D_{n}(n \geq 0)$ by Proposition 2. Thus, we may assume that if m is odd, then $\operatorname{gcd}(m, R)=1$. We define $\omega=\omega(m)$, if it exists, to be the least positive value of n such that $m \mid D_{n}$. We call ω the rank of apparition of m in $\left\{D_{n}\right\}$.

We begin by examining the case where m is a prime p where $p \mid d$ and $p \nmid 2 R$.
Theorem 9. Let p by any prime such that $p \nmid 2 R$ and $p \mid d$. There exists a rank of apparition ω of p in $\left\{D_{n}\right\}$ and if $p \mid D_{n}$ for some $n \geq 0$, then $\omega \mid n$. Also, $\omega=p$ or $\omega \mid p \pm 1$.

Proof. By results in the early part of [3, §9], we know that if
$p \mid S_{1}^{2}-3 S_{2}$, then p has a simple rank of apparition r_{1} in $\left\{U_{n}\right\}$. It is not difficult to show that $p \mid D_{n}$ if and only if $r_{1} \mid n$; hence, $\omega=r_{1}$. If $p \nmid S_{1}^{2}-3 S_{2}$, then p can have two ranks of apparition in $\left\{U_{n}\right\}$ when $p \mid \Delta$ and only one when $p \nmid \Delta$. In either case, it is a simple matter to show that there is a rank of apparition ω of p in $\left\{D_{n}\right\}$, that $\omega \neq p$ and that if $p \mid D_{n}$, then $\omega \mid n$.

We next consider the case of $p=3$ and $3 \nmid d$.
Lemma 10. If $p=3$ and $3 \nmid d R$, then $\omega=\omega(3)$ always exists in $\left\{D_{n}\right\}$ and if $3 \mid D_{n}$, then $\omega \mid n$.

Proof. We see from [3, Table 2] that there is single rank of apparition r of 3 in $\left\{U_{n}\right\}$. From the duplication formulas we see that if $3 \mid U_{n}$ and $3 \nmid W_{n}$, then $3 \mid W_{2 n}$ if and only if $W_{n} \equiv R^{n}$ $(\bmod 3)$ and $3 \mid W_{4 n}$ if and only if $W_{n} \equiv-R^{n}(\bmod 3)$. Thus, $\omega(3)$ always exists and $\omega=r$, $2 r$ or $4 r$. Furthermore, if $3 \mid D_{n}$, then $\omega \mid n$.

There remains the case of odd p where $p \nmid 3 d R$. We first need to establish a simple lemma in this case. Here and in the sequel we will denote by \mathbb{K}_{p} the splitting field of $G(x) \in \mathbb{F}_{p}[x]$. We can denote the zeros of $G(x) \in \mathbb{F}_{p}[x]$ by $R \gamma_{i}$ and $R / \gamma_{i}(i=1,2,3)$.

Lemma 11. If $p \nmid 2 \Delta R$, then $p \mid D_{n}$ if and only if $\gamma_{1}^{n}=\gamma_{2}^{n}=\gamma_{3}^{n}=1$ in \mathbb{K}_{p}.
Proof. Certainly, if $\gamma_{1}^{n}=\gamma_{2}^{n}=\gamma_{3}^{n}=1$ in \mathbb{K}_{p}, then $p \mid W_{n}-6 R^{n}$ and $p \mid U_{n}$ by (2) and (3); hence, $p \mid D_{n}$. If $p \mid D_{n}$, then since $p \mid U_{n}$ and $p \nmid \Delta$, we may assume without loss of generality that $\gamma_{1}^{n}=1$. By $[3,(8.4)]$, we have $\gamma_{2}^{n}-1=0$ and therefore $\gamma_{3}^{n}=1 /\left(\gamma_{1}^{n} \gamma_{2}^{n}\right)=1$.

Corollary 12. If $p \nmid 2 \Delta R$ and $\omega=\omega(p)$ exists for p in $\left\{D_{n}\right\}$, then $p \mid D_{n}$ if and only if $\omega \mid n$.

Proof. Certainly $p \mid D_{n}$ when $\omega \mid n$ because $\left\{D_{n}\right\}$ is a divisibility sequence. Suppose next that $\omega \nmid n$ and $p \mid D_{n}$. In this case we have $n=q w+r$, where $0<r<\omega$. Also, by the lemma we must have $\gamma_{1}^{n}=\gamma_{2}^{n}=\gamma_{3}^{n}=1, \gamma_{1}^{\omega}=\gamma_{2}^{\omega}=\gamma_{3}^{\omega}=1 \in \mathbb{K}_{p}$. It follows that $\gamma_{1}^{r}=\gamma_{2}^{r}=\gamma_{3}^{r}=1$ in \mathbb{K}_{p} and $p \mid D_{r}$, which contradicts the definition of ω.

We now deal with the case of $p \nmid 6 d R$. Under this condition, we say that p is an S-prime, Q-prime or I-prime if the splitting field of $g(x) \in \mathbb{F}_{p}[x]$ is $\mathbb{F}_{p}, \mathbb{F}_{p^{2}}$ or $\mathbb{F}_{p^{3}}$, respectively. The following theorem follows easily from Lemma 11 and results in [3, §9].

Theorem 13. If p is a prime, $p \nmid 6 d R$ and $\epsilon=(\Delta / p)$, then

$$
\begin{aligned}
& p \mid D_{p-\epsilon} \text { when } p \text { is an } S \text {-prime, } \\
& p \mid D_{p^{2}-1} \text { when } p \text { is an } Q \text {-prime, } \\
& p \mid D_{p^{2}+\epsilon p+1} \text { when } p \text { is an I-prime. }
\end{aligned}
$$

We can now assemble the above results in the following theorem.
Theorem 14. If $p \nmid 2 R$, there exists a rank of apparition $\omega\left(\leq p^{2}+p+1\right)$ of p in $\left\{D_{n}\right\}$ and if $p \mid D_{n}$, then $\omega \mid n$.

In $[2, \S 4.6]$, S-, Q-, I-primes are discussed with respect to the polynomial $h(x) \in \mathbb{F}_{p}[x]$. We next show that if S_{1}, S_{2} are given by (6), then the splitting fields of $h(x)$ and $g(x) \in \mathbb{F}_{p}[x]$ are the same whenever $p \nmid \Gamma$. We let \mathbb{L}_{1} denote the splitting field of $h(x) \in \mathbb{F}_{p}[x], \mathbb{L}_{2}$ denote the splitting field of $g(x) \in \mathbb{F}_{p}[x]$ and let α, β, γ denote the zeros of $h(x)$ in \mathbb{L}_{1}. Since the zeros of $g(x) \in \mathbb{F}_{p}[x]$ are given by

$$
\rho_{1}=\gamma\left(\alpha^{2}+\beta^{2}\right), \quad \rho_{2}=\alpha\left(\beta^{2}+\gamma^{2}\right), \quad \rho_{3}=\beta\left(\alpha^{2}+\gamma^{2}\right)
$$

we see that $\rho_{1}, \rho_{2}, \rho_{3} \in \mathbb{L}_{1}$. If $\mathbb{L}_{1}=\mathbb{F}_{p}$, then clearly $\mathbb{L}_{2}=\mathbb{F}_{p}=\mathbb{L}_{1}$. If $\mathbb{L}_{1}=\mathbb{F}_{p^{2}}$, then $(\Delta / p)=-1$ and by (11), we get $(d / p)=(\Gamma \Delta / p)=(\Delta / p)=-1$; hence, $\mathbb{L}_{2}=\mathbb{F}_{p^{2}}=\mathbb{L}_{1}$. If $\mathbb{L}_{1}=\mathbb{F}_{p^{3}}$, then $(d / p)=1$ and $\mathbb{L}_{2} \neq \mathbb{F}_{p^{2}}$. Consider

$$
\rho_{1}=\gamma\left(P^{2}-2 Q\right)-\gamma^{3} \in \mathbb{L}_{1} .
$$

We have

$$
\rho_{1}^{p}=\gamma^{p}\left(P^{2}-2 Q\right)-\gamma^{3 p}=\alpha\left(P^{2}-2 Q\right)-\alpha^{3} .
$$

Thus, if $\rho_{1}=\rho_{1}^{p}$, then since $\alpha \neq \gamma$ we must have

$$
\alpha^{2}+\alpha \gamma+\gamma^{2}=P^{2}-2 Q
$$

and $\beta^{2}=\alpha \gamma$ or $\beta^{3}=R$. From (1), we get $P \beta-Q=0$ and $P^{3} R-Q^{3}=0$, which is impossible because $p \nmid \Gamma$. Thus, $\rho_{1} \neq \rho_{1}^{p}$, and therefore $\mathbb{L}_{2}=\mathbb{F}_{p^{3}}=\mathbb{L}_{1}$.

We have not yet discussed the case of $p=2$. The reason for this is easily seen in [3, Table 1]. We first observe that if $2 \mid R, 2 \nmid S_{1}$ and $2 \mid S_{2}$, then $\omega(2)$ does not exist. Next, if $2 \mid S_{1}$ and $2 \nmid S_{2} R$, then $\omega(2)=2$ by definition, but we also have $2 \mid D_{3}$ and $\omega(2) \nmid 3$. Thus to truly have a rank of apparition of 2 in the sense of the results given above we should eliminate the possibility that $2 \mid S_{1}$ and $2 \nmid S_{2} R$. When we do this, then by Proposition 2 we have $\omega(2)$ given by Table 1.

If $p \nmid 2 R$, then p has a rank of apparition ω in $\left\{D_{n}\right\}$; we now deal with the case when $m=p^{\alpha}$ and $\alpha>1$. By the law of repetition we know that $p^{\alpha} \mid D_{n}$ for some $n>0$; hence $\omega\left(p^{\alpha}\right)$ must exist. If we put $\omega=\omega(p)$, then since $p \mid D_{\omega\left(p^{\alpha}\right)}$, we must have $\omega \mid \omega\left(p^{\alpha}\right)$ by Theorem 14. Put $s=\omega\left(p^{\alpha}\right) / \omega$ and let $p^{\nu} \| s$, then $s=p^{\nu} t$, where $p \nmid t$. If $p^{\lambda} \| D_{p^{\nu} \omega}$ and $\lambda<\alpha$, then $p^{\lambda} \| D_{p^{\nu} \omega t}$ by Theorem 7, which is a contradiction; thus $\omega\left(p^{\alpha}\right)=p^{\nu} \omega$. Notice that ν is the least positive integer such that $p^{\alpha} \mid D_{p^{\nu} \omega}$.

Next, suppose that $2 \nmid m$ and the prime power decomposition of m is

$$
m=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}
$$

we must have

$$
\begin{equation*}
\omega(m)=\operatorname{lcm}\left(\omega\left(p_{i}^{\alpha_{i}}\right): i=1,2, \ldots, k\right) . \tag{17}
\end{equation*}
$$

Thus, if $(m, 2 R)=1$, then $\omega(m)$ always exists and is given by (17).

4 The auxiliary sequences $\left\{U_{n}^{*}\right\}$ and $\left\{W_{n}^{*}\right\}$

In order to prove some results concerning $\left\{U_{n}\right\}$ and $\left\{W_{n}\right\}$, it is often useful to make use of the auxiliary sequences $\left\{U_{n}^{*}\right\}$ and $\left\{W_{n}^{*}\right\}$. We put $\gamma_{1}^{*}=\gamma_{2} / \gamma_{1}, \gamma_{2}^{*}=\gamma_{3} / \gamma_{2}, \gamma_{3}^{*}=\gamma_{1} / \gamma_{3}$, $R^{*}=R^{2}$ and define

$$
\begin{aligned}
& V_{n}^{*}=R^{* n}\left(1+\gamma_{1}^{* n}\right)\left(1+\gamma_{2}^{* n}\right)\left(1+\gamma_{3}^{* n}\right) \\
& U_{n}^{*}=R^{* n-1}\left(1-\gamma_{1}^{* n}\right)\left(1-\gamma_{2}^{* n}\right)\left(1-\gamma_{3}^{* n}\right) /\left(\left(1-\gamma_{1}^{*}\right)\left(1-\gamma_{2}^{*}\right)\left(1-\gamma_{3}^{*}\right)\right), \\
& W_{n}^{*}=V_{n}^{*}-2 R^{* n}
\end{aligned}
$$

where

$$
\begin{equation*}
\Delta^{*}=R^{* 2}\left(1-\gamma_{1}^{*}\right)^{2}\left(1-\gamma_{2}^{*}\right)^{2}\left(1-\gamma_{3}^{*}\right)^{2}=\Gamma \neq 0 . \tag{18}
\end{equation*}
$$

Notice also that

$$
\begin{aligned}
\Gamma^{*} & =R^{* 4}\left(\gamma_{1}^{*}-\gamma_{2}^{*}\right)^{2}\left(\gamma_{2}^{*}-\gamma_{3}^{*}\right)^{2}\left(\gamma_{3}^{*}-\gamma_{1}^{*}\right)^{2} \\
& =\Delta R^{2} U_{3}^{2} .
\end{aligned}
$$

If we put $\gamma_{1}^{* *}=\gamma_{2}^{*} / \gamma_{1}^{*}=1 / \gamma_{2}^{3}$, then $\gamma_{1}^{* *}=1 / \gamma_{2}^{3}$. We also have $\gamma_{2}^{* *}=\gamma_{3}^{*} / \gamma_{2}^{*}=1 / \gamma_{3}^{3}, \gamma_{3}^{* *}=\gamma_{1}^{*} / \gamma_{3}^{*}=1 / \gamma_{1}^{3}$; hence,

$$
\begin{equation*}
W_{n}^{* *}=R^{n} W_{3 n}, \quad U_{n}^{* *}=R^{n-1} U_{3 n} / U_{3} \tag{19}
\end{equation*}
$$

If we put $\rho_{i}^{*}=R^{*}\left(\gamma_{i}^{*}+1 / \gamma_{i}^{*}\right)(i=1,2,3)$, we get

$$
\begin{equation*}
S_{1}^{*}=\rho_{1}^{*}+\rho_{2}^{*}+\rho_{3}^{*}=S_{2}-R S_{1} \tag{20}
\end{equation*}
$$

and

$$
\begin{align*}
S_{2}^{*} & =\rho_{1}^{*} \rho_{2}^{*}+\rho_{2}^{*} \rho_{3}^{*}+\rho_{3}^{*} \rho_{1}^{*}=R W_{3}+R^{2} S_{1}^{*} \\
& =R S_{1}^{3}-3 R S_{1} S_{2}+3 R^{2} S_{1}-5 R^{2} S_{2}-4 R^{3} S_{1}-12 R^{4} . \tag{21}
\end{align*}
$$

Also,

$$
\begin{aligned}
S_{3}^{*} & =\rho_{1}^{*} \rho_{2}^{*} \rho_{2}^{*} \\
& =R^{*} S_{1}^{* 2}-2 R^{*} S_{2}^{*}-4 R^{* 3}
\end{aligned}
$$

It follows, then, from the results mentioned in $\S 1$, that if we compute the initial values of U_{n}^{*} and $W_{n}^{*}\left(=V_{n}^{*}-2 R^{* n}\right)$ by replacing R, S_{1}, S_{2} by $R^{*}, S_{1}^{*}, S_{2}^{*}$, respectively, then we have both $\left\{U_{n}^{*}\right\}$ and $\left\{W_{n}^{*}\right\}$ to be linear recurrence sequences of order 6 with characteristic polynomial $G^{*}(x)$ and $\left\{U_{n}^{*}\right\}$ is a divisibility sequence. It is easy to show as well that $W_{-n}^{*}=$ $W_{n}^{*} / R^{* 2 n}$ and $U_{-n}^{*}=-U_{n}^{*} / R^{* 2 n}$. We observe further that $\operatorname{gcd}\left(S_{1}^{*}, S_{2}^{*}, S_{3}^{*}\right)=1$ if and only if $\operatorname{gcd}\left(S_{1}, S_{2}, S_{3}\right)=1$. Thus, the sequences $\left\{U_{n}^{*}\right\}$ and $\left\{W_{n}^{*}\right\}$ have the same properties as $\left\{U_{n}\right\}$ and $\left\{W_{n}\right\}$ with R, S_{1}, S_{2}, replaced by $R^{*}, S_{1}^{*}, S_{2}^{*}$, respectively.

We have shown how to relate the $\left\{U_{n}^{* *}\right\}$ and $\left\{W_{n}^{* *}\right\}$ sequences to $\left\{U_{n}\right\}$ and $\left\{W_{n}\right\}$ in (19); we can also relate the $\left\{U_{n}^{*}\right\}$ and $\left\{W_{n}^{*}\right\}$ sequences to $\left\{U_{n}\right\}$ and $\left\{W_{n}\right\}$. We define $\rho_{i}^{(n)}=R^{n}\left(\gamma_{i}^{n}+1 / \gamma_{i}^{n}\right)(i=1,2,3)$ and find that

$$
\begin{equation*}
S_{1}^{(n)}=\rho_{1}^{(n)}+\rho_{2}^{(n)}+\rho_{3}^{(n)}=W_{n} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{2}^{(n)}=\rho_{1}^{(n)} \rho_{2}^{(n)}+\rho_{2}^{(n)} \rho_{3}^{(n)}+\rho_{1}^{(n)} \rho_{3}^{(n)}=W_{n}^{*}+R^{n} W_{n} . \tag{23}
\end{equation*}
$$

Since

$$
\begin{aligned}
\Delta U_{n}^{2} & =R^{2 n}\left(1-\gamma_{1}^{n}\right)^{2}\left(1-\gamma_{2}^{n}\right)^{2}\left(1-\gamma_{3}^{n}\right)^{2} \\
& =S_{1}^{(n) 2}-4 S_{2}^{(n)}+4 R^{n} S_{1}^{(n)}-12 R^{2 n}
\end{aligned}
$$

we get

$$
\begin{equation*}
\Delta U_{n}^{2}=W_{n}^{2}-4 W_{n}^{*}-12 R^{2 n} \tag{24}
\end{equation*}
$$

using (22) and (23). This formula, which generalizes (8), is similar to the well-known Lucas function identity

$$
v_{n}^{2}-\delta u_{n}^{2}=4 q^{n} .
$$

Note also that we get

$$
\begin{equation*}
\tilde{Q}_{n}=W_{n}^{*}+3 R^{n} \tag{25}
\end{equation*}
$$

from (24) and

$$
4 W_{n}^{*}=W_{n}^{2}-\Delta U_{n}^{2}-12 R^{2 n}
$$

the relation connecting W_{n}^{*} to W_{n} and U_{n}. To relate U_{n}^{*} to W_{n} and U_{n} is somewhat more complicated. From (24), we have

$$
\Delta^{*} U_{n}^{* 2}=W_{n}^{* 2}-4 W_{n}^{* *}-12 R^{* 2 n}
$$

Hence, from (18), (19), and (24), we get

$$
\Gamma U_{n}^{* 2}=\left(\left(W_{n}^{2}-\Delta U_{n}^{2}\right) / 4-3 R^{2 n}\right)^{2}-4 R^{n} W_{3 n}-12 R^{4 n} .
$$

From (13), we find that

$$
\begin{align*}
& 16 \Gamma U_{n}^{* 2}=W_{n}^{4}-16 R^{n} W_{n}^{3}-48 R^{n} \Delta W_{n} U_{n}^{2}+72 R^{2 n} W_{n}^{2}-72 R^{2 n} \Delta U_{n}^{2} \\
&-2 \Delta W_{n}^{2} U_{n}^{2}+\Delta^{2} U_{n}^{4}-432 R^{4 n} \tag{26}
\end{align*}
$$

a formula that generalizes (10).
As promised in $\S 2$ we will now investigate the parity of \tilde{Q}_{n} when $2 \nmid R$ and $2 \mid D_{n}$. If $2 \nmid S_{1}$ and $2 \mid S_{2}$, then by (20) and (21), we have $2 \nmid S_{1}^{*}$ and $2 \mid S_{2}^{*}$. It follows that $2 \mid{\underset{\sim}{n}}_{n}^{*}$ if and only if $7 \mid n$ and $2 \mid W_{n}^{*}$ when $2 \mid D_{n}$. In this case we find from (25) that $2 \nmid \tilde{Q}_{n}$ whenever $2 \mid D_{n}$. If $2 \mid S_{1}$ and $2 \mid S_{2}$, then $2 \mid S_{1}^{*}$ and $2 \mid S_{2}^{*}$; hence, $2 \mid U_{n}^{*}$ if and only if $2 \mid n$ and we get $2 \mid W_{n}^{*}, \tilde{Q}_{n} \equiv 1(\bmod 2)$ whenever $2 \mid D_{n}$. If $2 \nmid S_{1}$ and $2 \nmid S_{2}$, then $\Delta^{*}=\Gamma \equiv\left(S_{2}+R S_{1}\right)^{2} \equiv 0(\bmod 4)$ from (10). Since $4 \mid W_{n}^{* 2}-\Delta^{*} U_{n}^{* 2}$, we get $2 \mid W_{n}^{*}$ and $\tilde{Q}_{n} \equiv 1(\bmod 2)$.

The only remaining case is $2 \mid S_{1}$ and $2 \nmid S_{2}$. In this case $4 \mid \Delta$ and case (iii) can never occur. We get $U_{2} \equiv S_{1}+2(\bmod 4)$ and $W_{2}-6 R^{2} \equiv 2(\bmod 4)$; thus, we see that cases (i) and (ii) can always occur, depending on the parity of $S_{1} / 2$. In either of these cases, we get $4 \mid D_{6}$. It follows that if we eliminate the case of $2 \mid S_{1}$ and $2 \nmid S_{2} R$, then Thereom 7 , will be true for all primes p. Also, we have already seen in $\S 3$ that if we eliminate this case, then we have a rank of apparition ω of 2 in $\left\{D_{n}\right\}$ and $2 \mid D_{n}$ if and only if $\omega \mid n$; indeed, if $\operatorname{gcd}(m, R)=1$, there always exists a rank of apparition ω of m in $\left\{D_{n}\right\}$ given by (17) such that $m \mid D_{n}$ if and only if $\omega \mid n$. We remark here that if S_{1} and S_{2} are given by (6), then if $2 \nmid R$ and $2 \mid S_{1}$, we must have $2 \mid S_{2}$. Thus, for the sequences $\left\{c_{n}\right\}$ and $\left\{w_{n}\right\}$ we cannot have the case of $2 \mid S_{1}$ and $2 \nmid S_{2} R$.

If p is an I-prime and $p \equiv \epsilon=(\Delta / p)(\bmod 3)$, then $3 \mid p^{2}+\epsilon p+1$. Since we know in this case that $p \mid D_{p^{2}+\epsilon p+1}$, it is of some interest to determine a criterion for deciding whether or not $p \mid D_{\left(p^{2}+\epsilon p+1\right) / 3}$. Roettger showed for the case of the $\left\{c_{n}\right\}$ and $\left\{w_{n}\right\}$ sequences that $p \mid D_{\left(p^{2}+p+1\right) / 3}(\epsilon=1$ in this case if p is an I-prime $)$ if and only if $R^{(p-1) / 3} \equiv 1(\bmod p)$ in $[2$, Theorem 5.14]. In what follows we will extend this result to the $\left\{U_{n}\right\}$ and $\left\{W_{n}\right\}$ sequences. We begin with three preliminary lemmas.

Lemma 15. If $3 W_{1}^{2} \equiv-\Delta(\bmod p)$, then p cannot be an I-prime.
Proof. We have $W_{1}=S_{1}$ and by (8) we find that

$$
S_{2} \equiv R S_{1}^{2}-2 R S_{1}-4 R^{3} \quad(\bmod p)
$$

and by (5)

$$
S_{3} \equiv-R S_{1}^{2}-2 R^{2} S_{1}+2 R^{3} \quad(\bmod p)
$$

Hence

$$
g(x) \equiv(x+R)\left(x^{2}-\left(S_{1}+R\right) x+S_{1}^{2}+2 R S_{1}-2 R^{2}\right) \quad(\bmod p)
$$

Since $g(x)$ is reducible modulo p, p cannot be an I-prime.
Lemma 16. Let p be an I-prime and let \mathbb{K}_{p} be the splitting field of $G(x) \in \mathbb{F}[x]$. If ζ is a primitive cube root of unity in \mathbb{K}_{p}, then in \mathbb{K}_{p} we can have

$$
\begin{equation*}
\zeta^{k}\left(\gamma_{1}+\gamma_{2}+\gamma_{3}\right)+\zeta^{-k}\left(\gamma_{1}^{-1}+\gamma_{2}^{-1}+\gamma_{3}^{-1}\right)=\gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{1}^{-1}+\gamma_{2}^{-1}+\gamma_{3}^{-1} \tag{27}
\end{equation*}
$$

if and only if $3 \mid k$.
Proof. If $3 \mid k$ it is trivial that (27) must hold. If $3 \nmid k$, we first observe that $\zeta^{k}+\zeta^{-k}=-1$ and we have

$$
\zeta^{k}+1 / 2=\left(\zeta^{k}-\zeta^{-k}\right) / 2, \quad \zeta^{-k}+1 / 2=\left(\zeta^{-k}-\zeta^{k}\right) / 2
$$

Thus (27) can hold only if

$$
\frac{\zeta^{k}-\zeta^{-k}}{2}\left(\gamma_{1}+\gamma_{2}+\gamma_{3}-\gamma_{1}^{-1}-\gamma_{2}^{-1}-\gamma_{3}^{-1}\right)=\frac{3}{2}\left(\gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{1}^{-1}+\gamma_{2}^{-1}+\gamma_{3}^{-1}\right)
$$

On multiplying both sides by $2 R$ and squaring we find that

$$
3 W_{1}^{2} \equiv-\Delta \quad(\bmod p)
$$

which by the previous lemma is impossible.
Lemma 17. If p is an I-prime and $p \mid U_{n}$, then $p \mid D_{n}$.
Proof. Since $p \mid U_{n}$, we must have $\gamma_{i}^{n}=1$ in \mathbb{K}_{p} for some $i \in\{1,2,3\}$ by (2). We may assume that $\gamma_{1}^{n}=1$. From the proof of [3, Theorem 9.8], we have $1=\gamma_{1}^{p n}=\gamma_{2}^{ \pm n}$; hence, $\gamma_{2}^{n}=1$ and $\gamma_{3}^{n}=1 /\left(\gamma_{1}^{n} \gamma_{2}^{n}\right)=1$. The result now follows by Lemma 11 .

We are now able to derive our criterion for when $p \mid D_{\left(p^{2}+\epsilon p+1\right) / 3}$.
Theorem 18. If p is an I-prime and $p \equiv \epsilon(\bmod 3)$, then $p \mid D_{\left(p^{2}+\epsilon p+1\right) / 3}$ if and only if

$$
W_{(p-\epsilon) / 3}^{*} \equiv R^{2(p-\epsilon) / 3-1} W_{1} \quad(\bmod p)
$$

Proof. We first note by Lemma 17 and 11 that $p \mid U_{\left(p^{2}+\epsilon p+1\right) / 3}$ if and only if $\gamma_{i}^{\left(p^{2}+\epsilon p+1\right) / 3}=1$ in \mathbb{K}_{p} for all $i \in\{1,2,3\}$. Since $\gamma_{1}^{p^{2}+\epsilon p+1}=1$ in \mathbb{K}_{p}, we must have

$$
\gamma_{1}^{p^{p^{2}+\epsilon p+1} 3}=\zeta^{k}
$$

where ζ is a primitive cube root of unity in \mathbb{K}_{p}. It follows that $p \mid D_{\left(p^{2}+\epsilon p+1\right) / 3}$ if and only if $3 \mid k$. Now

$$
\left(p^{2}+\epsilon p+1\right) / 3=(p-\epsilon)(p+2 \epsilon) / 3+1
$$

Hence,

$$
\zeta^{k}=\gamma_{1}^{\left(p^{2}+\epsilon p+1\right) / 3}=\left(\gamma_{1}^{p+2 \epsilon}\right)^{(p-\epsilon) / 3} \gamma_{1} .
$$

Since $\gamma_{1}^{p}=\gamma_{2}^{\epsilon}$ (see the proof of [3, Theorem 9.8]), we get

$$
\zeta^{k}=\left(\gamma_{2} \gamma_{1}^{2}\right)^{\epsilon(p-\epsilon) / 3} \gamma_{1}=\gamma_{3}^{* \epsilon(p-\epsilon) / 3} \gamma_{1}
$$

and

$$
\gamma_{3}^{*(p-\epsilon) / 3}=\left(\zeta^{k} / \gamma_{1}\right)^{\epsilon} .
$$

Since $\gamma_{3}^{* p}=\gamma_{1}^{p} / \gamma_{3}^{p}=\gamma_{2}^{\epsilon} / \gamma_{1}^{\epsilon}=\gamma_{1}^{* \epsilon}$, we get

$$
\gamma_{1}^{* \epsilon(p-\epsilon) / 3}=\left(\zeta^{k p} / \gamma_{1}^{p}\right)^{\epsilon}=\zeta^{k} / \gamma_{2}
$$

and

$$
\gamma_{1}^{*(p-\epsilon) / 3}=\left(\zeta^{k} / \gamma_{2}\right)^{\epsilon}
$$

Similarly $\gamma_{2}^{*(p-\epsilon) / 3}=\left(\zeta^{k} / \gamma_{3}\right)^{\epsilon}$. It follows that

$$
W_{(p-\epsilon) / 3}^{*}=R^{*(p-\epsilon) / 3}\left[\zeta^{-k \epsilon}\left(\gamma_{1}^{\epsilon}+\gamma_{2}^{\epsilon}+\gamma_{3}^{\epsilon}\right)+\zeta^{k \epsilon}\left(\gamma_{1}^{-\epsilon}+\gamma_{2}^{-\epsilon}+\gamma_{3}^{-\epsilon}\right)\right] .
$$

By Lemma 16, we see that $3 \mid k$ if an only if

$$
W_{(p-\epsilon) / 3}^{*} \equiv R^{2(p-\epsilon) / 3-1} W_{1} \quad(\bmod p)
$$

This criterion can easily be converted to one that involves only the $\left\{U_{n}\right\}$ and $\left\{W_{n}\right\}$ sequences by using (24). At first glance, the criterion of Theorem 18 does not resemble the more elegant rule for $p \mid D_{\left(p^{2}+\epsilon p+1\right) / 3}$ when dealing with Roettger's sequences. In this case we have $\gamma_{1}=\alpha / \beta, \gamma_{2}=\beta / \gamma, \gamma_{3}=\gamma / \alpha$ and $R=\alpha \beta \gamma$. We can deduce Roettger's rule in the following corollary of Theorem 18.

Corollary 19. Suppose $D_{n}=\operatorname{gcd}\left(w_{n}-6 R^{n}, c_{n}\right)$ and p is an I-prime with respect to $h(x) \in$ $\mathbb{F}_{p}[x]$, then if $p \equiv 1(\bmod 3)$, we have

$$
p \mid D_{\left(p^{2}+\epsilon p+1\right) / 3} \Leftrightarrow R^{(p-1) / 3} \equiv 1 \quad(\bmod p) .
$$

Proof. Suppose first that $p \nmid \Gamma$. In this case p is an I-prime with respect to $g(x) \in \mathbb{F}_{p}[x]$ and $1=(d / p)=(\Gamma \Delta / p)=(\Delta / p)=\epsilon$. By Theorem 18 we have $p \mid D_{\left(p^{2}+\epsilon p+1\right) / 3}$ if and only if $W_{(p-\epsilon) / 3}^{*} \equiv R^{2(p-\epsilon) / 3-1} W_{1}(\bmod p)$. But in \mathbb{K}_{p}, we have $\gamma_{1}^{*}=\gamma_{2} / \gamma_{1}=\beta^{2} /(\alpha \gamma)=\beta^{3} / R$; hence,

$$
\gamma_{1}^{* \frac{p-1}{3}}=\beta^{p-1} / R^{(p-1) / 3}=(\alpha / \beta) / R^{(p-1) / 3}=\gamma_{2}^{-1} / R^{(p-1) / 3}
$$

Similarly, $\gamma_{2}^{* \frac{p-1}{3}}=\gamma_{3}^{-1} / R^{(p-1) / 3}, \gamma_{3}^{* \frac{p-1}{3}}=\gamma_{1}^{-1} / R^{(p-1) / 3}$. It follows that

$$
W_{\frac{p-1}{3}}^{*}=R^{*(p-1) / 3}\left(R^{(p-1) / 3}\left(\gamma_{1}+\gamma_{2}+\gamma_{3}\right)+R^{-(p-1) / 3}\left(\gamma_{1}^{-1}+\gamma_{2}^{-1}+\gamma_{3}^{-1}\right)\right)
$$

and by Lemma $16 W_{\frac{p-1}{3}}^{*} \equiv R^{2(p-1) / 3-1} W_{1}(\bmod p)$, if and only if $R^{(p-1) / 3}=1$ in \mathbb{K}_{p}.
Suppose next that $p \mid \Gamma$. In this case, p cannot be an I-prime with respect to $g(x)$. If $p \nmid P$, then by (11) we have $R \equiv(Q / P)^{3}(\bmod p)$ and $h(Q / P) \equiv 0(\bmod p)$. In this case p is not an I-prime with respect to $h(x)$, a contradiction. If $p \mid P$, then $p \mid Q$ and $\alpha^{3}=\beta^{3}=\gamma^{3}=R$ in \mathbb{L}_{1}. We have $\alpha^{p-1}=\beta^{p-1}=\gamma^{p-1}=R^{(p-1) / 3}$ and if $R^{(p-1) / 3} \equiv 1(\bmod p)$, we get $\alpha^{p}=\alpha$, and p is not an I-prime with respect to $h(x) \in \mathbb{F}_{p}[x]$, a contradiction. Now $p \mid D_{3}$ and since $3 \nmid\left(p^{2}+\epsilon p+1\right) / 3$, we have $p \nmid D_{\left(p^{2}+\epsilon p+1\right) / 3}$. Thus, if p is an I-prime with respect to $h(x) \in \mathbb{F}_{p}[x]$, then $R^{(p-1) / 3} \not \equiv 1(\bmod p)$ and $p \nmid D_{\left(p^{2}+\epsilon p+1\right) / 3}$.

We conclude this section with the following result concerning

$$
D_{n}^{*}=\operatorname{gcd}\left(W_{n}^{*}-6 R^{* n}, U_{n}\right)
$$

Theorem 20. If p is an I-prime and $p \equiv \epsilon(\bmod 3)$, then $p \mid D_{\left(p^{2}+\epsilon p+1\right) / 3}^{*}$.
Proof. We observe as above that $\gamma_{1}^{*}=\gamma_{2} / \gamma_{1}$ and

$$
\left(p^{2}+\epsilon p+1\right) / 3=(p-\epsilon)(p+2 \epsilon) / 3+1
$$

Hence

$$
\gamma_{1}^{*\left(p^{2}+\epsilon p+1\right) / 3}=\left(\gamma_{2} / \gamma_{1}\right)\left(\left(\gamma_{2} / \gamma_{1}\right)^{p+2 \epsilon}\right)^{(p-\epsilon) / 3}
$$

in \mathbb{K}_{p}. Now $\gamma_{2}^{p}=\gamma_{3}^{\epsilon}, \gamma_{1}^{p}=\gamma_{2}^{\epsilon}$; hence,

$$
\left(\gamma_{2} / \gamma_{1}\right)^{p+2 \epsilon}=\left(\gamma_{2} \gamma_{3} / \gamma_{1}^{2}\right)^{\epsilon}=\gamma_{1}^{-3 \epsilon} .
$$

It follows that

$$
\left(\left(\gamma_{2} / \gamma_{1}\right)^{p+2 \epsilon}\right)^{(p-\epsilon) / 3}=\gamma_{1}^{-\epsilon(p-\epsilon}=\gamma_{1} / \gamma_{2}
$$

and

$$
\gamma_{1}^{*\left(p^{2}+\epsilon p+1\right) / 3}=1
$$

Hence, $p \mid D_{\left(p^{2}+\epsilon p+1\right) / 3}^{*}$.

5 Some properties of $\left\{E_{n}\right\}$

We will devote the major portion of this section to the proof that if $p(>3)$ is a prime and $p \mid E_{n}$, then $p \equiv(\Gamma / p)(\bmod 3)$. This generalizes [2, Theorem 6.2]. We observe that by Proposition 2 we have $\operatorname{gcd}\left(E_{n}, R\right)=2$. We now need some preliminary results.

Lemma 21. Let p be any prime such that $p>3$. If $p \mid E_{n}$, then in \mathbb{K}_{p} we must have

$$
\gamma_{i}^{n}=1, \quad \gamma_{j}^{2 n}+\gamma_{j}^{n}+1=0
$$

where $i \in\{1,2,3\}$ and all $j \in\{1,2,3\}$ such that $j \neq i$.
Proof. If $p \nmid \Delta$ and $p \mid U_{n}$, we may assume with no loss of generality that $\gamma_{1}^{n}=1$ in \mathbb{K}_{p}. If $p \mid \Delta$ we may assume with no loss of generality that $\gamma_{1}=1$ (and $\gamma_{1}^{n}=1$) in \mathbb{K}_{p}. Now

$$
\begin{aligned}
W_{n}=V_{n}-2 R^{n} & =R^{n}\left(1+\gamma_{1}^{n}\right)\left(1+\gamma_{2}^{n}\right)\left(1+\gamma_{3}^{n}\right)-2 R^{n} \\
& =2 R^{n}\left(\gamma_{2}^{n} \gamma_{3}^{n}+\gamma_{2}^{n}+\gamma_{3}^{n}\right) \\
& =2 R^{n}\left(1+\gamma_{2}^{n}+1 / \gamma_{2}^{n}\right) \\
& =2 R^{n}\left(1+1 / \gamma_{3}^{n}+\gamma_{3}^{n}\right),
\end{aligned}
$$

the latter results following from $\gamma_{1}^{n}=1$ and $\gamma_{1}^{n} \gamma_{2}^{n} \gamma_{3}^{n}=1$. Since $W_{n}=0$ in \mathbb{K}_{p}, we have $\gamma_{2}^{2 n}+\gamma_{2}^{n}+1=\gamma_{3}^{2 n}+\gamma_{3}^{n}+1=0$.

Lemma 22. If $p(>3)$ is a prime, then $p \nmid\left(E_{n}, \Gamma\right)$.
Proof. If $p \mid \Gamma$, then $\gamma_{1}=\gamma_{2}, \gamma_{2}=\gamma_{3}$ or $\gamma_{3}=\gamma_{1}$ in \mathbb{K}_{p} by (10). If $p \mid E_{n}$, then we may assume that $\gamma_{1}^{n}=1$ and $\gamma_{2}^{2 n}+\gamma_{2}^{n}+1=0$ in \mathbb{K}_{p} by Lemma 21. If $\gamma_{1}=\gamma_{2}$, then $\gamma_{2}^{n}=1$, which is impossible because $p>3$. The same is true if $\gamma_{2}=\gamma_{3}$ or $\gamma_{3}=\gamma_{1}$.
Lemma 23. If $p(>3)$ is a prime, $p \mid \Delta$ and $p \mid E_{n}$, then

$$
p \equiv(\Gamma / p) \quad(\bmod 3)
$$

Proof. Since $p \mid \Delta$, we may assume with no loss of generality that $\gamma_{1}=1$ and therefore $\gamma_{2} \gamma_{3}=1$ in $\mathbb{K}_{p}=\mathbb{F}_{p^{2}}$. Also, by Lemma 21 we may assume that if $p \mid E_{n}$, then

$$
\gamma_{2}^{2 n}+\gamma_{2}^{n}+1=0
$$

in \mathbb{K}_{p}. Hence, $\gamma_{2}^{3 n}=1$ and $\gamma_{2}^{n} \neq 1$ in \mathbb{K}_{p}. By Lemma $22, p \nmid \Gamma$ and

$$
\begin{align*}
\Gamma^{\frac{p-1}{2}} & =\left(\gamma_{1}-\gamma_{2}\right)^{p-1}\left(\gamma_{2}-\gamma_{3}\right)^{p-1}\left(\gamma_{3}-\gamma_{1}\right)^{p-1} \\
& =\frac{\left(1-\gamma_{2}^{p}\right)\left(\gamma_{2}^{p}-\gamma_{3}^{p}\right)\left(\gamma_{3}^{p}-1\right)}{\left(1-\gamma_{2}\right)\left(\gamma_{2}-\gamma_{3}\right)\left(\gamma_{3}-1\right)} . \tag{28}
\end{align*}
$$

If $\gamma_{2} \in \mathbb{F}_{p}$, then $\Gamma^{\frac{p-1}{2}}=1$. Also, from $\gamma_{2}^{p n}=\gamma_{2}^{n}$, we get $\gamma_{2}^{(p-1) n}=1$, which, since $\gamma_{2}^{n} \neq 1$ means that $3 \mid p-1$ and $p \equiv(\Gamma / p)(\bmod 3)$. If $\gamma_{2} \in \mathbb{F}_{p^{2}} \backslash \mathbb{F}_{p}$, then $\gamma_{2}^{p}=\gamma_{3}$ and $\gamma_{2}^{(p-1) n}=-1$ by (28). Since $\gamma_{2}^{p n}=\gamma_{3}^{n}=1 / \gamma_{2}^{n}$ and $\gamma_{2}^{(p+1) n}=1$, we see that $3 \mid p+1$ and $p \equiv(\Gamma / p)$ $(\bmod 3)$.

We now show that if p is an I-prime, then $p \nmid E_{n}$.
Theorem 24. If p is an I-prime, then $p \nmid E_{n}$.
Proof. As noted above we know that if p is an I-prime, then $\gamma_{1}^{p}=\gamma_{2}^{\epsilon}, \gamma_{2}^{p}=\gamma_{3}^{\epsilon}, \gamma_{3}^{p}=\gamma_{1}^{\epsilon}$ in \mathbb{K}_{p}. If $p \mid E_{n}$, then by Lemma 21, we have $\gamma_{1}^{n}=1$ and $\gamma_{2}^{2 n}+\gamma_{2}^{n}+1=0$. Now $\gamma_{2}^{p^{2}}=\gamma_{3}^{\epsilon p}=\gamma_{1}^{\epsilon^{2}}=\gamma_{1}$ and $\gamma_{2}^{p^{2} n}=\gamma_{1}^{n}$. Hence,

$$
0=\left(\gamma_{2}^{2 n}+\gamma_{2}^{n}+1\right)^{p^{2}}=3
$$

which is a contradiction.
We next deal with the case where $p \mid S_{1}+2 R$.
Lemma 25. If $p(>3)$ is a prime, $p \nmid d, p \mid S_{1}+2 R$ and $p \mid E_{n}$, then

$$
p \equiv(\Gamma / p) \quad(\bmod 3)
$$

Proof. Since $p \mid S_{1}+2 R$ and $S_{1}+2 R=R\left(\gamma_{1}+1\right)\left(\gamma_{2}+1\right)\left(\gamma_{3}+1\right)$, we may assume in \mathbb{K}_{p} that $\gamma_{1}=-1$ and $\gamma_{2} \gamma_{3}=-1$. We get

$$
\left(\gamma_{1}+\gamma_{2}\right)\left(\gamma_{2}+\gamma_{3}\right)\left(\gamma_{3}+\gamma_{1}\right)=-\left(\gamma_{2}^{2}+1 / \gamma_{2}^{2}-2\right)
$$

Since $S_{1} \equiv-2 R(\bmod p)$, we get $S_{3} \equiv-2 R S_{2}(\bmod p)$ from (5) and

$$
g(x)=(x+2 R)\left(x^{2}+S_{2}\right) \in \mathbb{F}_{p}[x] .
$$

Since $\rho_{1}=R\left(\gamma_{1}+1 / \gamma_{1}\right)=-2 R$, we get $\rho_{2}^{2}=\rho_{3}^{2}=-S_{2}$ and $\gamma_{2}^{2}+1 / \gamma_{2}^{2}=\rho_{2}^{2} / R^{2}-2=$ $-S_{2} / R^{2}-2 \in \mathbb{F}_{p}$. It follows that $\left(\gamma_{1}+\gamma_{2}\right)\left(\gamma_{2}+\gamma_{3}\right)\left(\gamma_{3}+\gamma_{1}\right) \in \mathbb{F}_{p}$ and

$$
\begin{align*}
\left(\left(\gamma_{1}^{2}-\gamma_{2}^{2}\right)\left(\gamma_{2}^{2}-\gamma_{3}^{2}\right)\left(\gamma_{3}^{2}-\gamma_{1}^{2}\right)\right)^{p-1} & =\left(\left(\gamma_{1}-\gamma_{2}\right)^{2}\left(\gamma_{2}-\gamma_{3}\right)^{2}\left(\gamma_{3}-\gamma_{1}\right)^{2}\right)^{\frac{p-1}{2}} \\
& =(\Gamma / p) . \tag{29}
\end{align*}
$$

As $\gamma_{2}^{2}+1 / \gamma_{2}^{2} \in \mathbb{F}_{p}$, we must have $\gamma_{2}^{2}, 1 / \gamma_{2}^{2} \in \mathbb{F}_{p^{2}}$ and $\gamma_{2}^{2 p}=\gamma_{2}^{2}$ or $\gamma_{2}^{2 p}=\gamma_{3}^{2}$. Since $p \nmid d$, we see from (29), that $(\Gamma / p)=1$, when $\gamma_{2}^{2 p}=\gamma_{2}^{2}$ and $(\Gamma / p)=-1$, when $\gamma_{2}^{2 p}=\gamma_{3}^{2}$.

If $p \mid E_{n}$, then by Lemma 21, we have $\gamma_{i}^{n}=1$ for some $i \in\{1,2,3\}$ and $\gamma_{j}^{2 n}+\gamma_{j}^{n}+1=0$ $(i \neq j)$. Since $\gamma_{1}=-1$, we see that $i=1$ and $2 \mid n$. If $(\Gamma / p)=1$, then $\gamma_{2}^{n p}=\gamma_{2}^{n}$ and $\gamma_{2}^{n(p-1)}=1$. Since $\gamma_{2}^{3 n}=1$ and $\gamma_{2}^{n} \neq 1$, we see that $3 \mid p-1$ and $p \equiv(\Gamma / p)(\bmod 3)$. If $(\Gamma / p)=-1$, then $\gamma_{2}^{n p}=\gamma_{3}^{n}=1 / \gamma_{2}^{n}$ and $\gamma_{2}^{n(p+1)}=1$; hence $3 \mid p+1$ and $p \equiv(\Gamma / p)$ $(\bmod 3)$.

We are now ready to prove our main result.
Theorem 26. If $p(>3)$ is a prime divisor of E_{n}, then $p \equiv(\Gamma / p)(\bmod 3)$.

Proof. We have already proved this result when $p \mid d$ and when $p \nmid d$ and $p \mid S_{1}+2 R$. We may assume, then, that $p \nmid d$ and $p \nmid S_{1}+2 R$. Since $p \mid E_{n}, p$ can only be an S-prime or a Q-prime by Theorem 24. If p is an S-prime, then $1=(d / p)=(\Delta / p)(\Gamma / p)$ and $(\Gamma / p)=\epsilon$; if p is an Q-prime, then $-1=(d / p)=(\Delta / p)(\Gamma / p)$ and $(\Gamma / p)=-\epsilon$. Suppose p is an S-prime. By results in the proof of [3, Theorem 9.4], we have $\gamma_{i}^{p}=\gamma_{i}^{\epsilon}(i=1,2,3)$ in \mathbb{K}_{p}. By Lemma 21, we get $\gamma_{2}^{3 n}=1, \gamma_{2}^{n} \neq 1$; also, $\gamma_{2}^{n p}=\gamma_{2}^{n \epsilon}$ means that $\gamma_{2}^{(p-\epsilon) n}=1$ and $3 \mid p-\epsilon$. Similarly, if p is a Q-prime, then by the results in the proof of [3, Theorem 9.6], we have

$$
\gamma_{2}^{p}=\gamma_{3}^{\epsilon}, \quad \gamma_{3}^{p}=\gamma_{2}^{\epsilon}, \quad \gamma_{3}^{p}=\gamma_{1}^{\epsilon}
$$

in \mathbb{K}_{p}. In this case we get $\gamma_{2}^{p n}=\gamma_{3}^{\epsilon n}=\left(1 / \gamma_{2}\right)^{\epsilon n}$ and $\gamma_{2}^{n(p+\epsilon)}=1, \gamma_{2}^{3 n}=1$ and $\gamma_{2}^{n} \neq 1$. Hence $3 \mid p+\epsilon$ and in either case $p \equiv(\Gamma / p)(\bmod 3)$.

In order to extend Theorem 26, we need to prove the following result.
Theorem 27. For any $n>0$, we have $E_{n} \mid D_{3 n}$.
Proof. We can rewrite (13) as

$$
\begin{equation*}
W_{3 n}-6 R^{3 n}=\left(W_{n}-6 R^{n}\right) \tilde{Q}_{n}+\Delta W_{n} U_{n}^{2} \tag{30}
\end{equation*}
$$

where $\tilde{Q}_{n}=\left(W_{n}^{2}-\Delta U_{n}\right) / 4$. Suppose p is any odd prime and $p^{\lambda} \| E_{n}$, where $\lambda \geq 1$. Since $p^{\lambda} \mid U_{n}$, we must have $p^{\lambda} \mid U_{3 n}$. Also, $p^{2 \lambda} \mid \tilde{Q}_{n}$ and $p^{\lambda} \mid W_{3 n}-6 R^{3 n}$ by (30). Next, suppose that $2^{\lambda} \| E_{n}$ and $\lambda \geq 1$. We have $2 \mid W_{n}-6 R^{n}$ and $2^{2 \lambda-2}\left|\tilde{Q}_{n}, 2^{\lambda}\right| U_{n}$. By (30) we see that $2^{2 \lambda-1} \mid W_{3 n}-6 R^{3 n}$ and since $\lambda \geq 1$, we have $2 \lambda-1 \geq \lambda$ and $2^{\lambda} \mid D_{3 n}$. Hence, $E_{n} \mid D_{3 n}$.

We next prove a result which is analogous to the theorem that states that if p is an odd prime and $p \mid v_{n}$, then $p \equiv \pm 1\left(\bmod 2^{\nu+1}\right)$, where $2^{\nu} \| n$. (See [2, Theorem 2.20]).

Theorem 28. If $p(>3)$ is a prime and $p \mid E_{n}$, then $p \equiv(\Gamma / p)\left(\bmod 3^{\nu+1}\right)$, where $3^{\nu} \| n$.
Proof. Since $p \mid E_{n}$ and $p>3$, we have $p \nmid D_{n}$, as $p \nmid 6 R$. But, by Theorem 27, we know that $p \mid D_{3 n}$. Thus, if ω is the rank of apparition of p in $\left\{D_{n}\right\}$, we have $\omega \mid 3 n$ and $\omega \nmid n$. It follows that $3^{\nu+1} \mid \omega$. Also, since p is not an I-prime and $p \nmid 6 R$, we must have $\omega=p$ or $\omega \mid p^{2}-1$ by results in $\S 3$. Since $3 \mid \omega$ we cannot have $\omega=p$ and therefore $\omega \mid p^{2}-1$ and $3^{\nu+1} \mid p^{2}-1$. Since $p \nmid \Gamma$, we have $p^{2}-1=(p-(\Gamma / p))(p+(\Gamma / p))$ and $3 \mid p-(\Gamma / p)$. Hence $3^{\nu+1} \mid p-(\Gamma / p)$.

6 Primality tests

In Williams [4], it is shown how Lucas used the properties of $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ to develop primality tests for certain families of integers. In this section we will indicate how the properties of $\left\{U_{n}\right\}$ and $\left\{W_{n}\right\}$ can be used to produce some primality tests. We begin with a simple result concerning integers of the form $A 3^{n}+\eta$, where $\eta^{2}=1$.

Theorem 29. Let $N=A 3^{n}+\eta$, where $2 \mid A, n \geq 2,3 \nmid A, \eta \in\{1,-1\}$ and $A<3^{n}$. If

$$
N \mid U_{N-\eta} / U_{(N-\eta) / 3},
$$

then N is a prime.
Proof. Let p be any prime divisor of N and put $m=(N-\eta) / 3$. We note that $p \neq 2,3$ and by (14)

$$
4 U_{3 m} / U_{m}=3 W_{m}^{2}+\Delta U_{m}^{2}
$$

Since $p \mid U_{3 m}$, there must exist some rank of apparition r of p in $\left\{U_{n}\right\}$ such that $r \mid 3 m$. If $p \mid U_{m}$ and $p \mid W_{m}$, then $p \mid E_{m}$ and $p \equiv(\Gamma / p)\left(\bmod 3^{n}\right)$ by Theorem 28. If $p \nmid U_{m}$, then $r \nmid m$ and $r \mid 3 m$ means that $3^{n} \mid r$. Suppose $p \nmid d R$. If p is an S-prime or a Q-prime, then by [3, Corollary 9.5 and Theorem 9.7] we must have $r \mid p-\epsilon$, where $\epsilon=(\Delta / p)$; hence $p \equiv(\Delta / p)$ $\left(\bmod 3^{n}\right)$. If p is an I-prime, then $r \mid p^{2}+\epsilon p+1$ by Theorem 9.9 of [3]. Since $9 \mid r$, this is impossible. If $p \mid d R$, then $r=3, p$ or divides $p \pm 1$. Since $9 \mid r, r \neq 3$ and since $p \nmid N-\eta$, we cannot have $r=p$. Thus, in all possible cases, we find that $p \equiv \pm 1\left(\bmod 3^{n}\right)$ and since p is odd, we have $p \geq 2 \cdot 3^{n}-1$. Since $\left(2 \cdot 3^{n}-1\right)^{2}>N, N$ can only be a prime.

We also note that if N obeys the conditions in the first line of Theorem 29 and $N \mid E_{(N-\eta) / 3}$, then N must be a prime.

By extending the results in [2, Chapter 7] it is possible to select the parameters of S_{1}, S_{2} to make Theorem 29 both a necessary and sufficient test for the primality of N, but this test is much less efficient than one based on the Lucas Functions.

In $[3, \S 9]$ several primality tests for N are presented. These tests can be easily proved by using the techniques in [2, Chapter 7], but to be usable they require that we know the complete factorization of

$$
N^{2}+N+1 \quad \text { or } \quad N^{2}-N+1
$$

Of course, such a circumstance is very unlikely, but we might have a partial factorization of $N^{2} \pm N+1$. In what follows we will devise a test for the primality of N in this case. We first require a simple lemma.

Lemma 30. If p and q are distinct primes, $p>3$ and $p \mid D_{q n}$ and $p \mid U_{q n} / U_{n}$, then $q^{\lambda+1} \mid \omega$, where ω is the rank of apparition of p in $\left\{D_{n}\right\}$ and $q^{\lambda} \| n$.

Proof. Suppose $p \mid D_{n}$. If $p \mid U_{q n} / U_{n}$, then by Theorem 8 , we get $p \mid 2 q^{3}$, which is impossible. Hence, $p \nmid D_{n}$. It follows that since $p \mid D_{q n}\left(\left\{D_{n}\right\}\right.$ is a divisibility sequence), we get $\omega \mid q n$ and $\omega \nmid n$, which means that $q^{\lambda+1} \mid \omega$.

We will also need the easily established technical lemma below.
Lemma 31. If $x \geq 5$, then

$$
\left(x^{2}+x+1\right)^{2}<2\left(x^{4}-x^{2}+1\right)
$$

Theorem 32. Let N be a positive integer such that $\operatorname{gcd}(N, 6)=1$ and put $\eta=1$ or -1 . Let $T=N^{2}+\eta N+1$ and suppose that $T^{\prime} \mid T$, where $\operatorname{gcd}\left(T^{\prime}, T / T^{\prime}\right)=1$ and $T^{\prime 2}>2 T$. If $N \mid D_{T}$ and $N \mid U_{T} / U_{T / q}$ for all distinct primes q such that $q \mid T^{\prime}$, then N is a prime.
Proof. Let p be any prime divisor of N and q be any prime divisor of T^{\prime}; then $p \geq 5$ and by Lemma 30 we have $q^{\lambda} \mid \omega(p)$, where $\omega(p)$ is the rank of apparition of p in $\left\{D_{n}\right\}$ and $q^{\lambda} \| T$. Since $\operatorname{gcd}\left(T^{\prime}, T / T^{\prime}\right)=1$, we have $q^{\lambda} \| T^{\prime}$; hence, $T^{\prime} \mid \omega(p)$. Let ω denote the rank of apparition of T in $\left\{D_{n}\right\}$. We have $\omega \mid T$ and $\omega / q \nmid T$; hence, $q^{\lambda} \mid \omega$, where $q^{\lambda} \| T$ and therefore $T^{\prime} \mid \omega$.

By (17), we have

$$
\omega=\operatorname{lcm}\left(\omega\left(p_{i}^{\alpha_{i}}\right): i=1,2, \ldots, j\right)
$$

where

$$
N=\prod_{i=1}^{j} p_{i}^{\alpha_{i}}
$$

is the prime power factorization of N. Since $\omega\left(p_{i}^{\alpha_{i}}\right)=p_{i}^{\nu_{i}} \omega\left(p_{i}\right)$, we must have $\nu_{i}=1$ because $p_{i} \nmid T$. We get

$$
\omega=\operatorname{lcm}\left(\omega\left(p_{i}\right): i=1,2, \ldots, j \left\lvert\, T^{\prime} \prod_{i=1}^{j} \frac{\omega\left(p_{i}\right)}{T^{\prime}}\right.\right.
$$

If we put $T=k \omega$, then

$$
T \leq k T^{\prime} \prod_{i=1}^{j} \frac{\omega\left(p_{i}\right)}{T^{\prime}} \leq k T^{\prime} \prod_{i=1}^{j} \frac{p_{i}^{2}+p_{i}+1}{T^{\prime}}
$$

by Theorem 13. Also, since

$$
T=N^{2}+\eta N+1>2 \prod_{i=1}^{j} \frac{p_{i}^{2}+p_{i}+1}{2}
$$

([3, Lemma 9.11], cf. [2, Lemma 7.1]) we get

$$
k T^{\prime} \prod_{i=1}^{j} \frac{p_{i}^{2}+p_{i}+1}{T^{\prime}}>2 \prod_{i=1}^{j} \frac{p_{i}^{2}+p_{i}+1}{2}
$$

and

$$
k T^{\prime} 2^{j}>2\left(T^{\prime}\right)^{j}
$$

Hence,

$$
k>\left(T^{\prime} / 2\right)^{j-1} \geq T^{\prime} / 2 \quad(\text { when } j \geq 2)
$$

But since $T / T^{\prime}=k \omega / T^{\prime}$, we have $k \leq T / T^{\prime}<T^{\prime} / 2$, a contradiction; consequently, we can only have $j=1$ and $N=p^{\alpha}$. Since $\omega(N)=p^{\nu} \omega(p)$ and $\operatorname{gcd}(p, \omega(N))=1$, we get $\omega\left(p^{\alpha}\right)=\omega(p)$. It follows that

$$
\omega(N)=\omega(p) \leq p^{2}+p+1
$$

Now $T^{\prime} \mid \omega(p)$ means that $\omega(p) \geq T^{\prime}$ and $p^{2}+p+1 \geq T^{\prime}$. Since $T^{\prime 2}>2 T$, we have for $\alpha \geq 2$

$$
\left(p^{2}+p+1\right)^{2}>2\left(p^{2 \alpha}+\eta p^{\alpha}+1\right) \geq 2\left(p^{2 \alpha}-p^{\alpha}+1\right) \geq 2\left(p^{4}-p^{2}+1\right)
$$

which is impossible by Lemma 31. Hence we can only have $N=p$.
Many other primality tests can be devised by making use of the ideas in [2, Chapter 7], but the above should suffice to illustrate the kind of results that can be established.

7 Conclusions

In [3] we showed that the $\left\{U_{n}\right\}$ and $\left\{W_{n}\right\}$ sequences can be considered respectively as the sextic analogues of Lucas' $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ sequences. In this paper we have produced a number of results that are the number-theoretic analogues of well-known properties of the Lucas functions. Of course, there are many other properties of $\left\{D_{n}\right\}$ and $\left\{E_{n}\right\}$ that are similar to those of the $\left\{D_{n}\right\}$ and $\left\{E_{n}\right\}$ sequences discussed at some length in [2], and these can be proved by using the results presented here and the techniques of [2].

References

[1] S. Müller, H. C. Williams, and E. Roettger, A cubic extension of the Lucas functions, Ann. Sci. Math. Québec 33 (2009), 185-224.
[2] E. Roettger, A Cubic Extension of the Lucas Functions, PhD thesis, University of Calgary, 2009. Available online at http://people.ucalgary.ca/~williams/.
[3] E. L. Roettger, H. C. Williams, and R. K. Guy, Some extensions of the Lucas functions. In Number Theory and Related Fields, Springer, 2013, pp. 279-319.
[4] H. C. Williams, Édouard Lucas and Primality Testing, Wiley-Interscience, 1998.

2010 Mathematics Subject Classification: Primary 11B37; Secondary 11Y11, 11B50.
Keywords: linear recurrence, Lucas function, primality testing.

Received February 5 2015; revised version received May 11 2015; May 29 2015. Published in Journal of Integer Sequences, May 302015.

Return to Journal of Integer Sequences home page.

[^0]: ${ }^{1}$ The second author is supported by NSERC of Canada.

