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Abstract

The purpose of this article is to present, in a simple way, an analytical approach to

special numbers and polynomials. The approach is based on derivative polynomials.

The paper is, to some extent, a review article, although it contains some new elements.

In particular, it seems that some integral representations for Bernoulli numbers and

Bernoulli polynomials are new.

1 Introduction

Let u = u(z) be a holomorphic function defined in a domain Du ⊂ C which fulfills the
Riccati differential equation with constant coefficients

u′ = r(u− a)(u− b), (1)

where r, a, b are real or complex numbers r 6= 0, a 6= b. Let v = v(z) be a holomorphic
function defined in a domain Dv ⊂ C which is related with u(z) and fulfills the following
differential equation

v′ = rv

(

u−
a+ b

2

)

, (2)

where a, b, r, u(z) are as in (1).
Examples of such pairs of functions and equations are as follows:
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1. u(z) = tan z, u′(z) = u2 + 1, v(z) = sec z, v′ = vu,

2. u(z) = tanh z, u′(z) = −u2 + 1, v(z) = 1/ cosh z, v′ = −vu,

3. u(z) = cot z, u′(z) = −u2 − 1, v(z) = csc z, v′ = −vu,

4. u(z) = coth z, x′(z) = u2 − 1, v(z) = 1/ sinh z, v′ = vu,

5. u(z) = 1/(1 + ez), u′(z) = u2 − u, v(z) = ez/2/(1 + ez),
v′ = v(u− 1/2),

6. u(z) = 1/(1 + e−z), u′(z) = −u2 + u, v(z) = e−z/2/(1 + e−z),
v′ = −v(u− 1/2),

7. more generally the logistic function: u(z) = q/(1 + pe−sz),
u′(z) = s

q
(q−u)u, v(z) = qe−sz/2/(1+pe−sz), v′(z) = s

q
v(q/2−u) (with p > 1, q >

0, s > 0).

We will consider also the following generalization of equation (2)

v′ = rv

(

u−
a+ b

2
+ d

)

, (3)

where d is a real or complex number.
Such a system of differential equations has been investigated by Hoffman [12] (instead of

equations (2-3) he regarded v′ = vu) and by Franssens [10] (who investigated the equation
v′ = −vu).

Let {a1, a2, . . . , an} be a permutation of the set {1, 2, . . . , n}.
Then {aj, aj+1} is an ascent of the permutation if aj < aj+1. The Eulerian number

〈

n

k

〉

is defined as the number of permutations of the set {1, 2, . . . , n} having k permutation

ascents, see [11, p. 267].
For example for n = 3 the permutation {1, 2, 3} has two ascents, namely {1, 2} and {2, 3},

and {3, 2, 1} has no ascents. Each of the other four permutations of the set has exactly one

ascent. Thus

〈

3

0

〉

= 1,

〈

3

1

〉

= 4, and

〈

3

2

〉

= 1. It is well known that Eulerian numbers

satisfy the following relations:

〈

n

k

〉

=

〈

n

n− k − 1

〉

,

〈

n+ 1

k

〉

= (k + 1)

〈

n

k

〉

+ (n− k + 1)

〈

n

k − 1

〉

, (4)

〈

n

k

〉

=
k
∑

j=0

(−1)j
(

n+ 1

j

)

(k − j + 1)n. (5)
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The Eulerian polynomial En(x), n = 0, 1, 2, . . . is defined, by Comtet [4], by the formula

En(x) =
n−1
∑

k=0

〈

n

k

〉

xk+1 for n ≥ 1, E0(x) = 1. (6)

There is a slightly different definition, used e.g., by Foata [8], of the Eulerian polynomial
An(x) i.e.,

An(x) =
n−1
∑

k=0

〈

n

k

〉

xk, A0(x) = 1. (7)

Thus En(x) = xAn(x) for n ≥ 1, A1(x) = A0(x) = E0(x) ≡ 1.
The MacMahon numbers (Mn,k) are defined in papers [14, 9], by the recurrence formula

Mn,k = (2k − 1)Mn−1,k + (2n− 2k + 1)Mn−1,k−1, (8)

where 1 ≤ k ≤ n, M(n, 1) = M(n, n) = 1, n = 1, 2, . . ..
The MacMahon polynomial Mn(x), n = 0, 1, 2, . . . is defined as follows

Mn(x) =
n+1
∑

k=1

Mn+1,k x
k−1. (9)

2 Derivative polynomials

The following theorem has been discussed during the Conference ICNAAM 2006 in Greece
and it appeared in my paper [15]. For convenience of the reader we give it with an inductive
proof. Independently the theorem has been considered and proved, with a proof based on
generating functions, by Franssens [10] (see also [16]).

Theorem 1. If a function u(z) satisfies equation (1), then the nth derivative of u(z) can be
expressed by the following formula:

u(n)(z) = rn
n−1
∑

k=0

〈

n

k

〉

(u− a)k+1(u− b)n−k (10)

where n = 2, 3, . . ..

Proof. By (1) we get

u′′(t) = r[(u− a) + (u− b)]u′(z) = r2[(u− a)(u− b)2 + (u− a)2(u− b)],
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which establishes (10) for n = 2. Let us assume that for an integer n ≥ 2 formula (10) holds.
Using recurrence formula (4) in the last step of the following calculation we get

u(n+1)(z) = rn
d

dz

n−1
∑

k=0

〈

n

k

〉

(u− a)k+1(u− b)n−k

= rn+1

n−1
∑

k=0

〈

n

k

〉

[

(k+1)(u−a)k+1(u−b)n−k+1+(n−k)(u−a)k+2(u−b)n−k
]

= rn+1

[

〈

n

0

〉

(u−a)(u−b)n+1 +
n−1
∑

k=1

(

(k+1)

〈

n

k

〉

+ (n−k+1)

〈

n

k−1

〉)

×(u−a)k+1(u−b)n−k+1 +

〈

n

n−1

〉

(u−a)n+1(u−b)

]

= rn+1

n
∑

k=0

〈

n+1

k

〉

(u− a)k+1(u− b)n−k+1,

which ends the proof.

The following two theorems are connected with solutions of equations (2) and (3) respec-
tively and are due to Franssens [10]. Theorem 2 is a particular case of Theorem 3. We write
them down here in a slightly different form than in [10]. Franssens proved the theorems by
using generating functions but they can be proved also by induction, similarly as Theorem
1.

Theorem 2. If functions u = u(z) and v = v(z) are any solutions of the equations (1), (2)
respectively, then the nth derivative of v(z) is equal:

v(n)(z) = v
rn

2n

n+1
∑

k=1

Mn+1,k(u− a)n+1−k(u− b)k−1. (11)

Denote by Qn(u; a, b), n = 0, 1, 2, . . . the polynomial (of order n) standing on the right
hand side of equation (11) i.e.,

Qn(u; a, b) =
n+1
∑

k=1

Mn+1,k(u− a)n+1−k(u− b)k−1.

Theorem 3. If functions u = u(z) and v = v(z) are any solutions of the equations (1), (3)
respectively, then the nth derivative of v(z) is equal:

v(n)(z) = v
rn

2n

n
∑

k=0

(

n

k

)

(2d)kQn−k(u; a, b). (12)
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The polynomial Qn(u; a, b) is related to MacMahon polynomial (9) by the formula

Mn(x) =
Qn(u; a, b)

(u− b)n

∣

∣

∣
u−a

u−b
=x .

Similarly we denote by Pn+1(u; a, b), n = 1, 2, . . . the polynomial (of order n + 1) standing
on the right hand side of equation (10). Thus

Pn+1(u; a, b) =
n−1
∑

k=0

〈

n

k

〉

(u− a)k+1(u− b)n−k, n = 1, 2, . . . P1(u) = u− a.

Obviously the polynomial Pn+1(u; a, b) can be rearranged into the Eulerian polynomial
En(x), n = 1, 2, . . . using the following formula:

En(x) =
Pn+1(u; a, b)

(u− b)n+1

∣

∣

∣
u−a

u−b
=x (13)

Polynomials (Pn(u; a, b)) and (Qn(u; a, b)) are called the derivative polynomials. They have
been introduced by Hoffman [12] who used them to calculate some integrals with parameters
and for summing some series, without giving any explicit formula for the coefficients. The
polynomials were recently intensively studied; see e.g., [1, 5, 9, 16, 17].

3 Generating functions for Eulerian polynomials

It is easy to find the closed form of the following exponential generating function; see [12, 10]:

F (u, t) = u+ rP2(u; a, b)t+ r2P3(u; a, b)
t2

2!
+ · · · . (14)

For convenience of the reader we give the calculation for (14). Let u = u(z) be a solution of
the equation (1). By the Taylor formula for the function u = u(z) we have

F (u(z), t) = u(z) + rP2(u(z); a, b)t+ r2P3(u(z); a, b)
t2

2!
+ · · ·

= u(z) + u′(z)t+ u′′(z)
t2

2!
+ · · · = u(z + t),

and
F (u, t) = u(z(u) + t). (15)

For example if a = 0, b = 1, u = 1/(1 + exp(z)), exp(z) = (1− u)/u we get

F (u, t) =
1

1 + ez(u)+t
=

1

1 + 1−u
u

et
=

u

u+ (1− u)et
. (16)
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The generating function (16) can be used for calculation of the exponential generating func-
tion for the Eulerian polynomials (6)

E0(x) + E1(x)y + E2(x)
y2

2!
+ E3(x)

y3

3!
+ · · · . (17)

In order to do it let us observe, that we obtain the generating function (17) by substituting
in the expression

F (u, t)− u

u− 1
+ 1,

where F (u, t) is given by the formula (16), u/(u−1) = x and (u−1)t = y (that is 1/(u−1) =
x− 1, x/(x− 1) = u, t = (x− 1)y). We compute

F (u, t)− u

u− 1
+ 1 =

F (u, t)− 1

u− 1
=

u
u+(1−u)et

− 1

u− 1
=

et

u+ (1− u)et

=
e(x−1)y

x
x−1

− 1
x−1

e(x−1)y
=

1− x

1− xe(1−x)y
.

Therefore the generating function for the Eulerian polynomials (En(x)) is

E0(x) + E1(x)y + E2(x)
y2

2!
+ E3(x)

y3

3!
+ · · · =

1− x

1− xe(1−x)y
. (18)

Formula (18) gives immediately the generating function for the Eulerian polynomials (An(x))
defined by (7). We have

A0(x) + A1(x)y + A2(x)
y2

2!
+ A3(x)

y3

3!
+ · · ·

=

(

1− x

1− xe(1−x)y
− 1

)

1

x
+ 1 =

x− 1

x− e(x−1)y
(19)

Foata [8] notices that formula (19) was known to Euler.

4 Some other classical formulas concerning Eulerian

polynomials

The approach to Eulerian numbers and polynomials presented here is useful in obtaining
other known results. For example the following classical formula concerning Eulerian poly-
nomials

En(x) =
n−1
∑

k=1

(

n

k

)

Ek(x)(x− 1)n−1−k + E1(x)(x− 1)n−1 (20)
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n = 1, 2, . . . or equivalently expressed in terms of the polynomials(An(x)):

An(x) =
n−1
∑

k=0

(

n

k

)

Ak(x)(x− 1)n−1−k (21)

is an easy consequence of the following lemma.

Lemma 4. If a function u = f(z) fulfills the equation u′ = u(u−1) then for any n = 1, 2, . . .

f (n)(z) = (f(z)− 1)
n−1
∑

k=0

(

n

k

)

f (k)(z). (22)

Proof. The proof is by induction with respect to n. For n = 1 formula (22) is obviously true
and let us suppose that it holds for a positive integer n. We have

f (n+1)(z) = f ′(z)
n−1
∑

k=0

(

n

k

)

f (k)(z) + (f(z)− 1)
n−1
∑

k=0

(

n

k

)

f (k+1)(z)

= (f(z)−1)f(z)
n−1
∑

k=0

(

n

k

)

f (k)(z) + (f(z)−1)
n
∑

k=1

(

n

k−1

)

f (k)(z). (23)

By rearranging (22) to the form

f(z)
n−1
∑

k=0

(

n

k

)

f (k)(z) =
n
∑

k=0

(

n

k

)

f (k)(z)

and using it to the first sum of (23) we get

f (n+1)(z) = (f(z)− 1)
n
∑

k=0

(

n

k

)

f (k)(z) + (f(z)− 1)
n
∑

k=1

(

n

k−1

)

f (k)(z)

= (f(z)− 1)

(

n
∑

k=1

((

n

k

)

+

(

n

k−1

))

f (k)(z) + f(z)

)

= (f(z)− 1)
n
∑

k=0

(

n+1

k

)

f (k)(z),

and formula (22) is proved.

Using Theorem 1 we see that formula (22) is equivalent to

n−1
∑

j=0

〈

n

j

〉

uj+1(u− 1)n−j = (u− 1)

(

n−1
∑

k=1

(

n

k

) k−1
∑

j=0

〈

k

j

〉

uj+1(u− 1)k−j + u

)

.
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By substituting here u/(u− 1) = x, u = x/(x− 1), u− 1 = 1/(x− 1) we get

n−1
∑

j=0

〈

n

j

〉

xj+1

(x− 1)n+1
=

1

x− 1

(

n−1
∑

k=1

(

n

k

) k−1
∑

j=0

〈

k

j

〉

xj+1

(x− 1)k+1
+

x

x− 1

)

,

hence we obtain the formula

1

(x− 1)n+1
En(x) =

1

x− 1

(

n−1
∑

k=1

(

n

k

)

1

(x− 1)k+1
Ek(x) +

1

x− 1
E1(x)

)

,

and the formulas (20) and (21) are proved.

5 Generating functions for the MacMahon polynomi-

als

It is useful to get the generating function for the polynomials (Qn(u)) as

G(u, t) = Q0(u; a, b) +
r

2
Q1(u; a, b)t+

r2

22
Q2(u; a, b)

t2

2!
+

r3

23
Q3(u; a, b)

t3

3!
+ · · ·

Let the functions u = u(z), v = v(z) fulfill respectively equations (1) and (2). Then using
(11) we have

v(z)G(u(z), t) = v(z) + v(z)
r

2
Q1(u(z); a, b)t+ v(z)

r2

22
Q2(v(z); a, b)

t2

2!
+ · · ·

= v(z) + v′(z)t+ v′′(z)
t2

2!
+ · · · = g(z + t).

For example if u(z) = 1/(1 + ez) and v(z) = ez/2/(1 + ez) we get

ez/2

1 + ez
G(u(z), t) =

ez/2et/2

1 + ezet
,

hence

G(u(z), t) =
(1 + ez)et/2

1 + ezet
.

Therefore in this case

G(u, t) =
(1 + 1−u

u
)et/2

1 + 1−u
u
et

=
et/2

u+ (1− u)et
. (24)

The generating function (24) can be used for calculation of the exponential generating func-
tion for the MacMahon polynomials (9)

M0(x) +
1

2
M1(x)y +

1

22
M2(x)

y2

2!
+

1

23
M3(x)

y3

3!
+ · · · . (25)
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In order to do it let us observe, that we obtain the generating function (25) by substituting
into G(u, t) given by (24), u/(u − 1) = x and (u − 1)t = y (that is 1/(u − 1) = x − 1,
x/(x− 1) = u, t = (x− 1)y). We compute

et/2

u+ (1−u)et
=

e(x−1)y/2

x
x−1

+ (1− x
x−1

)e(x−1)y
=

(x−1)e(x−1)y/2

x−e(x−1)y/2
=

(1−x)e(1−x)y/2

1−xe(1−x)y/2
.

Thus

M0(x) +
1

2
M1(x)y +

1

22
M2(x)

y2

2!
+

1

23
M3(x)

y3

3!
+ · · · =

(1−x)e(1−x)y/2

1−xe(1−x)y/2
,

and

M0(x) +M1(x)y +M2(x)
y2

2!
+M3(x)

y3

3!
+ · · · =

(1−x)e(1−x)y

1−xe(1−x)y
.

6 Integral representations

In this section we use the Bernoulli numbers and Bernoulli polynomials. For their definition
and a good introduction we recommend the book by Duren [6, Ch. 11].

We have proved [17] that for n = 1, 2, 3, . . .
∫ b

a

Pn(u; a, b)du = −(b− a)n+1Bn, (26)

where Bn is the nth Bernoulli number. Since Pn(u; a, b) is a polynomial i.e., an entire
function, the (26) can be seen as integral over any curve (piecewise smooth), joining points a
and b. Formula (26) is important because it gives immediately the following Grosset–Veselov
formula; see Grosset–Veselov [3]

B2m =
(−1)m−1

22m+1

∫ +∞

−∞

(

dm−1

dxm−1

1

cosh2 x

)2

dx, (27)

which connects one–soliton solution of the KdV equation with Bernoulli numbers. Fairlie
and Veselov [7] proved, by using the conservation laws, that KdV equation is directly related
to the Faulhaber polynomials and the Bernoulli polynomials. The Faulhaber polynomials
are well described by Knuth [13]. Grosset and Veselov [3] demonstrated the formula (27)
in two ways, using the cited results and then adapting an idea due to Logan described
in the book [11, Ch. 6.5]. Boyadzhiev [2] gave an alternative proof of (27), based on the
Fourier transform. He noted that this proof was independently suggested by Professor A.
Staruszkiewicz (see also ’Note added in Proofs’ at the end of [3]).

In order to prove (27) let us observe that one of the solutions of the equation (1), for
a = −1, b = 1, r = −1, is u = tanh z. Since the image of the real line, under this function,
is the interval (−1, 1) we have by (26)

∫

∞

−∞

(tanh z)(n−1)

cosh2 z
dz = (−1)n−1

∫ 1

−1

Pn(u;−1, 1)du = (−1)n2n+1Bn. (28)
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Taking in (28) n = 2m and using, (m− 1)-times, the formula of integration by parts for the
leftmost integral, we get the Grosset–Veselov formula (27).

There arises a natural question about similar calculation for other polynomials e.g., for
Qn(u, a, b). Using formula (24) we see that the generating function for polynomialsQn(u, a, b)
in the case of a = 0, b = 1, r = 1 is as follows:

G(u, t) = Q0(u; 0, 1)) +
1

2
Q1(u; 0, 1)t+

1

22
Q2(u; 0, 1)

t2

2!
+ · · · =

et/2

u+ (1− u)et
,

and therefore
∫ 1

0

G(u, t)du = et/2
∫ 1

0

1

u+ (1− u)et
du =

tet/2

et − 1
. (29)

However since the generating function for the Bernoulli polynomials is

B0(w) + B1(w)t+ B2(w)
t2

2!
+ B3(w)

t3

3!
+ · · · =

tewt

et − 1
, (30)

then from (29) we get the following theorem.

Theorem 5. For n = 0, 1, 2, . . .

∫ 1

0

Qn(u; 0, 1)du = 2nBn

(

1

2

)

. (31)

Since the polynomial Qn(u; a, b) is homogenous then by a suitable linear change of the
variable in the integral (31) we get immediately

∫ b

a

Qn(u; a, b)du = 2nBn

(

1

2

)

(b− a)n+1. (32)

Let us recall that Bn = Bn(0). Then in view of (26) and (32) the next natural question arises,
which concerns the existence of a family of polynomials ’connecting’ polynomials Pn(u; a, b)
and Qn(u; a, b) in the sense that the corresponding integrals would give the values of the
Bernoulli polynomial at intermediate points between 0 and 1

2
.

Denote by Sn(u; a, b, d), n = 0, 1, 2, . . . the polynomial (of order n) standing on the right
hand side of the equation (12) i.e.,

Sn(u; a, b, d) =
n
∑

k=0

(

n

k

)

(2d)kQn−k(u; a, b). (33)

We will prove that {Sn(u; a, b, d)} form the requested family of polynomials. A closed form
formula for the following exponential generating function:

H(u, t) = S0(u; a, b, d) +
r

2
S1(u; a, b, d)t+

r2

22
S2(u; a, b, d)

t2

2!
+ · · · , (34)
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can be found similarly as in the previous cases. We assume that functions u = u(z) and
v = v(z) are solutions of the equations (1) and (3) respectively. Using the Taylor formula
for the function v = v(z) we have

v(z)H(u(z), t) = v(z)S0(u(z); a, b, d) + v(z)
r

2
S1(u(z); a, b, d)t

+v(z)
r2

22
S2(u(z); a, b, d)

t2

2!
· · ·

= v(z) + v′(z)t+ v′′(z)
t2

2!
+ · · · = v(z + t). (35)

For example taking here a = 0, b = 1, r = 1 and u(z) =
1

1 + ez
the second equation (3) has

the form

v′(z) = v(z)

(

1

1 + ez
−

1

2
+ d

)

,

with a solution

v(z) =
e(1/2+d)z

1 + ez
. (36)

Using (35) and (36) we get

H(u(z), t) =
v(z + t)

v(z)
=

(1 + ez)e(1/2+d)t

1 + ezet

and putting here u(z) =
1

1 + ez
, ez =

1− u

u
we arrive at

H(u, t) =
(1 + 1−u

u
)e(1/2+d)t

1 + 1−u
u
et

=
e(1/2+d)t

u+ (1− u)et
. (37)

Then (37) yields
∫ 1

0

H(u, t)du =

∫ 1

0

e(1/2+d)t

u+ (1− u)et
du =

te(1/2+d)t

et − 1
,

and therefore using (30) we arrive at the formula (n = 0, 1, 2, . . .)

∫ 1

0

Sn(u; 0, 1, d)du = 2nBn

(

1

2
+ d

)

. (38)

In order to generalize (38) to the polynomial Sn(u; a, b, d) we use formula (33). Therefore by
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(32) we obtain

∫ b

a

Sn(u; a, b, d)du =
n
∑

k=0

(

n

k

)

(2d)k
∫ b

a

Qn−k(u; a, b)du

=
n
∑

k=0

(

n

k

)

(2d)k2n−kBn−k

(

1

2

)

(b− a)n−k+1

= 2n(b− a)n+1

n
∑

k=0

(

n

k

)(

d

b− a

)k

Bn−k

(

1

2

)

= 2n(b− a)n+1Bn

(

1

2
+

d

b− a

)

.

At the very end of the above calculation we have used the following addition formula for
the Bernoulli polynomials; see e.g., Temme [18, p. 4]

Bn(x+ y) =
n
∑

k=0

(

n

k

)

Bk(x)y
n−k.

Thus we have proved

Theorem 6. For n = 1, 2, . . .

∫ b

a

Sn(u; a, b, d)du = 2n(b− a)n+1Bn

(

1

2
+

d

b− a

)

.

Comparing the generating functions (with parameters a = 0, b = 1, r = 1, d = −1/2):
F (u, t) (given by formula (16)) with H(u, t) (formula (37)) of the polynomials {Pn(u; 0, 1)}
and {Sn(u; 0, 1,−1/2)} respectively we get also

Pn+1(u; 0, 1)

u
=

1

2n
Sn(u; 0, 1,−1/2). (39)

In particular, it follows from (39) that the coefficients of the polynomial
1

2n
Sn(u; 0, 1,−1/2)

are all integer.
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