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Abstract

Given two vectors, not necessarily of the same length, each having increasing ele-
ments, we form the matrix whose (i, j)-th element is the sum of the i-th element from
the first vector and the j-th element from the second vector. Such a matrix is called
an outer sum of the two vectors (a concept that is analogous to outer products). If
we assume that all the entries of this matrix are distinct, then we can form another
matrix of the same size but for which the (i, j)-th element is not the matrix element
itself but rather the rank of this element in a sorted list of all the numbers in the first
matrix. Such a matrix is called a Young tableau. We say that it “represents” the outer
sum. In this paper, we address the question as to whether all Young tableaux can be
generated this way. When one of the two dimensions is two, then the answer is yes. In
all higher dimensional cases, the answer is no. We prove the positive result and give
examples illustrating the negative result.
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1 Introduction

Let x and y be real vectors of lengths m and n, respectively, each with increasing elements.
Define s = {sij} where sij = xi + yj (s is the “outer sum” of x and y; we write s = x ◦ y).
Suppose x and y are in general position, so that the m × n numbers {sij} are all different.
Let tij be the rank of sij in this set of numbers. Then the array t = {tij} is an m× n Young

tableau, with entries (1, 2, . . . ,mn), satisfying tij < tik whenever j < k and tij < tkj whenever
i < k. We say that this tableau represents the outer sum. This raises an interesting question:
Can all Young tableaux be generated in this way? In this paper, we prove that all 2 × n
tableaux can represent an outer sum, and show that some larger tableaux cannot. We will
describe our efforts to characterize these tableaux.

We begin with some brief motivation for our interest in this problem. During considera-
tion of a new deconvolution algorithm for estimating the distribution of a random variable Y
based on m observations of a random variable X and n observations of the independent sum
X+Y (see [1] for details), one of us encountered the question posed in the title. He did some
hand calculations (many of which were later found to be in error), and submitted the results
to the OEIS ([2], sequence A211400). The second author saw that linear programming (LP)
could provide definitive answers in many small cases of the problem, and obtained results
for the cases

(m,n) = (2, 3), (2, 4), . . . (2, 9), (3, 3), . . . , (3, 7), (4, 4).

In this paper, we prove that for all n ≥ 1, every 2× n Young tableau can represent an outer
sum, and show that for m,n ≥ 3, this is not the case.

Remark 1. This problem is exactly equivalent to one expressed in terms of the outer product
of two positive ordered vectors, using products instead of sums, simply by taking logs. We
could also think in terms of “outer difference” and “outer division”; these are all equivalent
problems.

Remark 2. It is completely trivial that the (unique) 1 × n tableau does represent (and in
fact equals) the outer sum x ◦ y where x = (0) and y = (1, 2, . . . , n).

Remark 3. For any vector x = (x1, . . . , xm) and real k we define x + k to be the vector
(x1 + k, . . . , xm + k). Then for any k and l, x ◦ y and (x+ k) ◦ (y+ l) have the same tableau
representation.

Example 4. The 3× 3 tableau




1 2 6
3 5 7
4 8 9





cannot represent an outer sum. Let x be (a, b, c), and, ignoring the obvious vector/scalar
notational conflict, let y be (x, y, z). Then from 2 < 3 we have

a+ y < b+ x,

2

http://oeis.org/A211400


and from 7 < 8 we have
b+ z < c+ y.

Adding these inequalities gives

a+ y + b+ z < b+ x+ c+ y;

i.e., a + z < c + x, which contradicts the entries 6, 4 in the tableau. This gives us our first
taboo configuration:

T3: t12 < t21 and t23 < t32 and t31 < t13.

There are 42 Young tableaux of size 3 × 3; just 3 of these satisfy this taboo condition,
and another 3 the same with all inequalities reversed, leaving 36 that can represent an outer
sum. This result and several higher-order cases are presented in OEIS [2], sequence A211400.

Remark 5. Among the m × n tableaux with m,n ≥ 3 are some whose leading 3 × 3 sub-
tableaux are copies of the 3× 3 tableau above. These cannot represent an outer sum.

Remark 6. Suppose A is an m × n tableau. In the following, we will consider various sub-
tableaux of A. For most purposes, we need not distinguish between an a× b sub-matrix B of
A, which is the usual concept, simply dropping m− a rows and n− b columns of A, and the
corresponding sub-tableau C, which is obtained from B by replacing its elements by their
ranks (within the set of elements of B). Thus C will be a proper a× b Young tableau. For
example, the (2, 3) × (1, 3) sub-matrix of the 3 × 3 tableau above is the 2 × 2 matrix with
rows (3, 7) and (4, 9), while the corresponding 2 × 2 sub-tableau has rows (1, 3) and (2, 4).
We need not distinguish between these, because all relevant information is carried by the
ordering of their elements, without regard to their numerical values. We will never need to
perform any arithmetic operations on these elements, apart from considering their ordering.

2 The 2× n case

Theorem 7. For all n ≥ 1, each of the 2× n Young tableaux can represent an outer sum.

Proof. The number of distinct 2× n Young tableaux is the Catalan number

Cn =
1

n+ 1

(

2n
n

)

.

Very many enumerative problems have these numbers as their solution (see A000108 in the
OEIS) and we discuss just one of these, namely the number of paths of 2n steps in the
positive quadrant, starting from the origin (0, 0) and ending at (n, n), where each step is
either eastwards one unit, or northwards one unit, and where the whole path stays below
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(or on) the line y = x. We call these “lower paths” (usually referred to as “Dyck paths”
in the literature). The top row of the Young tableau tells when the eastwards steps occur,
and the bottom row tells when the northwards steps occur. We will show that each such
path corresponds to an outer sum. The generating function of the Catalan sequence is
C(x) = (1−

√
1− 4x)/2x = 1 + x+ 2x2 + 5x3 + 14x4 + 42x5 + · · · .

For n = 1, the tableau represents (0, 1) ◦ (0). For n ≥ 2 we can describe a general lower
path p (of length 2n) as the concatenation (p1, p2) of two lower paths, of lengths 2a and 2b,
respectively, where a ≥ 1 and b ≥ 0, and where the path p1 stays strictly below the line
y = x except at its endpoints. We call p1 a sub-lower path. The number of such paths of
length 2a is the coefficient of xa in xC(x), since except for the first and last steps, the path
stays below or on the line y = x − 1. The total number of lower paths of length 2n is thus
the coefficient of xn in 1 + xC(x) · C(x) which is just C(x). (This argument is one way
of deriving C(x).) The corresponding tableaux have the property that the first time both
partial rows have equal length (apart from the initial state, where both have length zero) is
when both rows have length a. This can occur with a = 1, in which case the first column
of the tableau is (1, 2). If a ≥ 2 the top row of the tableau starts (1, 2, . . .), the bottom row
has (2a− 1, 2a) in the (a− 1)-th and a-th positions, and the first a columns of T contain a
permutation of the integers (1, 2, . . . , 2a).

We proceed by induction. Suppose we have shown that for n ≤ n0, all 2 × n Young
tableaux, or the associated lower paths, can represent an outer sum. We take x = (0, 1).
Consider a 2 × n tableau T with n = n0 + 1, and its component paths p1 and p2 as above.
Except when b = 0, each of a and b is positive and less than or equal to n0, so by the inductive
hypothesis each component path can represent an outer sum, x ◦ y with y = (y1, . . . , ya) and
x ◦ z with z = (z1, . . . , zb) say. If a < n, we have t1,(a+1) = 2a+1, so we may take k = 2+ ya,
and T represents the outer sum x◦(y, z+k). The only case needing proof is when a = n, b = 0.
In this case the tableau T must be of the form

[

1 2 · · · · · · f
g · · · · · · 2n− 1 2n

]

with n ≤ f ≤ 2n− 2 and 3 ≤ g ≤ n+ 1. Consider the 2× (n− 1) matrix

M =

[

2 · · · f
g · · · 2n− 1

]

.

Since T corresponds to a sub-lower path, the elements of this matrix have the same order
relations as a Young tableau T ∗ of dimension 2 × (n − 1). The (i, j) entry t∗ij of T ∗ is just
Mij−1. T ∗ corresponds to a lower path of length 2(n−1) and so to an outer sum x◦y∗ with
y∗ = (y2, y3, . . . yn) say. We have only to show that we can choose y1 to make the tableau T
represent the outer sum x ◦ (y1, y∗). For this, we need y1 < y2, rank(1 + y1) = g. Since in
the outer sum x ◦ y∗, rank(1 + y2) = g − 1, we must have that yg−2 < 1 + y2. So we can fit
1 + y1 between yg−2 and 1 + y2, so that y1 < y2, and we are done.
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3 Linear programming

To use linear programming (LP) to study the m×n tableaux, we solve the following problem:

maximize ε

subject to yi(k) + xj(k) + ε ≤ yi(k+1) + xj(k+1), k = 1, . . . ,mn− 1,

yk + ε ≤ yk+1, k = 1, . . . ,m− 1,

xk + ε ≤ xk+1, k = 1, . . . , n− 1,

0 ≤ yk ≤ 1, k = 1, . . . ,m,

0 ≤ xk ≤ 1, k = 1, . . . , n.

Here, i(k) and j(k) denote the row and column of the k-th ranking entry in the tableau. If
the optimal value of ε is positive, then an outer sum representation exists for that tableau.
Otherwise not.

3.1 The 3× 4 case

One of us has used LP to study the 462 Young tableaux of size 3× 4, finding 295 that can
represent an outer sum, leaving 167 that cannot. Study of these 167 showed that 159 of them
satisfied the above 3×3 taboo condition (or its reverse, reversing all inequalities), applied to
each of four sub-matrices, each omitting one column of the 3× 4 tableau, leaving 8 tableaux
that do not. Examination of these suggested four new taboo configurations, namely

T41: t12 < t21 and t24 < t33 and t23 < t14 and t31 < t22

T42: t13 < t21 and t24 < t32 and t22 < t14 and t31 < t23

and the same with all inequalities reversed.

For a 4× 3 tableau there are similar transposed taboo conditions. See Figure 1 for pictures
of these taboo configurations. The values of n in the figure give the number of 3×4 tableaux
that satisfy each taboo configuration, or its reversal.

3.2 The 4× 4 case

Examination of the 4× 4 tableaux gave the following results.
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Total number of tableaux 24024
Representing outer sums 6660
Not representing 17364
Taboo T3 16432
Taboo T41 or T42, but not T3 932

We do not need any new taboo configurations.

3.3 The 3× 5 case

Examination of the 3× 5 tableaux gave the following results.

Total number of tableaux 6006
Representing outer sums 2583
Not representing 3423
Taboo T3 3233
Not representing, but not T3 190
T41, not T3 or T42 93
T42, not T3 or T41 93
Both T41 and T42, not T3 4

Again, no new taboo configurations are needed for this 3×5 case. At this point we hoped
that we had found a complete set of taboo configurations. But when we studied the 3 × 6
cases, we found new taboos.

3.4 The 3× 6 case

Examination of the 3× 6 tableaux gave the following results.

Total number of tableaux 87516
Representing an outer sum 23580
Not representing 63936
Taboo T3 60784
Not Taboo T3 3152
Taboo T41 and/or T42, not T3 3112
Not T3 or T41 or T42 40

These last 40 tableaux were found to require 8 new taboo configurations, with their
reversals, as shown in Figure 1. The frequencies add to 48, not 40, since four tableaux
satisfy both T61 and T63 (or their reversals), while four more satisfy both T62 and T64.
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Figure 1: Eleven taboo configurations. In each panel of the Figure, an arrow from node a
to node b denotes the inequality ta < tb. Any tableau with a sub-tableau satisfying all such
inequalities cannot represent an outer sum. In each panel, n is the number of tableaux (of
minimal size) that satisfy the inequalities shown (or the same with all inequalities reversed).

This result dashed our hopes. It seems clear that more taboo configurations will be
needed for the 3×8 case (perhaps not for the 3×7 case), and we can guess at some of these,
by analogy with T61 and T67. But even if we could identify a complete description of all the
taboo conditions, we would still have a difficult enumerative problem: to count the Young
tableaux that avoid all of these.

4 Final comment

The problem remains “hard”, as the entry A211400 in the OEIS says. We hope that someone
with more insight than us will make further progress on this problem. Complete lists of the
“solved” configurations in the 3× 5 and 3× 6 cases are available online [3, 4].
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