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Abstract

A subspace partition Π of a finite vector space V = V (n, q) of dimension n over
GF(q) is a collection of subspaces of V such that their union is V , and the intersection of
any two subspaces in Π is the zero vector. The multiset TΠ of dimensions of subspaces
in Π is called the type of Π, or, a Gaussian partition of V . Previously, we showed
that subspace partitions of V and their types are natural, combinatorial q-analogues
of the set partitions of {1, . . . , n} and integer partitions of n respectively. In this
paper, we connect all four types of partitions through the concept of “basic” set,
subspace, and Gaussian partitions, corresponding to the integer partitions of n. In
particular, we combine Beutelspacher’s classic construction of subspace partitions with
some additional conditions to derive a special subset G of Gaussian partitions of V . We
then show that the cardinality of G is a rational polynomial R(q) in q, with R(1) = p(n),
where p is the integer partition function.

1 Introduction

1.1 The background

Let n be a positive integer and q be a prime power. Let V = V (n, q) denote the n-dimensional
vector space over GF(q). A subspace partition (also known as vector space partition) of V
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is a collection of subspaces of V such that their union is V , and the intersection of any
two subspaces in Π is the zero vector; for example, see the recent survey by Heden [14].
Subspace partitions are used to construct translation planes and nets [3, 4, 8], error-correcting
codes [15, 20, 21, 23], orthogonal arrays [12], and designs [13, 26]. The origins of subspace
partitions can be traced back to the general problem of partitioning a finite group into
subgroups intersecting only at the identity element [19, 24, 27].

Let Π be a subspace partition of V = V (n, q). Suppose that Π consists of xi subspaces
of dimension di for 1 ≤ i ≤ k. The multiset TΠ = dx1

1 . . . dxk

k of dimensions is then called
a partition type of V . Clearly, not every multiset T that contains plausible dimensions is a
partition type of V . However, if T is a partition type, then it must satisfy certain necessary
conditions. One such condition, called the packing condition, is obtained by counting the
nonzero vectors of V in two ways:

k
∑

i=1

xi(q
di − 1) = (qn − 1). (1)

A second necessary condition comes from dimension considerations. If U and W are
subspaces of V (n, q), then it is well known that the subspace spanned by U∪W has dimension
dim(U) + dim(W )− dim(U ∩W ). Therefore, if T is a partition type, then it must satisfy

{

2di ≤ n, if xi ≥ 2;

di + dj ≤ n, if i 6= j.
(2)

The necessary conditions (1) and (2) are not sufficient in general. For instance, 21011 is not a
partition type of V (5, 2). There are several other nontrivial necessary conditions [16, 17, 18].

In previous papers [1, 2], we studied the lattice of subspace partitions of V = V (n, q)
and the poset of partition types of V (which we called the Gaussian partitions of V ). We
proved several results, revealing these two objects as natural, combinatorial q-analogues of
the set partitions of n = {1, . . . , n} and the integer partitions of n respectively. In this
paper, we connect all four types of partitions through the concept of “basic” set, subspace,
and Gaussian partitions, which correspond to the integer partitions of n. In particular, we
distinguish “regular” subspace partitions as those that owe their existence to the most natural
construction due to Beutelspacher [6] and give an argument on why it is not practical at this
point to count the “irregular” Gaussian partitions. We then impose additional conditions
on the regular subspace (and hence Gaussian) partitions and call them the “restricted”
partitions, which are certain refinements of the basic ones. Our main result is as follows:

Theorem 1. Let q be a prime power and n be a positive integer. Then the number of
restricted Gaussian partitions of V (n, q) is a rational polynomial R(q) in q. Moreover, we
have R(1) = p(n), where p is the integer partition function.

This is the counterpart of an earlier result of ours [1], which states that the number of
the full set of subspace partitions of V is congruent to the Bell number Bn, the number of
set partitions of n, modulo q − 1.
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1.2 Why consider restricted partitions?

The techniques we used in our first article [1] in this series to count the subspace partitions
of V = V (n, q) are not applicable to the process of enumerating the set of all Gaussian
partitions; new methods need to be developed. In our second article [2], we demonstrated
that counting the Gaussian partitions of V for n ≤ 5 by brute force was fairly straightforward,
but that as soon as we reached n = 6, we were stymied: we simply do not have much
information about the existence of maximal subspace partitions that are not constructed by
traditional means. Some exotic examples (used to disprove conjectures), such as a subspace
partition of V (8, 2) with 34 subspaces of dimension 3 and 17 subspaces of dimension 1,
are often constructed by the aid of computers [2, 12]. However, an analysis conducted
by Lambert [22] shows that there is no apparent structure in the aforementioned example,
making it difficult to generalize. Hence, the problem of determining themaximum-size partial
spreads remains largely unsolved. Similarly, finding the maximal partial spread partitions of
V (n, q) for n ≥ 4 is currently intractable. This makes the precise counting of all Gaussian
partitions an essentially impossible task. Nevertheless, it would still be interesting to count
certain subsets of the Gaussian partitions, in particular, those that could provide a q-analogue
of integer partitions.

As a first step towards conquering the counting problem, we propose to consider only
those subspace partitions that are constructed from V by the Beutelspacher method de-
scribed in Section 2.2.2. This method is crucial in constructing examples for the applications
we referred to in the previous section. We will designate the resulting subspace and Gaussian
partitions as regular. This convention is akin to leaving out the exceptional groups in the
classification of finite simple groups, whose existence and structures require the use of more
customized techniques. Unfortunately, the resulting poset of regular Gaussian partitions is
still very difficult to count — we had to stop at n = 7. The problem stems from the fact
that the same regular Gaussian partition may be obtained by more than one sequence of
consecutive “refinements” of subspace dimensions, and there seems to be no consistent way
to prefer one construction over the others. That is, there is no good way of building a tree
structure out of all regular Gaussian partitions with respect to preferred refinements. How-
ever, regular Gaussian partitions can conceivably be counted by sheer computer power for
a specific dimension n in terms of q. For n ≤ 6, the numbers of regular Gaussian partitions
of V (n, q) turned out to be rational polynomials in q with the value p(n) at q = 1, placing
regular Gaussian partitions among strong contenders for a q-analogue of the integer partition
function.

As a second step, we propose counting a subset of regular Gaussian partitions (defined by
simple rules) while maintaining the property that this set of Gaussian partitions provides a q-
analogue of integer partitions. To that end, we enumerate the restricted Gaussian partitions
of V (n, q), described in detail in Section 3.2. This method requires that as a starting point, we
introduce the notions of basic set, basic subspace, and basic Gaussian partitions that naturally
correspond to the integer partitions of n (the basic set and basic Gaussian partitions are in
fact in 1-1 correspondence with the integer partitions). We then apply the Beutelspacher
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method of refinement selectively, so that the new subspace dimensions that are created from
any one dimension can be squeezed in between the existing ones, without disturbing the
nonincreasing sequence (there are a few more conditions). Our claim that the choice of
restricted Gaussian partitions is a reasonable compromise is validated by the fact that these
partitions do form a q-analogue for integer partitions, as proven in Theorem 1.

Our ultimate goal is to find simple enough rules to capture the largest subset of Gaus-
sian partitions (ideally all of them) forming a q-analogue of integer partitions that counts
combinatorial objects. We realized a similar goal in our first paper [1] by showing that the
full lattice of subspace partitions is the natural q-analogue of the lattice of set partitions.

2 Set, integer, and subspace partitions

2.1 Set partitions

Definition 2 (Split of subset). A split of a subset D of n = {1, . . . , n} with d = |D| ≥ 2
is a refinement operation denoted by (a, b), where a + b = d and a ≥ b ≥ 1, that results in
partitioning D into two disjoint subsets A and B of cardinalities a and b respectively.

The partition {A,B} of D is not unique as defined. However, we can make it unique as
follows:

Definition 3 (Ordering split of subset). An ordering split of a subset D of n is a split (a, b)
as in the above definition such that any element of A is strictly less than any element of B.

Lemma 4. Any set partition of n can be obtained by applying a sequence of splits to n

(after the first split, we understand that each subsequent split is applied to a smaller subset
generated previously). The empty sequence corresponds to the partition {n} with one part.

Definition 5 (Basic set partition). A set partition of n = {1, . . . , n} with k parts will be
called basic if its parts can be labeled D1, . . . , Dk, with cardinalities d1, . . . , dk respectively,
in such a way that:

1. d1 ≥ · · · ≥ dk ≥ 1, and

2. for all i with 1 ≤ i ≤ k, the collection D1, . . . , Di is a set partition of d = {1, · · · , d},
where d = d1 + · · ·+ di.

For the next two lemmas, let us adopt the notation of Definition 5.

Lemma 6. The set of basic set partitions of n is in one-to-one correspondence with the
integer partitions of n, via

{D1, . . . , Dk} ←→ d1 . . . dk.

Remark 7. Note that we are only interested in the unordered integer partitions of n here.
For instance, the sequence 5 · 3 · 1 · 1 and its permutations (e.g., 3 · 5 · 1 · 1) will all represent
the same integer partition of n = 10.
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Example 8. The collection {{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}, {11, 12, 13}, {14}, {15}, {16}, {17}}
is the basic set partition of 17 corresponding to the integer partition 523114 of 17.

Lemma 9. Any basic set partition of n with parts described as in Definition 5 can be obtained
by applying the sequence

(d1 + · · ·+ dk−1, dk), (d1 + · · ·+ dk−2, dk−1), . . . , (d1, d2)

of ordering splits to n. By definition, the empty sequence corresponds to {n}.

2.2 Regular, basic, and restricted subspace partitions

2.2.1 Splits of subspaces

The study of all possible subspace partitions and their types considered in [1, 2] is hampered
by the fact that even in small dimensions, the maximal subspace partitions of V (n, q) have
not been enumerated for all q, and even their types remain a mystery. Examples are the
number of 2-spreads of V (4, q) and the types of the exceptional partitions of V (6, q) that we
mentioned elsewhere [2]. As a matter of fact, when we put aside the dozens of special cases
of partition constructions of novel types [7, 17, 25], there have been only two basic existence
theorems in the literature that are used consistently:

(A) If d divides n, then André [3] proved that V (n, q) has a refinement of type d
qn−1

qd−1 ,
which is better known as a d-spread of V (n, q).

(B) If 1 ≤ d < n/2, then it was proved by Beutelspacher [6], and independently by Bu [7],
that V (n, q) has a refinement of type (n− d)1 d qn−d

.

The case d = n/2 is covered by (A). If d divides n but is not equal to n/2, then finitely
many applications of the move (B) will give us a spread as in (A). Thus, these two refinements
can be combined into a single one:

(C) If 1 ≤ d ≤ n/2, then V (n, q) has a refinement of type (n− d)1 d qn−d

.

Definition 10 (Split of subspace). A split is a refinement of the form (C) on any one
subspace in a subspace partition. We will let (a, b) (for a ≥ b ≥ 1) denote a subspace split
that produces the refinement (a+ b)1 → a1b q

a

of the type (a+ b)1.

Note that a split only shows the type of the move and not the subspace it is applied
to. It is possible to obtain many different refined subspace partitions (of the same type) by
applying a split to a specific subspace partition, just as in the case of set partitions.

2.2.2 The mechanism for creating regular subspace partitions

We will use the construction of Beutelspacher [6] and Bu [7] that yields the partitions in the
statement (B) discussed earlier. This construction starts from a given direct sum decompo-
sition W ⊕ U of V (n, q) and a partition of U to give us a partition of V (n, q) that includes
U and W . Moreover, the new subspaces in the partition reproduce the dimension of U .
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Theorem 11 (Beutelspacher [6]). Let V = V (n, q), U and W be subspaces of V such that
V = W ⊕ U , and s = dim(W ) ≥ dim(U) = t. Let {w1, . . . , ws} be a basis of W , and
{u1, . . . , ut} be a basis of U . Moreover, we identify W with the field GF(qs). For every
element γ ∈ W , define a subspace Uγ of V by

Uγ = span({u1 + γw1, . . . , ut + γwt}).

Then dim(Uγ) = t, Uγ ∩ Uγ′ = {0} for γ 6= γ′, and the collection

{W} ∪ {Uγ : γ ∈ W}

of subspaces forms a partition of V .

Theorem 11 can be used to accomplish refinements described in (C):

Corollary 12. Choosing dim(W ) = n−d and dim(U) = d (where d ≤ n/2) in Theorem 11,
we obtain a subspace partition of V (n, q) of type (n− d)1d qn−d

.

We will informally designate the new subspaces Uγ created in the above corollary, for
which γ 6= 0, as “copies” of U = U0.

Definition 13 (Regular subspace partition). A regular subspace partition of V = V (n, q)
is one that is obtained from V via a finite number of splits of type (C), employing the
mechanism described in Corollary 12.

2.2.3 Basic subspace partitions

Let us fix a basis S = {e1, . . . , en} of V = V (n, q), and identify it with n via the subscripts.

Definition 14 (Ordering split of special subspace). Let D be a nonempty subset of S. An
ordering split of type (a, b) of 〈D〉, the subspace of V (n, q) generated by D, is one that is
created by applying the ordering split (a, b) to the set D to obtain a partition {A,B} of
D, then applying the construction in Corollary 12 to 〈D〉 = 〈A〉 ⊕ 〈B〉, with W = 〈A〉 and
U = 〈B〉.

Definition 15 (Basic subspace partition). We call a regular subspace partition Π of V basic
if it can be obtained by applying a sequence of ordering splits to V = 〈S〉 that would have
resulted in the corresponding basic set partition of S.

Lemma 16. Let Π be a basic subspace partition as described above, and let {D1, . . . , Dk}
be the corresponding basic set partition of the basis S of V . Then Π contains the subspaces
〈D1〉, . . . , 〈Dk〉 of V .

Note that due to the different choices of identification of W with GF(qs) in Theorem 11,
there may be multiple basic subspace partitions associated with an integer partition of n.
However, all of these basic subspace partitions are in the same orbit under the action by
GL(n, q).

6



2.2.4 Restricted subspace partitions

Definition 17 (Left/right subspaces). Consider a subspace W of V of dimension a+b, with
a ≥ b ≥ 1. We will call the a-dimensional subspace that results from a split of W of type
(a, b) a left subspace and the q a dimensional subspaces of dimension b that are produced in
the same split right subspaces.

Even if a = b, there is still one distinguished left subspace due to the construction in
Theorem 11.

From this point on, we will only consider regular subspace partitions of V (n, q) that
are either basic or are obtained from a basic one by finitely many splits via the mechanism
described in Corollary 12 and three additional rules that we will outline below.

Definition 18 (Restricted subspace partition). Let V = V (n, q). A regular subspace par-
tition Γ of V is called a restricted subspace partition if it is basic, or if it can be obtained
from a basic subspace partition Π (as given in Definition 15 and Lemma 16) by refinements
of type (C) according to the following rules:

1. The unique ancestor rule: The subspaces 〈Di〉 in Π will be left intact.

2. The left-right rule: Only copies of 〈Di〉 and subsequently the resulting left subspaces
can be split.

3. The dimension rule: If f1 · · · fs is the Gaussian partition describing the nonincreasing
dimensions of the subspaces that exist at any stage of the construction, then applying a split
(a, b) to a subspace of dimension fi with i < s will result in the ordering fi > a ≥ b ≥
fi+1. Exception: The same split (a, b) may be applied to several subspaces of dimension fi
simultaneously.

Remark 19. The untouched subspaces 〈Di〉 reflect the corresponding partitioning of the basis
S of V as a set. This way, we can trace every restricted subspace partition back to a unique
basic set partition as well as a unique integer partition. The dimension rule dictates that
the parts a and b of the split cannot be strictly smaller than the dimensions to the right of
fi, if any.

3 Restricted Gaussian partitions extend integer parti-

tions

3.1 Basic Gaussian partitions

Definition 20 (Basic Gaussian partition). A regular Gaussian partition of V (n, q) is called
basic if it is the type of a basic subspace partition of V (n, q).

Proposition 21. The basic Gaussian partitions of V (n, q) and the basic set partitions of n
are in one-to-one correspondence with the integer partitions of n.
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Example 22. The integer partition 523114 of n = 17 is represented by the basic Gaussian
partition

5 15 q53 q101 q131 q141 q151 q16 = 5 1+q53 q101 q13+q14+q15+q16

of V (17, q). Note that the exponent of 5 q5 tells us that the sum of the dimensions that come
before (equivalently, the parts of the corresponding integer partition) is 5, the exponent of
3 q10 tells us that the previous sum is 10, and the exponent of 1 q13 tells us that the previous
dimensions add up to 13, etc.

The following proposition provides an explicit shape for basic Gaussian partitions.

Proposition 23.

(1) The basic Gaussian partition of V (n, q) that corresponds to the integer partition
d1 · · · dk of n, with d1 ≥ · · · ≥ dk, is given by

T = d11d
q d1

2 d q d1+d2

3 · · · d q
d1+···+dk−1

k .

Conversely, a partition of type T , where d1 ≥ · · · ≥ dk and d1 + · · ·+ dk = n, is basic.

(2) (The Addition Property) For a Gaussian partition written as in part (1), the exponent
qt of any dimension di reflects the sum t = d1 + · · ·+ di−1 of the parts of the corresponding
integer partition that come before di (the empty sum is zero).

(3) If we require the dimensions di to be distinct, then the basic Gaussian partition cor-
responding to the integer partition dn1

1 · · · d
nk

k of n, with d1 > · · · > dk, is given by

T = d1+q d1+···+q(n1−1)d1

1 d qn1d1+qn1d1+d2+···+qn1d1+(n2−1)d2

2 · · ·

d q
(n1d1+···+nk−1dk−1)+···+q(n1d1+···+(nk−1)dk)

k .

Moreover, the uniqueness of the exponents in T as a polynomial in q with integer coefficients
0 or 1 follows from the uniqueness of digits in the base-q representation of positive integers.

The two depictions of T in Proposition 23, parts (1) and (3), correspond to the left- and
right-hand sides of the equation in Example 22 respectively.

3.2 Restricted Gaussian partitions

The definition and notation of splits can be applied to the regular Gaussian partitions asso-
ciated with V (n, q). The subspace dimensions in a Gaussian partition T will be written in
nonincreasing order, with or without exponents.

Definition 24 (Dimension-preserving split of Gaussian partition). Let T = fx1
1 · · · f

xk

k with
f1 ≥ · · · ≥ fk be a Gaussian partition, and suppose that fi = a + b with a ≥ b ≥ 1 and
i < k. Then the split (a, b) of the dimension fi is called dimension-preserving provided
that fi > a ≥ b ≥ fi+1. Splits of the last dimension, fk, are always dimension-preserving.
Simultaneous applications of the same dimension-preserving split (a, b) to several of the
dimensions fi are also considered to be dimension-preserving.
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After applying a dimension-preserving split (a, b) to one of the dimensions fi as above,
we will replace the segment fxi

i f
xi+1

i+1 in T by fxi−1
i a1b q

a

f
xi+1

i+1 . If xi ≥ j, then j simultaneous

applications of (a, b) to the fi’s will result in the expression fxi−j
i ajb jq

a

f
xi+1

i+1 , so that the
nonincreasing order is preserved.

Definition 25 (Left/right dimensions). Let (a, b) be a split to be applied to a dimension
f = a+b. Then a1 is called a left dimension and the dimensions b appearing in bq

a

are called
right dimensions, even if a = b.

A restricted Gaussian partition TΓ is just the type of a restricted subspace partition Γ.
However, it is possible to describe a restricted Gaussian partition without any reference to
a restricted subspace partition by applying the principles in Section 2.2.4.

Definition 26 (Restricted Gaussian partition, Spine, Spinelet). Let V = V (n, q) and T be
a basic Gaussian partition of V , written

T = d1+q d1+···+q(n1−1)d1

1 d qn1d1+qn1d1+d2+···+qn1d1+(n2−1)d2

2 · · ·

d q
(n1d1+···+nk−1dk−1)+···+q(n1d1+···+(nk−1)dk)

k (d1 > · · · > dk)

as in Proposition 23(3). The partition T and any regular Gaussian partition T ′ obtained
from T by dimension-preserving splits according to the following rules are called restricted
Gaussian partitions of V :

1. A split (a, b) may only be applied to the dimension di in T if the exponent of di is not
equal to 1.

2. At most N = qu − 1 splits of the same type (a, b) may be applied simultaneously to
repeated dimensions di in the basic partition T , where qu is the unique largest power of q
in the exponent of di. The linearly ordered collection of N Gaussian partitions obtained by
applying (a, b) to the di’s 1 through N times is called the spine corresponding to the split
(a, b).

3. At any regular Gaussian partition containing a power ak of a left dimension a (where
1 ≤ k ≤ N) on a spine, we may apply a dimension-preserving split (c, d) up to k times to a,
obtaining a linearly ordered collection of k Gaussian partitions called a spinelet corresponding
to (c, d). Any subsequent linear side branch constructed by up to l repeated dimension-
preserving splits of the same kind to left dimensions cl is also called a spinelet, and so on.

Examples of spines and spinelets can be seen in Example 28 as well as Figure 1. Note
that we are allowed to completely dissolve powers of left dimensions on a spine or spinelet,
whereas the number of applications of any one order-preserving split to the basic Gaussian
partition T is bounded.
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Remark 27.

1. The tree of various spines and spinelets emanating from T help us visualize the universe
of possibilities for restricted Gaussian partitions T ′ constructed from T and eventually
help us explicitly count all such partitions.

2. Suppose T were written in the form

T = d11d
q d1

2 d q d1+d2

3 · · · d q
d1+···+dk−1

k (d1 ≥ · · · ≥ dk)

as in Proposition 23(1). Clearly, strictly smaller dimensions a and b cannot be placed
in between the same two integers di and di+1 in T by the dimension rule for subspaces,
and splitting the unique subspace 〈Di〉 of dimension di is prohibited by the unique
ancestor rule. Hence, for any distinct dimension of T , with largest power of q in its
exponent equal to qu, we may only dissolve (refine) at most qu − 1 copies of it.

3. Only one kind of dimension-preserving split (a, b) may be applied to a dimension di
during a particular construction. If a different one, say (r, s) with a > r and b < s
is attempted before or after (a, b), then the resulting order of dimensions would be
di, r, s, a, b, di+1 or di, a, b, r, s, di+1, violating the dimension rule.

4. By the same reasoning as above, only one type of dimension-preserving split may be
applied to a subsequently formed left dimension.

5. None of the dimension-preserving splittings whose results are placed between powers
of dimensions di and di+1 ends in another basic Gaussian partition. However, if we
were to split the last dimension di at the end of a spine (corresponding to the subspace
〈Di〉) using an (N + 1)st split (a, b), then we would arrive at another basic Gaussian
partition. This is stated as Proposition 29.

6. The construction process of any restricted Gaussian partition T ′ is unique up to order.
That is, it can be traced back to a unique basic Gaussian partition T , and there is only
one possible set of splits that results in T ′ (splits starting out of different places in T
commute). This is stated as Proposition 30.

Example 28 (The Gaussian partitions of V (6, q)). The 11 = p(6) basic Gaussian partitions
of V (6, q) are 61, 511q

5
, 411q

4+q5 , 311q
3+q4+q5 , 211q

2+q3+q4+q5 , 11+q+q2+q3+q4+q5 , 412 q4 , 31+q3 ,
312 q31q

5
, 21+q2+q4 , and 21+q21q

4+q5 . The first five cannot be split further without running
into another basic partition, and the sixth one is already minimal. The non-basic restricted
Gaussian partitions obtained from the remaining five are described in the following table:
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Basic Splits Non-basics Range

412 q4 (1, 1) 412 q4−i1i(q+1) 1 ≤ i ≤ q4 − 1

31+q3 (2, 1) 31+q3−i2i1iq
2

1 ≤ i ≤ q3 − 1

31+q3 (2, 1) and (1, 1) 31+q3−i2i−j1iq
2+j(q+1) 1 ≤ i ≤ q3 − 1; 1 ≤ j ≤ i

312 q31q
5

(1, 1) 312 q3−i1i(q+1)+q5 1 ≤ i ≤ q3 − 1

21+q2+q4 (1, 1) 21+q2+q4−i1i(q+1) 1 ≤ i ≤ q4 − 1

21+q21q
4+q5 (1, 1) 21+q2−i1i(q+1)+q4+q5 1 ≤ i ≤ q2 − 1

Consider the number of non-basic regular Gaussian partitions of V (6, q): there are

s(q) =

q3−1
∑

i=1

i
∑

j=0

1 =

q3−1
∑

i=1

(i+ 1) =
(q3 − 1)q3

2
+ (q3 − 1)

of them that are obtained from 31+q3 , and the total is

(q4 − 1) + s(q) + (q3 − 1) + (q4 − 1) + (q2 − 1),

a rational polynomial in q with root q = 1.
In this table, we can see the spines corresponding to the separate splits of types (1, 1)

and (2, 1) as well as the spinelets resulting from (2, 1)’s followed by (1, 1)’s. See Figure 1,
where the basic Gaussian partitions, spines, and spinelets for n = 6 are laid out in tree form.

Proposition 29. Let

T = d 1+qd1+···+q(n1−1)d1

1 d qn1d1+qn1d1+d2+···+qn1d1+(n2−1)d2

2 · · ·

d q
(n1d1+···+nk−1dk−1)+···+q(n1d1+···+(nk−1)dk)

k ,

with dimensions d1 > · · · > dk, be a basic Gaussian partition. If (a, b) is a dimension-
preserving split with a + b = di, then neither the spine obtained by applying (a, b) to T
simultaneously one through qn1d1+···+(ni−1)di − 1 times, nor the set of restricted Gaussian
partitions obtained from the spine, contains a basic partition. However, with an additional
application of the split (a, b) to the last partition on the spine, we obtain another basic
Gaussian partition T ′.

Proof. As long as the largest power of q in the exponent of di is partially decomposed, the
Gaussian partition cannot be basic, because the exponent of di does not correctly reflect the
Addition Property in Proposition 23. However, once the highest power of q in the exponent
of di is completely dissolved, we do get a basic partition: this partition is

T ′ = d 1+qd1+···+q(n1−1)d1

1 · · · d q(n1d1+···+ni−1di−1)+···+q(n1d1+···+(ni−2)di)

i

a q(n1d1+···+(ni−1)di)b q
(n1d1+···+(ni−1)di+a)

d q(n1d1+···+nidi)+···

i+1 · · ·
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link between basic partitions
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;

;

spinelets

Figure 1: Basic Gaussian partitions, spines, and spinelets for n = 6

The exponents of a and b, as well as the expression qn1d1 in the exponent of di+1, conform
to the addition property; note that a+ b = di, and equalities in the expression a ≥ b ≥ di+1

are allowed.

Proposition 30. A restricted Gaussian partition is uniquely defined by its basic ancestor
and the set of splits applied to it.

Proof. This proof depends implicitly on the uniqueness of the base-q representation of posi-
tive integers. Every non-basic restricted Gaussian partition T ′ starts from some basic Gaus-
sian partition T by definition. It turns out that T can be uniquely reconstructed due to the
structure of basic partitions described in Proposition 23: let

T = d11d
q d1

2 d q d1+d2

3 · · · d q
d1+···+dk−1

k .

The original dimensions d1 ≥ · · · ≥ dk of T are all present in T ′. In fact, if k ≥ 2, then d1 and
d2 must be the leftmost two numbers in T ′, when dimensions are written in nonincreasing
order without exponents, because of Definition 26. If the total exponent of d2 is already q d1 ,
then we factor out this power, and the next number to the right has to be d3 < d2. If the

total exponent exceeds q d1 , then we understand that d3 = d2, separate d qd1

2 , and check if
the total exponent of d3 is qd1+d2 , etc. As soon as we hit an exponent of some di that falls
short of the Addition Property in Proposition 23, the first split (a, b) applied to di can be
identified by the first integer a < di to the right of the di’s. If aα is the collection of all a’s
in T ′, then we can locate (di − a)αq

a

= bαq
a

somewhere to the right (and the next integer, if

12



any, must be di+1). All subsequent splits in nested intervals, if any, can be put together in
this fashion, from outside towards inside, owing to Definition 26. Then we start working on
di+1, and so on, until all splits are repaired backwards and T is re-created.

3.3 Some preliminary counting

We will use the following lemma, which states Faulhaber’s formula [9] for the sums of con-
secutive powers.

Lemma 31 (Sums of Consecutive Powers [9]). Let N and m be any nonnegative integers.
Then the familiar sum

θm(N) =
N
∑

k=1

km

of the first N consecutive m-th powers of k is a rational polynomial in N , with θm(0) = 0
(when N = 0, the empty sum is equal to zero). An explicit formula for θm(N) can be given
in terms of the Bernoulli numbers Bk:

θm(N) =
1

m+ 1

m
∑

k=0

(

m+ 1

k

)

(−1)kBk N
m+1−k. (3)

Corollary 32. Let N be a positive integer, and S(x) be any rational polynomial. Then the
sum

U(N) =
N
∑

k=1

S(k)

is a rational polynomial in N , with U(0) = 0.

Proof. Let S(x) = a0 + a1x + · · · + atx
t, with ai ∈ Q. Then, in the notation of Lemma 31,

the sum

U(N) = a0

N
∑

k=1

1 + a1

N
∑

k=1

k + · · ·+ at

N
∑

k=1

kt = a0θ0(N) + a1θ1(N) + · · ·+ atθt(N)

is a Q-linear combination of rational polynomials in N with N = 0 as a root.

Let N be an unspecified positive integer and k be a variable that may take on the integer
values 1, 2, . . . , N . Recall that we denote the set {1, 2, . . . , k} by k. We define a sequence of
multisets A0(N), A1(N), A2(N), ... by the following recursive rule: we set A0(N) = {N},
and replace each occurrence of an integer k in the set Ai(N) by all elements of the set k in
Ai+1(N). Thus

Ai+1(N) =
N
⊎

k=1

Ai(k),

13



where ⊎ denotes the multiset sum. The first few multisets in this sequence are

A0(N) = {N}, A1(N) =
N
⊎

k=1

A0(k) = N = {1, 2, . . . , N}, and

A2(N) =
N
⊎

k=1

A1(k) = 1 ⊎ 2 ⊎ · · · ⊎N = {1} ⊎ {1, 2} ⊎ · · · ⊎ {1, 2, . . . , N}.

Corollary 33. Let 1Ai(N)(k) denote the multiplicity of the integer k in the multiset Ai(N).
For i ≥ 0, let

Si(N) =
N
∑

k=1

k · 1Ai(N)(k),

the sum of all elements of the multiset Ai(N) counted with multiplicities. Then
(1) For each i ≥ 0, we have

Si+1(N) =
N
∑

k=1

Si(k).

(2) For each i ≥ 0, the expression Si(N) is a rational polynomial in N , with Si(0) = 0.

Proof. Part (1) follows immediately from the definition of Ai as a sum of multisets and the
additive property of the multiplicity function. For part (2), we note that S0(N) = N =
θ0(N), and

S1(N) =
N
∑

k=1

k =
N
∑

k=1

S0(k) = θ1(N).

By Corollary 32 and part (1), it is clear that each subsequent Si(N) is a polynomial with
the desired properties.

3.4 Adding up

Proposition 34. Let T be a basic Gaussian partition of V (n, q) given by

T = d11d
q d1

2 d q d1+d2

3 · · · d q
d1+···+dk−1

k ,

where d1 ≥ · · · ≥ dk and d1 + . . . + dk = n. Then the number of all restricted Gaussian
partitions obtained from T is a rational polynomial in q. Moreover, q = 1 is a root of this
polynomial.

Remark 35. The restricted Gaussian partitions obtained from T according to the rules in
Section 3.2 are necessarily non-basic by Proposition 29.

14



Proof. In the special cases of a basic Gaussian partition T for which the only dimension-
preserving splits create other basic partitions, or where all di = 1, the polynomial in question
is the zero polynomial. Henceforth, we assume that it is possible to obtain non-basic regular
Gaussian partitions from T . Since sequences of splits are applied to one dimension di at a
time, it suffices to show that the number of Gaussian partitions obtained from one di is a
polynomial Pi(q) of the desired type. Again, we single out the cases where it is not possible
to fit any splits to di, and declare that in these cases Pi(q) = 1. However, there will be at
least one factor Pi(q) that is a rational polynomial with 1 as a root by our assumption. The
total number for T will be the product PT (q) of all Pi(q).

Thus, assume that the restricted Gaussian partitions obtained from T only contain
changes to di, and that qu is the largest power of q in the exponent of di. Let N = qu − 1
and recall the notation of Corollary 33. Now, several different splits (a, b) may be allowed
for di (i.e., we have a + b = di and di > a ≥ b ≥ di+1), but any given restricted Gaussian
partition may contain only one of these, possibly applied several times (see Section 3.2).
Simultaneous applications of a split (a, b) results in a total of N = S0(N) possible Gaussian
partitions on a spine, where the set of exponents of a is {1, 2, . . . , N} = A1(N). If there
are t0 = t0(i) possible splits (a, b) of di, then there must be t0S0(N) Gaussian partitions
that have exactly one more kind of split than T has in their construction, because spines are
disjoint by Proposition 30.

For any one of the first splits (a, b) of di, let (c, d) be one of the next generation of splits
(that is, c + d = a, and a > c ≥ d ≥ b). Then each ak on the spine will generate a new set
of exponents for c on a spinelet, namely, k = {1, 2, . . . , k}. The multiset A2(N) will contain
all exponents of c thus generated, and S1(N) new Gaussian partitions that contain only
(a, b) and (c, d) in their construction sequence (starting from T ) will be created. If there are
t1 = t1(i) possible sets of back-to-back splits (a, b) and (c, d) applied to di, then the number
of Gaussian partitions that are obtained from T by splitting di with only two kinds of new
splits is t1S1(N), as once again Proposition 30 tells us that there cannot be any repetitions
of Gaussian partitions when different sequences of splits are employed. We continue in this
manner as far as possible.

If tr = tr(i) denotes the number of all distinct back-to-back split sequences of length r+1
applied to di, and if the maximum possible length of such sequences is m = m(i), then the
total number of restricted Gaussian partitions that can be obtained from T by splitting only
di is given by the rational polynomial

Pi(q) = t0S0(N) + · · ·+ tm−1Sm−1(N),

which must have q = 1 as a root by Corollary 33. The product

PT (q) =
k
∏

i=1

Pi(q)

is hence the total number of restricted Gaussian partitions obtained from T , a rational
polynomial with PT (1) = 0. Note that the numbers u, N , m, and t1, . . . , tm−1 depend on i,
but we are suppressing references to i for simplicity of notation.
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As an immediate corollary of Proposition 34, we obtain the proof of our main result.

Proof of Theorem 1. The total number of basic Gaussian partitions is p(n), and each ba-
sic partition T produces PT (q) non-basic restricted partitions. Then the total number of
restricted Gaussian partitions of V (n, q) is given by

R(q) = p(n) +
∑

T

PT (q),

which is a rational polynomial in q with R(1) = p(n) +
∑

T 0 = p(n).
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