Some Properties of a Sequence Defined with the Aid of Prime Numbers

Brăduţ Apostol
"Spiru Haret" Pedagogic High School
5 Timotei Cipariu St.
620004 Focşani
Romania
apo_brad@yahoo.com
Laurenţiu Panaitopol ${ }^{1}$
Lucian Petrescu
"Henri Coandă" Technical College
2 Tineretului St.
820235 Tulcea
Romania
petrescuandreea@yahoo.com
László Tóth
Department of Mathematics
University of Pécs
Ifjúság útja 6
7624 Pécs
Hungary
ltoth@gamma.ttk.pte.hu

[^0]
Abstract

For every integer $n \geq 1$ let a_{n} be the smallest positive integer such that $n+a_{n}$ is prime. We investigate the behavior of the sequence $\left(a_{n}\right)_{n \geq 1}$, and prove asymptotic results for the sums $\sum_{n \leq x} a_{n}, \sum_{n \leq x} 1 / a_{n}$, and $\sum_{n \leq x} \log a_{n}$.

1 Introduction

For every integer $n \geq 1$ let a_{n} be the smallest positive integer such that $n+a_{n}$ is prime. Here $a_{1}=1, a_{2}=1, a_{3}=2, a_{4}=1, a_{5}=2, a_{6}=1, a_{7}=4$, etc. This is sequence A013632 in Sloane's Online Encyclopedia of Integer Sequences [4]. For $n \geq 2, a_{n}$ is the smallest positive integer such that $\operatorname{gcd}\left(n!, n+a_{n}\right)=1$. In this paper we study the behavior of the sequence $\left(a_{n}\right)_{n \geq 1}$, and prove asymptotic results for the sums $\sum_{n \leq x} a_{n}, \sum_{n \leq x} 1 / a_{n}$ and $\sum_{n \leq x} \log a_{n}$.

We are going to use the following standard notation:

- $\pi(x)$ is the number of primes $\leq x$,
- $\pi_{2}(x)$ is the number of twin primes $p, p+2$ such that $p \leq x$,
- p_{n} is the n-th prime,
- $d_{n}=p_{n+1}-p_{n}$,
- $f(x) \ll g(x)$ means that $|f(x)| \leq C g(x)$, where C is an absolute constant,
- $g(x) \gg f(x)$ means that $f(x) \ll g(x)$,
- $f(x)=F(x)+O(g(x))$ means that $f(x)-F(x) \ll g(x)$,
- $f(x) \asymp g(x)$ means that $c f(x) \leq g(x) \leq C f(x)$ for some positive absolute constants c and C,
- $f(x) \sim g(x)$ means that $\lim _{x \rightarrow \infty} f(x) / g(x)=1$.

We will apply the following known asymptotic results concerning the distribution of the primes:

$$
\begin{gather*}
\pi(x) \sim \frac{x}{\log x}, \quad p_{n} \sim n \log n \quad \text { (Prime number theorem), } \\
\sum_{p_{n} \leq x} d_{n}^{2} \ll x^{23 / 18+\varepsilon} \quad \text { for every } \varepsilon>0 \quad \text { (unconditional result of Heath-Brown [1]), } \tag{1}\\
\sum_{p_{n} \leq x} d_{n}^{2} \ll x(\log x)^{3} \quad(\text { assuming the Riemann hypothesis, result of Selberg [3]), } \tag{2}\\
\left(\frac{d_{2} d_{3} \cdots d_{n}}{(\log 2)(\log 3) \cdots(\log n)}\right)^{1 / n} \asymp 1 \quad \text { (due to Panaitopol [2, Prop. 3]). } \tag{3}
\end{gather*}
$$

This research was initiated by Laurenţiu Panaitopol (1940-2008), former professor at the Faculty of Mathematics, University of Bucharest, Romania. The present paper is dedicated to his memory.

2 Equations and identities

By the definition of a_{n}, for every $n \geq 1$ we have $n+a_{n}=p_{\pi(n)+1}$, that is

$$
\begin{equation*}
a_{n}=p_{\pi(n)+1}-n . \tag{4}
\end{equation*}
$$

From (4) we deduce that for every $k \geq 1$,

$$
\begin{equation*}
a_{p_{k}}=p_{k+1}-p_{k}, a_{p_{k}+1}=p_{k+1}-p_{k}-1, \ldots, a_{p_{k+1}-1}=1 \tag{5}
\end{equation*}
$$

Proposition 1. For every integer $a \geq 1$ the equation $a_{n}=a$ has infinitely many solutions.
Proof. Let $A_{k}=\left\{1,2, \ldots, p_{k+1}-p_{k}\right\}$. Since $\limsup _{k \rightarrow \infty}\left(p_{k+1}-p_{k}\right)=\infty$, it follows from (5) that for every integer $a \geq 1$ there exist infinitely many integers $k \geq 1$ such that $a \in A_{k}$, whence the equation $a_{n}=a$ has infinitely many solutions.

Now we compute the sum $S_{n}=\sum_{i=1}^{n} a_{i}$.
Proposition 2. For every prime $n \geq 3$ we have

$$
\begin{equation*}
S_{n}=\frac{1}{2}\left(2 p_{\pi(n)+1}-p_{\pi(n)}+\sum_{k=1}^{\pi(n)-1} d_{k}^{2}\right) \tag{6}
\end{equation*}
$$

and for every composite number $n \geq 4$,

$$
\begin{equation*}
S_{n}=\frac{1}{2}\left(p_{\pi(n)}^{2}+2\left(n+1-p_{\pi(n)}\right) p_{\pi(n)+1}+\sum_{k=1}^{\pi(n)-1} d_{k}^{2}-n^{2}-n\right) . \tag{7}
\end{equation*}
$$

Proof. If $n \geq 3$ is a prime, then $n=p_{m}$ for some $m \geq 2$. By using (4),

$$
\begin{aligned}
S_{n} & =\sum_{i=1}^{n}\left(p_{\pi(i)+1}-i\right) \\
& =2+3+(5+5)+\cdots+\left(p_{m}-p_{m-1}\right) p_{m}+p_{m+1}-\frac{n(n+1)}{2} \\
& =2+\sum_{k=2}^{m} p_{k}\left(p_{k}-p_{k-1}\right)+p_{m+1}-\frac{n(n+1)}{2} \\
& =\frac{1}{2}\left(p_{1}^{2}+2 \sum_{k=2}^{m} p_{k}^{2}-2 \sum_{k=2}^{m} p_{k} p_{k-1}+2 p_{m+1}-n^{2}-n\right) \\
& =\frac{1}{2}\left(2 p_{m+1}-n+\sum_{k=1}^{m-1}\left(p_{k+1}-p_{k}\right)^{2}\right)
\end{aligned}
$$

and (6) follows by using that $m=\pi(n)$.
Now let $t \geq 4$ be composite. Let $m \geq 2$ be such that $p_{m}<t<p_{m+1}$. By applying (6) for $n=p_{m}$, where $m=\pi(n)=\pi(t)$, we deduce

$$
\begin{aligned}
S_{t} & =S_{n}+\sum_{i=n+1}^{t} a_{i}=S_{n}+\sum_{i=n+1}^{t}\left(p_{\pi(i)+1}-i\right) \\
& =\frac{1}{2}\left(2 p_{\pi(t)+1}-p_{\pi(t)}+\sum_{k=1}^{\pi(t)-1}\left(p_{k+1}-p_{k}\right)^{2}\right)+\frac{\left(2 p_{\pi(t)+1}-n-t-1\right)(t-n)}{2} \\
& =\frac{1}{2}\left(2 p_{\pi(t)+1}-p_{\pi(t)}+\sum_{k=1}^{\pi(t)-1}\left(p_{k+1}-p_{k}\right)^{2}+2 p_{\pi(t)+1}(t-n)-t^{2}-t+n^{2}+n\right) \\
& =\frac{1}{2}\left(p_{\pi(t)}^{2}+2\left(t+1-p_{\pi(t)}\right) p_{\pi(t)+1}+\sum_{k=1}^{\pi(t)-1}\left(p_{k+1}-p_{k}\right)^{2}-t^{2}-t\right)
\end{aligned}
$$

and (7) is proved.
Remark 3. If n is prime, then (7) reduces to (6). Therefore, the identity (7) holds for every integer $n \geq 3$.

Next we compute the product $P_{n}=\prod_{i=1}^{n} a_{i}$.
Proposition 4. For every prime $n \geq 3$ we have

$$
\begin{equation*}
P_{n-1}=\prod_{k=1}^{\pi(n)-1} d_{k}! \tag{8}
\end{equation*}
$$

and for every composite number $n \geq 4$,

$$
\begin{equation*}
P_{n-1}=\prod_{k=1}^{\pi(n)-1} d_{k}!\prod_{k=1}^{n-p_{\pi(n)}}\left(p_{\pi(n)+1}-p_{\pi(n)}-k+1\right) \tag{9}
\end{equation*}
$$

Proof. Let $n=p_{m} \geq 3$ be a prime. By using (5),

$$
P_{n-1}=\prod_{i=2}^{m}\left(p_{i}-p_{i-1}\right)!=\prod_{i=1}^{m-1}\left(p_{i+1}-p_{i}\right)!
$$

which proves (8).

Now let $t \geq 4$ be composite such that $p_{m}<t<p_{m+1}$. By applying (8) for $n=p_{m}$, where $m=\pi(n)=\pi(t)$, we deduce

$$
\begin{aligned}
P_{t-1} & =P_{n-1} \prod_{i=n}^{t-1} a_{i}=P_{n-1} \prod_{i=n}^{t-1}\left(p_{\pi(i)+1}-i\right) \\
& =\prod_{k=1}^{\pi(t)-1} d_{k}!\prod_{j=1}^{t-p_{m}}\left(p_{m+1}-p_{m}-j+1\right) \\
& =\prod_{k=1}^{\pi(t)-1} d_{k}!\prod_{k=1}^{t-p_{\pi(t)}}\left(p_{\pi(t)+1}-p_{\pi(t)}-k+1\right)
\end{aligned}
$$

and (9) is proved.
Remark 5. If n is prime, then the second product in (9) is empty and (9) reduces to (8). Hence the identity (9) holds for every integer $n \geq 3$.

3 Asymptotic results

Theorem 6. For every $\varepsilon>0$,

$$
\begin{equation*}
x \log x \ll \sum_{n \leq x} a_{n} \ll x^{23 / 18+\varepsilon} \tag{10}
\end{equation*}
$$

where $23 / 18 \doteq 1.277$. If the Riemann hypothesis is true, then the upper bound in (10) is $x(\log x)^{3}$.

Proof. Let $x \geq 2$ and let $p_{k} \leq x<p_{k+1}$. By using (6) for $n=p_{k+1}$,

$$
\begin{aligned}
\sum_{n \leq x} a_{n} & \leq \sum_{i=1}^{p_{k+1}} a_{i}=\frac{1}{2}\left(2 p_{k+2}-p_{k+1}+\sum_{i=1}^{k} d_{i}^{2}\right) \\
& \ll p_{k+2}+\sum_{p_{i} \leq x} d_{i}^{2}
\end{aligned}
$$

Taking into account the estimate (1) due to Heath-Brown, and the fact that $p_{k+2} \sim p_{k} \leq x$ we get the unconditional upper bound in (10). If the Riemann hypothesis is true, then by using Selberg's result (2) we obtain the upper bound $x(\log x)^{3}$.

Now, for the lower bound we use the trivial estimate

$$
\sum_{p_{n} \leq x} d_{n}^{2} \gg x \log x
$$

which follows from the inequality between the arithmetic and quadratic means. We deduce that

$$
\begin{aligned}
\sum_{n \leq x} a_{n} & \geq \sum_{i=1}^{p_{k}} a_{i}=\frac{1}{2}\left(2 p_{k+1}-p_{k}+\sum_{i=1}^{k-1} d_{i}^{2}\right) \\
& \gg \sum_{p_{i} \leq p_{k-1}} d_{i}^{2} \gg p_{k-1} \log p_{k-1} \sim x \log x
\end{aligned}
$$

since $p_{k-1} \sim k \log k$ and $k=\pi(x) \sim x / \log x, \log k \sim \log x$.
To prove our next result we need the following
Lemma 7. We have

$$
\begin{equation*}
\sum_{2 \leq n \leq x} \log d_{n}=x \log \log x+O(x) \tag{11}
\end{equation*}
$$

Proof. The inequalities (3) can be written as

$$
c n<\sum_{i=2}^{n} \log d_{i}-\sum_{i=2}^{n} \log \log i<C n
$$

for some positive absolute constants c and C. Now (11) emerges by applying the well known asymptotic formula

$$
\sum_{2 \leq n \leq x} \log \log n=x \log \log x+O(x)
$$

Theorem 8. We have

$$
\begin{equation*}
\sum_{n \leq x} \frac{1}{a_{n}}=\frac{x \log \log x}{\log x}+O\left(\frac{x}{\log x}\right) \tag{12}
\end{equation*}
$$

Proof. For $x=p_{m}-1(m \geq 2)$ we have by (5),

$$
\sum_{n \leq p_{m}-1} \frac{1}{a_{n}}=1+\sum_{i=2}^{m}\left(1+\frac{1}{2}+\cdots+\frac{1}{p_{i}-p_{i-1}}\right) .
$$

For an arbitrary $x \geq 3$ let $p_{k}(k \geq 2)$ be the prime such that $p_{k} \leq x<p_{k+1}$. Using the familiar inequalities

$$
\log m<1+\frac{1}{2}+\cdots+\frac{1}{m} \leq 1+\log m \quad(m \geq 1)
$$

we deduce

$$
\log \left(p_{i}-p_{i-1}\right)<1+\frac{1}{2}+\cdots+\frac{1}{p_{i}-p_{i-1}} \leq 1+\log \left(p_{i}-p_{i-1}\right) \quad(i \geq 2)
$$

and

$$
\begin{aligned}
& 1+\sum_{i=2}^{k} \log \left(p_{i}-p_{i-1}\right)+\frac{1}{d_{k}}<\sum_{n \leq p_{k}-1} \frac{1}{a_{n}}+\frac{1}{a_{p_{k}}} \\
\leq & \sum_{n \leq x} \frac{1}{a_{n}} \leq \sum_{n \leq p_{k+1}-1} \frac{1}{a_{n}} \leq 1+k+\sum_{i=2}^{k+1} \log \left(p_{i}-p_{i-1}\right) .
\end{aligned}
$$

By (11) we obtain

$$
\sum_{n \leq x} \frac{1}{a_{n}}=k \log \log k+O(k)
$$

Here $k=\pi(x) \sim x / \log x, \log k \sim \log x$ and we deduce (12).
Theorem 9. One has

$$
x \ll \sum_{n \leq x} \log a_{n} \ll x \log x .
$$

Proof. For an arbitrary $x \geq 3$ let $p_{k}(k \geq 2)$ be the prime such that $p_{k} \leq x<p_{k+1}$. Using the elementary inequalities

$$
m \log m-m+1 \leq \log m!\leq m \log m \quad(m \geq 1)
$$

we deduce by applying (8) that

$$
\begin{gathered}
\sum_{n \leq x} \log a_{n} \leq \sum_{n \leq p_{k+1}-1} \log a_{n}=\sum_{i=1}^{k} \log d_{i}!\leq \sum_{i=1}^{k} d_{i} \log d_{i} \\
\quad<\sum_{i=1}^{k} d_{i} \log p_{i}<\left(\log p_{k}\right) \sum_{i=1}^{k} d_{i}<\left(\log p_{k}\right) p_{k+1},
\end{gathered}
$$

where we also used that $d_{i}=p_{i+1}-p_{i}<p_{i}$ by Chebyshev's theorem. Here

$$
\begin{equation*}
p_{k} \sim k \log k, \quad k=\pi(x) \sim x / \log x, \quad \log k \sim \log x, \tag{13}
\end{equation*}
$$

and we obtain the upper bound $x \log x$.
On the other hand,

$$
\begin{gathered}
\sum_{n \leq x} \log a_{n}>\sum_{n \leq p_{k}-1} \log a_{n}=\sum_{i=1}^{k-1} \log d_{i}! \\
>\sum_{i=1}^{k-1}\left(d_{i} \log d_{i}-d_{i}+1\right)=\sum_{i=2}^{k-1} d_{i} \log d_{i}-p_{k}+k+1 .
\end{gathered}
$$

Here

$$
\begin{aligned}
\sum_{i=2}^{k-1} d_{i} \log d_{i} & =\sum_{\substack{i=2 \\
d_{i} \geq 3}}^{k-1} d_{i} \log d_{i}+2 \log 2 \sum_{\substack{i=2 \\
d_{i}=2}}^{k-1} 1 \\
& \geq(\log 3) \sum_{\substack{i=2 \\
d_{i} \geq 3}}^{k-1} d_{i}+(2 \log 2) \pi_{2}(k-1) \\
& =(\log 3)\left(\sum_{i=2}^{k-1} d_{i}-\sum_{\substack{i=2 \\
d_{i}=2}}^{k-1} d_{i}\right)+(2 \log 2) \pi_{2}(k-1) \\
& =(\log 3)\left(p_{k}-p_{2}-2 \pi_{2}(k-1)\right)+(2 \log 2) \pi_{2}(k-1) \\
& =(\log 3) p_{k}-2 \log (3 / 2) \pi_{2}(k-1)-3 \log 3 \\
& >(\log 3) p_{k}-2 \log (3 / 2) k-3 \log 3,
\end{aligned}
$$

where it is sufficient to use the obvious estimate $\pi_{2}(k-1)<k$. Note that $\log 3 \doteq 1.09$, $2 \log (3 / 2) \doteq 0.81,3 \log 3 \doteq 3.29$.

We deduce that

$$
\sum_{n \leq x} \log a_{n}>0.09 p_{k}-3
$$

Now (13) gives the lower bound x.

References

[1] D. R. Heath-Brown, The differences between consecutive primes, III, J. London Math. Soc. (2) 20 (1979), 177-178.
[2] L. Panaitopol, Properties of the series of differences of prime numbers, Publ. Centre de Rech. Math. Pures Neuchâtel (Serie 1) 31 (2000), 21-28.
[3] A. Selberg, On the normal density of primes in small intervals, and the difference between consecutive primes, Arch. Math. Naturvid. 47 (1943), No. 6, 87-105.
[4] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. http://oeis.org.

2010 Mathematics Subject Classification: Primary 11A41; Secondary 11N05.
Keywords: prime numbers, difference of consecutive primes, asymptotic behavior.
(Concerned with sequences A000040, A001223, A013632, and A076821.)

Received March 3 2015; revised version received April 3 2015. Published in Journal of Integer Sequences, May 212015.

Return to Journal of Integer Sequences home page.

[^0]: ${ }^{1}$ Deceased.

