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Abstract

For every integer n ≥ 1 let an be the smallest positive integer such that n + an
is prime. We investigate the behavior of the sequence (an)n≥1, and prove asymptotic
results for the sums

∑

n≤x an,
∑

n≤x 1/an, and
∑

n≤x log an.

1 Introduction

For every integer n ≥ 1 let an be the smallest positive integer such that n + an is prime.
Here a1 = 1, a2 = 1, a3 = 2, a4 = 1, a5 = 2, a6 = 1, a7 = 4, etc. This is sequence A013632 in
Sloane’s Online Encyclopedia of Integer Sequences [4]. For n ≥ 2, an is the smallest positive
integer such that gcd(n!, n + an) = 1. In this paper we study the behavior of the sequence
(an)n≥1, and prove asymptotic results for the sums

∑

n≤x an,
∑

n≤x 1/an and
∑

n≤x log an.
We are going to use the following standard notation:
• π(x) is the number of primes ≤ x,
• π2(x) is the number of twin primes p, p+ 2 such that p ≤ x,
• pn is the n-th prime,
• dn = pn+1 − pn,
• f(x) ≪ g(x) means that |f(x)| ≤ Cg(x), where C is an absolute constant,
• g(x) ≫ f(x) means that f(x) ≪ g(x),
• f(x) = F (x) +O(g(x)) means that f(x)− F (x) ≪ g(x),
• f(x) ≍ g(x) means that cf(x) ≤ g(x) ≤ Cf(x) for some positive absolute constants c

and C,
• f(x) ∼ g(x) means that limx→∞ f(x)/g(x) = 1.
We will apply the following known asymptotic results concerning the distribution of the

primes:

π(x) ∼
x

log x
, pn ∼ n log n (Prime number theorem),

∑

pn≤x

d2n ≪ x23/18+ε for every ε > 0 (unconditional result of Heath-Brown [1]), (1)

∑

pn≤x

d2n ≪ x(log x)3 (assuming the Riemann hypothesis, result of Selberg [3]), (2)

(

d2d3 · · · dn
(log 2)(log 3) · · · (log n)

)1/n

≍ 1 (due to Panaitopol [2, Prop. 3]). (3)

This research was initiated by Laurenţiu Panaitopol (1940–2008), former professor at the
Faculty of Mathematics, University of Bucharest, Romania. The present paper is dedicated
to his memory.
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2 Equations and identities

By the definition of an, for every n ≥ 1 we have n+ an = pπ(n)+1, that is

an = pπ(n)+1 − n. (4)

From (4) we deduce that for every k ≥ 1,

apk = pk+1 − pk, apk+1 = pk+1 − pk − 1, . . . , apk+1−1 = 1. (5)

Proposition 1. For every integer a ≥ 1 the equation an = a has infinitely many solutions.

Proof. Let Ak = {1, 2, . . . , pk+1 − pk}. Since lim supk→∞(pk+1 − pk) = ∞, it follows from (5)
that for every integer a ≥ 1 there exist infinitely many integers k ≥ 1 such that a ∈ Ak,
whence the equation an = a has infinitely many solutions.

Now we compute the sum Sn =
n
∑

i=1

ai.

Proposition 2. For every prime n ≥ 3 we have

Sn =
1

2



2pπ(n)+1 − pπ(n) +

π(n)−1
∑

k=1

d2k



 , (6)

and for every composite number n ≥ 4,

Sn =
1

2



p2π(n) + 2(n+ 1− pπ(n))pπ(n)+1 +

π(n)−1
∑

k=1

d2k − n2 − n



 . (7)

Proof. If n ≥ 3 is a prime, then n = pm for some m ≥ 2. By using (4),

Sn =
n
∑

i=1

(

pπ(i)+1 − i
)

= 2 + 3 + (5 + 5) + · · ·+ (pm − pm−1)pm + pm+1 −
n(n+ 1)

2

= 2 +
m
∑

k=2

pk(pk − pk−1) + pm+1 −
n(n+ 1)

2

=
1

2

(

p21 + 2
m
∑

k=2

p2k − 2
m
∑

k=2

pkpk−1 + 2pm+1 − n2 − n

)

=
1

2

(

2pm+1 − n+
m−1
∑

k=1

(pk+1 − pk)
2

)
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and (6) follows by using that m = π(n).
Now let t ≥ 4 be composite. Let m ≥ 2 be such that pm < t < pm+1. By applying (6)

for n = pm, where m = π(n) = π(t), we deduce

St = Sn +
t
∑

i=n+1

ai = Sn +
t
∑

i=n+1

(

pπ(i)+1 − i
)

=
1

2



2pπ(t)+1 − pπ(t) +

π(t)−1
∑

k=1

(pk+1 − pk)
2



+
(2pπ(t)+1 − n− t− 1)(t− n)

2

=
1

2



2pπ(t)+1 − pπ(t) +

π(t)−1
∑

k=1

(pk+1 − pk)
2 + 2pπ(t)+1(t− n)− t2 − t+ n2 + n





=
1

2



p2π(t) + 2(t+ 1− pπ(t))pπ(t)+1 +

π(t)−1
∑

k=1

(pk+1 − pk)
2 − t2 − t





and (7) is proved.

Remark 3. If n is prime, then (7) reduces to (6). Therefore, the identity (7) holds for every
integer n ≥ 3.

Next we compute the product Pn =
n
∏

i=1

ai.

Proposition 4. For every prime n ≥ 3 we have

Pn−1 =

π(n)−1
∏

k=1

dk!, (8)

and for every composite number n ≥ 4,

Pn−1 =

π(n)−1
∏

k=1

dk!

n−pπ(n)
∏

k=1

(pπ(n)+1 − pπ(n) − k + 1). (9)

Proof. Let n = pm ≥ 3 be a prime. By using (5),

Pn−1 =
m
∏

i=2

(pi − pi−1)! =
m−1
∏

i=1

(pi+1 − pi)!,

which proves (8).
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Now let t ≥ 4 be composite such that pm < t < pm+1. By applying (8) for n = pm, where
m = π(n) = π(t), we deduce

Pt−1 = Pn−1

t−1
∏

i=n

ai = Pn−1

t−1
∏

i=n

(

pπ(i)+1 − i
)

=

π(t)−1
∏

k=1

dk!

t−pm
∏

j=1

(pm+1 − pm − j + 1)

=

π(t)−1
∏

k=1

dk!

t−pπ(t)
∏

k=1

(

pπ(t)+1 − pπ(t) − k + 1
)

and (9) is proved.

Remark 5. If n is prime, then the second product in (9) is empty and (9) reduces to (8).
Hence the identity (9) holds for every integer n ≥ 3.

3 Asymptotic results

Theorem 6. For every ε > 0,

x log x ≪
∑

n≤x

an ≪ x23/18+ε, (10)

where 23/18
.
= 1.277. If the Riemann hypothesis is true, then the upper bound in (10) is

x(log x)3.

Proof. Let x ≥ 2 and let pk ≤ x < pk+1. By using (6) for n = pk+1,

∑

n≤x

an ≤

pk+1
∑

i=1

ai =
1

2

(

2pk+2 − pk+1 +
k
∑

i=1

d2i

)

≪ pk+2 +
∑

pi≤x

d2i .

Taking into account the estimate (1) due to Heath-Brown, and the fact that pk+2 ∼ pk ≤ x
we get the unconditional upper bound in (10). If the Riemann hypothesis is true, then by
using Selberg’s result (2) we obtain the upper bound x(log x)3.

Now, for the lower bound we use the trivial estimate

∑

pn≤x

d2n ≫ x log x,
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which follows from the inequality between the arithmetic and quadratic means. We deduce
that

∑

n≤x

an ≥

pk
∑

i=1

ai =
1

2

(

2pk+1 − pk +
k−1
∑

i=1

d2i

)

≫
∑

pi≤pk−1

d2i ≫ pk−1 log pk−1 ∼ x log x,

since pk−1 ∼ k log k and k = π(x) ∼ x/ log x, log k ∼ log x.

To prove our next result we need the following

Lemma 7. We have
∑

2≤n≤x

log dn = x log log x+O(x). (11)

Proof. The inequalities (3) can be written as

cn <

n
∑

i=2

log di −
n
∑

i=2

log log i < Cn

for some positive absolute constants c and C. Now (11) emerges by applying the well known
asymptotic formula

∑

2≤n≤x

log log n = x log log x+O(x).

Theorem 8. We have
∑

n≤x

1

an
=

x log log x

log x
+O

(

x

log x

)

. (12)

Proof. For x = pm − 1 (m ≥ 2) we have by (5),

∑

n≤pm−1

1

an
= 1 +

m
∑

i=2

(

1 +
1

2
+ · · ·+

1

pi − pi−1

)

.

For an arbitrary x ≥ 3 let pk (k ≥ 2) be the prime such that pk ≤ x < pk+1. Using the
familiar inequalities

logm < 1 +
1

2
+ · · ·+

1

m
≤ 1 + logm (m ≥ 1)

we deduce

log(pi − pi−1) < 1 +
1

2
+ · · ·+

1

pi − pi−1

≤ 1 + log(pi − pi−1) (i ≥ 2)
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and

1 +
k
∑

i=2

log(pi − pi−1) +
1

dk
<

∑

n≤pk−1

1

an
+

1

apk

≤
∑

n≤x

1

an
≤

∑

n≤pk+1−1

1

an
≤ 1 + k +

k+1
∑

i=2

log(pi − pi−1).

By (11) we obtain
∑

n≤x

1

an
= k log log k +O(k),

Here k = π(x) ∼ x/ log x, log k ∼ log x and we deduce (12).

Theorem 9. One has
x ≪

∑

n≤x

log an ≪ x log x.

Proof. For an arbitrary x ≥ 3 let pk (k ≥ 2) be the prime such that pk ≤ x < pk+1. Using
the elementary inequalities

m logm−m+ 1 ≤ logm! ≤ m logm (m ≥ 1)

we deduce by applying (8) that

∑

n≤x

log an ≤
∑

n≤pk+1−1

log an =
k
∑

i=1

log di! ≤
k
∑

i=1

di log di

<
k
∑

i=1

di log pi < (log pk)
k
∑

i=1

di < (log pk)pk+1,

where we also used that di = pi+1 − pi < pi by Chebyshev’s theorem. Here

pk ∼ k log k, k = π(x) ∼ x/ log x, log k ∼ log x, (13)

and we obtain the upper bound x log x.
On the other hand,

∑

n≤x

log an >
∑

n≤pk−1

log an =
k−1
∑

i=1

log di!

>
k−1
∑

i=1

(di log di − di + 1) =
k−1
∑

i=2

di log di − pk + k + 1.
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Here

k−1
∑

i=2

di log di =
k−1
∑

i=2
di≥3

di log di + 2 log 2
k−1
∑

i=2
di=2

1

≥ (log 3)
k−1
∑

i=2
di≥3

di + (2 log 2)π2(k − 1)

= (log 3)







k−1
∑

i=2

di −
k−1
∑

i=2
di=2

di






+ (2 log 2)π2(k − 1)

= (log 3) (pk − p2 − 2π2(k − 1)) + (2 log 2)π2(k − 1)

= (log 3)pk − 2 log(3/2)π2(k − 1)− 3 log 3

> (log 3)pk − 2 log(3/2)k − 3 log 3,

where it is sufficient to use the obvious estimate π2(k − 1) < k. Note that log 3
.
= 1.09,

2 log(3/2)
.
= 0.81, 3 log 3

.
= 3.29.

We deduce that
∑

n≤x

log an > 0.09pk − 3.

Now (13) gives the lower bound x.
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