Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.2

New Congruences for Partitions where the Odd Parts are Distinct

Liuquan Wang
Department of Mathematics
National University of Singapore
Singapore, 119076
Singapore
wangliuquan@u.nus.edu
mathlqwang@163.com

Abstract

Let $\operatorname{pod}(n)$ denote the number of partitions of n wherein odd parts are distinct (and even parts are unrestricted). We find some new interesting congruences for $\operatorname{pod}(n)$ modulo 3,5 and 9 .

1 Introduction and Main Results

Let $\psi(q)$ be one of Ramanujan's theta functions, namely

$$
\psi(q)=\sum_{n=0}^{\infty} q^{n(n+1) / 2}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}^{2}}{(q ; q)_{\infty}}
$$

We let $\operatorname{pod}(n)$ (see $\underline{A 006950}$) denote the number of partitions of n wherein the odd parts are distinct (and even parts are unrestricted). For example, $\operatorname{pod}(4)=3$ since there are 3 different partitions of 3 such that the odd parts are distinct, namely $4=3+1=2+2$. The generating function of $\operatorname{pod}(n)$ is given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} \operatorname{pod}(n) q^{n}=\frac{\left(-q ; q^{2}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}}=\frac{1}{\psi(-q)} \tag{1}
\end{equation*}
$$

The arithmetic properties of $\operatorname{pod}(n)$ were first studied by Hirschhorn and Sellers [4] in 2010. They obtained some interesting congruences involving the following infinite family of Ramanujan-type congruences: for any integers $\alpha \geq 0$ and $n \geq 0$,

$$
\operatorname{pod}\left(3^{2 \alpha+3} n+\frac{23 \times 3^{2 \alpha+2}+1}{8}\right) \equiv 0 \quad(\bmod 3) .
$$

Later on Radu and Sellers [7] obtained other deep congruences for $\operatorname{pod}(n)$ modulo 5 and 7 , such as

$$
\begin{gathered}
\operatorname{pod}(135 n+8) \equiv \operatorname{pod}(135 n+107) \equiv \operatorname{pod}(135 n+116) \equiv 0 \quad(\bmod 5), \quad \text { and } \\
\operatorname{pod}(567 n+260) \equiv \operatorname{pod}(567 n+449) \equiv 0 \quad(\bmod 7)
\end{gathered}
$$

For nonnegative integers n and k, let $r_{k}(n)$ (resp., $t_{k}(n)$) denote the number of representations of n as sum of k squares (resp., triangular numbers). In 2011, based on the generating function of $\operatorname{pod}(3 n+2)$ found in [4], Lovejoy and Osburn [6] discovered the following arithmetic relation:

$$
\begin{equation*}
\operatorname{pod}(3 n+2) \equiv(-1)^{n} r_{5}(8 n+5) \quad(\bmod 3) \tag{2}
\end{equation*}
$$

Following their steps, we will present some new congruences modulo 5 and 9 for $\operatorname{pod}(n)$. Firstly, we find that (2) can be improved to a congruence modulo 9.

Theorem 1. For any integer $n \geq 0$, we have

$$
\operatorname{pod}(3 n+2) \equiv 2(-1)^{n+1} r_{5}(8 n+5) \quad(\bmod 9)
$$

The following result will be a consequence of Theorem 1 upon invoking some properties of $r_{5}(n)$.

Theorem 2. Let $p \geq 3$ be a prime, and N be a positive integer such that $p N \equiv 5(\bmod 8)$. Let α be any nonnegative integer.
(1) If $p \equiv 1(\bmod 3)$, then

$$
\operatorname{pod}\left(\frac{3 p^{6 \alpha+5} N+1}{8}\right) \equiv 0 \quad(\bmod 3),
$$

and

$$
\operatorname{pod}\left(\frac{3 p^{18 \alpha+17} N+1}{8}\right) \equiv 0 \quad(\bmod 9) .
$$

(2) If $p \equiv 2(\bmod 3)$, then

$$
\operatorname{pod}\left(\frac{3 p^{4 \alpha+3} N+1}{8}\right) \equiv 0 \quad(\bmod 9)
$$

Secondly, with the same method used in proving Theorem 1, we can establish a similar congruence for $\operatorname{pod}(n)$ modulo 5 .

Theorem 3. For any integer $n \geq 0$, we have

$$
\operatorname{pod}(5 n+2) \equiv 2(-1)^{n} r_{3}(8 n+3) \quad(\bmod 5)
$$

Some miscellaneous congruences can be deduced from this theorem.
Theorem 4. For any integers $n \geq 0$ and $\alpha \geq 1$, we have

$$
\operatorname{pod}\left(5^{2 \alpha+2} n+\frac{11 \cdot 5^{2 \alpha+1}+1}{8}\right) \equiv 0 \quad(\bmod 5)
$$

and

$$
\operatorname{pod}\left(5^{2 \alpha+2} n+\frac{19 \cdot 5^{2 \alpha+1}+1}{8}\right) \equiv 0 \quad(\bmod 5)
$$

Theorem 5. Let $p \equiv 4(\bmod 5)$ be a prime, and N be a positive integer which is coprime to p such that $p N \equiv 3(\bmod 8)$. We have

$$
\operatorname{pod}\left(\frac{5 p^{3} N+1}{8}\right) \equiv 0 \quad(\bmod 5)
$$

For example, let $p=19$ and $N=8 n+1$ where $n \geq 0$ and $n \not \equiv 7(\bmod 19)$. We have

$$
\operatorname{pod}(34295 n+4287) \equiv 0 \quad(\bmod 5)
$$

Theorem 6. Let $p \geq 3$ be a prime, and N be a positive integer which is not divisible by p such that $p N \equiv 3(\bmod 8)$. Let α be any nonnegative integer.
(1) If $p \equiv 1(\bmod 5)$, we have

$$
\operatorname{pod}\left(\frac{5 p^{10 \alpha+9} N+1}{8}\right) \equiv 0 \quad(\bmod 5)
$$

(2) If $p \equiv 2,3,4(\bmod 5)$, we have

$$
\operatorname{pod}\left(\frac{5 p^{8 \alpha+7} N+1}{8}\right) \equiv 0 \quad(\bmod 5)
$$

2 Preliminaries

Lemma 7. (Cf. [7, Lemma 1.2].) Let p be a prime and α be a positive integer. Then

$$
(q ; q)_{\infty}^{p^{\alpha}} \equiv\left(q^{p} ; q^{p}\right)_{\infty}^{p^{\alpha-1}} \quad\left(\bmod p^{\alpha}\right)
$$

Lemma 8. For any prime $p \geq 3$, we have

$$
t_{4}\left(p n+\frac{p-1}{2}\right) \equiv t_{4}(n) \quad(\bmod p), \quad t_{8}(p n+p-1) \equiv t_{8}(n) \quad\left(\bmod p^{3}\right)
$$

Proof. By [2, Theorem 3.6.3], we know $t_{4}(n)=\sigma(2 n+1)$. For any positive integer N, we have

$$
\sigma(N)=\sum_{d|N, p| d} d+\sum_{d \mid N, p \nmid d} d \equiv \sum_{d \mid N, p \nmid d} d(\bmod p) .
$$

Let $N=2 n+1$ and $N=p(2 n+1)$, respectively. It is easy to deduce that $\sigma(p(2 n+1)) \equiv$ $\sigma(2 n+1)(\bmod p)$. This clearly implies the first congruence.

From [2, Eq.(3.8.3), page 81], we know

$$
t_{8}(n)=\sum_{\substack{d \mid(n+1) \\ d \text { odd }}}\left(\frac{n+1}{d}\right)^{3} .
$$

By a similar argument we can prove the second congruence.
Lemma 9. (Cf. [1].) For $1 \leq k \leq 7$, we have

$$
r_{k}(8 n+k)=2^{k}\left(1+\frac{1}{2}\binom{k}{4}\right) t_{k}(n)
$$

Lemma 10. (Cf. [3].) Let $p \geq 3$ be a prime and n be a positive integer such that $p^{2} \nmid n$. For any integer $\alpha \geq 0$, we have

$$
r_{5}\left(p^{2 \alpha} n\right)=\left(\frac{p^{3 \alpha+3}-1}{p^{3}-1}-p\left(\frac{n}{p}\right) \frac{p^{3 \alpha}-1}{p^{3}-1}\right) r_{5}(n)
$$

where $(\dot{\bar{p}})$ denotes the Legendre symbol.
Lemma 11. (Cf. [5].) Let $p \geq 3$ be a prime. For any integers $n \geq 1$ and $\alpha \geq 0$, we have

$$
r_{3}\left(p^{2 \alpha} n\right)=\left(\frac{p^{\alpha+1}-1}{p-1}-\left(\frac{-n}{p}\right) \frac{p^{\alpha}-1}{p-1}\right) r_{3}(n)-p \frac{p^{\alpha}-1}{p-1} r_{3}\left(n / p^{2}\right)
$$

where we take $r_{3}\left(n / p^{2}\right)=0$ unless $p^{2} \mid n$.

3 Proofs of the Theorems

Proof of Theorem 1. Let $p=3$ in Lemma 8. We deduce that $t_{8}(3 n+2) \equiv t_{8}(n)(\bmod 9)$. By (1) we have

$$
\psi(q)^{9} \sum_{n=0}^{\infty} \operatorname{pod}(n)(-q)^{n}=\psi(q)^{8}=\sum_{n=0}^{\infty} t_{8}(n) q^{n}
$$

By Lemma 7 we obtain $\psi(q)^{9} \equiv \psi\left(q^{3}\right)^{3}(\bmod 9)$. Hence

$$
\psi\left(q^{3}\right)^{3} \sum_{n=0}^{\infty} \operatorname{pod}(n)(-q)^{n} \equiv \sum_{n=0}^{\infty} t_{8}(n) q^{n} \quad(\bmod 9)
$$

If we extract those terms of the form $q^{3 n+2}$ on both sides, we obtain

$$
\psi\left(q^{3}\right)^{3} \sum_{n=0}^{\infty} \operatorname{pod}(3 n+2)(-q)^{3 n+2} \equiv \sum_{n=0}^{\infty} t_{8}(3 n+2) q^{3 n+2} \quad(\bmod 9)
$$

Dividing both sides by q^{2}, then replacing q^{3} by q, we get

$$
\psi(q)^{3} \sum_{n=0}^{\infty} \operatorname{pod}(3 n+2)(-q)^{n} \equiv \sum_{n=0}^{\infty} t_{8}(3 n+2) q^{n} \equiv \sum_{n=0}^{\infty} t_{8}(n) q^{n}=\psi(q)^{8} \quad(\bmod 9) .
$$

Hence

$$
\sum_{n=0}^{\infty} \operatorname{pod}(3 n+2)(-q)^{n} \equiv \psi(q)^{5} \equiv \sum_{n=0}^{\infty} t_{5}(n) q^{n} \quad(\bmod 9)
$$

Comparing the coefficients of q^{n} on both sides, we deduce that $\operatorname{pod}(3 n+2) \equiv(-1)^{n} t_{5}(n)$ $(\bmod 9)$.

Let $k=5$ in Lemma 9. We obtain $t_{5}(n)=r_{5}(8 n+5) / 112$, and from this the theorem follows.

Proof of Theorem 2. (1) Let $n=p N$ in Lemma 10, and then we replace α by $3 \alpha+2$. Since

$$
\frac{p^{9 \alpha+9}-1}{p^{3}-1}=1+p^{3}+\cdots+p^{3(3 \alpha+2)} \equiv 0 \quad(\bmod 3),
$$

we deduce that $r_{5}\left(p^{6 \alpha+5} N\right) \equiv 0(\bmod 3)$.
Let $n=\frac{p^{6 \alpha+5} N-5}{8}$ in Theorem 1. We deduce that $\operatorname{pod}\left(\frac{3 p^{6 \alpha+5} N+1}{8}\right) \equiv 0(\bmod 3)$.
Similarly, let $n=p N$ in Lemma 10 and we replace α by $9 \alpha+8$. Since $p \equiv 1(\bmod 3)$ implies $p^{3} \equiv 1(\bmod 9)$, we have

$$
\frac{p^{27 \alpha+27}-1}{p^{3}-1}=1+p^{3}+\cdots+p^{3(9 \alpha+8)} \equiv 0 \quad(\bmod 9) .
$$

Hence $r_{5}\left(p^{18 \alpha+17} N\right) \equiv 0(\bmod 9)$.
Let $n=\frac{p^{18 \alpha+17} N-5}{8}$ in Theorem 1. We deduce that $\operatorname{pod}\left(\frac{3 p^{18 \alpha+17} N+1}{8}\right) \equiv 0(\bmod 9)$.
(2) Let $n=p N$ in Lemma 10, and then we replace α by $2 \alpha+1$. Note that $p \equiv 2(\bmod$ 3) implies $p^{3} \equiv-1(\bmod 9)$. Since $p^{6 \alpha+6} \equiv 1(\bmod 9)$, we have $r_{5}\left(p^{4 \alpha+3} N\right) \equiv 0(\bmod 9)$.

Let $n=\frac{p^{4 \alpha+3} N-5}{8}$ in Theorem 1. We complete our proof.
Proof of Theorem 3. Let $p=5$ in Lemma 8. We deduce that $t_{4}(5 n+2) \equiv t_{4}(n)(\bmod 5)$. By (1) we have

$$
\psi(q)^{5} \sum_{n=0}^{\infty} \operatorname{pod}(n)(-q)^{n}=\psi(q)^{4}=\sum_{n=0}^{\infty} t_{4}(n) q^{n}
$$

By Lemma 7 we obtain $\psi(q)^{5} \equiv \psi\left(q^{5}\right)(\bmod 5)$. Hence

$$
\psi\left(q^{5}\right) \sum_{n=0}^{\infty} \operatorname{pod}(n)(-q)^{n} \equiv \sum_{n=0}^{\infty} t_{4}(n) q^{n} \quad(\bmod 5)
$$

If we extract those terms of the form $q^{5 n+2}$ on both sides, we obtain

$$
\psi\left(q^{5}\right) \sum_{n=0}^{\infty} \operatorname{pod}(5 n+2)(-q)^{5 n+2} \equiv \sum_{n=0}^{\infty} t_{4}(5 n+2) q^{5 n+2} \quad(\bmod 5)
$$

Dividing both sides by q^{2}, and then replacing q^{5} by q, we get

$$
\psi(q) \sum_{n=-\infty}^{\infty} \operatorname{pod}(5 n+2)(-q)^{n} \equiv \sum_{n=0}^{\infty} t_{4}(5 n+2) q^{n} \equiv \sum_{n=0}^{\infty} t_{4}(n) q^{n}=\psi(q)^{4} \quad(\bmod 5)
$$

Hence we have

$$
\sum_{n=0}^{\infty} \operatorname{pod}(5 n+2)(-q)^{n} \equiv \psi(q)^{3}=\sum_{n=0}^{\infty} t_{3}(n) q^{n} \quad(\bmod 5)
$$

Comparing the coefficients of q^{n} on both sides, we deduce that $\operatorname{pod}(5 n+2) \equiv(-1)^{n} t_{3}(n)$ $(\bmod 5)$.

Let $k=3$ in Lemma 9. We obtain $t_{3}(n)=r_{3}(8 n+3) / 8$, from which the theorem follows.

Proof of Theorem 4. Let $p=5$ and $n=5 m+r(r \in\{1,4\})$ in Lemma 11. Since $\left(\frac{-r}{5}\right)=1$, we deduce that $r_{3}\left(5^{2 \alpha}(5 m+r)\right) \equiv 0(\bmod 5)$ for any integer $\alpha \geq 1$.

Let $n=\frac{5^{2 \alpha}(40 m+a)-3}{8}(a \in\{11,19\})$. By Theorem 3, we have

$$
r_{3}(8 n+3)=r_{3}\left(5^{2 \alpha}(40 m+a)\right) \equiv 0 \quad(\bmod 5)
$$

Hence

$$
\operatorname{pod}\left(5^{2 \alpha+2} m+\frac{a \cdot 5^{2 \alpha+1}+1}{8}\right)=\operatorname{pod}(5 n+2) \equiv 2(-1)^{n} r_{3}(8 n+3) \equiv 0 \quad(\bmod 5)
$$

Proof of Theorem 5. Let $\alpha=1$ and $n=p N$ in Lemma 11. We have

$$
r_{3}\left(p^{3} N\right)=(1+p) r_{3}(p N) \equiv 0 \quad(\bmod 5)
$$

Let $n=\frac{p^{3} N-3}{8}$ in Theorem 3. We have

$$
\operatorname{pod}\left(\frac{5 p^{3} N+1}{8}\right)=\operatorname{pod}(5 n+2) \equiv 2(-1)^{n} r_{3}(8 n+3)=2(-1)^{n} r_{3}\left(p^{3} N\right) \equiv 0 \quad(\bmod 5)
$$

Proof of Theorem 6. (1) Let $n=p N$ in Lemma 11, and then we replace α by $5 \alpha+4$. We have

$$
\frac{p^{5 \alpha+5}-1}{p-1}=1+p+\cdots+p^{5 \alpha+4} \equiv 0 \quad(\bmod 5) .
$$

Hence $r_{3}\left(p^{10 \alpha+9} N\right) \equiv 0(\bmod 5)$. Let $n=\frac{p^{10 \alpha+9} N-3}{8}$ in Theorem 3. We have

$$
\operatorname{pod}\left(\frac{5 p^{10 \alpha+9} N+1}{8}\right)=\operatorname{pod}(5 n+2) \equiv 2(-1)^{n} r_{3}\left(p^{10 \alpha+9} N\right) \equiv 0 \quad(\bmod 5)
$$

(2) Let $n=p N$ in Lemma 11, and then replace α by $4 \alpha+3$. Since $p^{4 \alpha+4} \equiv 1(\bmod 5)$, we deduce that $r_{3}\left(p^{8 \alpha+7} N\right) \equiv 0(\bmod 5)$. Let $n=\frac{p^{8 \alpha+7} N-3}{8}$ in Theorem 3. We have

$$
\operatorname{pod}\left(\frac{5 p^{8 \alpha+7} N+1}{8}\right)=\operatorname{pod}(5 n+2) \equiv 2(-1)^{n} r_{3}\left(p^{8 \alpha+7} N\right) \equiv 0 \quad(\bmod 5) .
$$

References

[1] P. Barrucand, S. Cooper, and M. D. Hirschhorn, Relations between squares and triangles, Discrete Math. 248 (2002), 245-247.
[2] B. C. Berndt, Number Theory in the Spirit of Ramanujan. Amer. Math. Soc., 2006.
[3] S. Cooper, Sums of five, seven and nine squares, Ramanujan J. 6 (2002), 469-490.
[4] M. D. Hirschhorn and J. A. Sellers, Arithmetic properties of partitions with odd parts distinct, Ramanujan J. 22 (2010), 273-284.
[5] M. D. Hirschhorn and J. A. Sellers, On representations of a number as a sum of three squares, Discrete Math. 199 (1999), 85-101.
[6] J. Lovejoy and R. Osburn, Quadratic forms and four partition functions modulo 3, Integers 11 (2011), Paper A4.
[7] S. Radu and J. A. Sellers, Congruence properties modulo 5 and 7 for the pod function, Int. J. Number Theory 7 (2011), 2249-2259.

2010 Mathematics Subject Classification: Primary 05A17; Secondary 11P83.
Keywords: congruence, partition, distinct odd parts, theta function, sum of squares.
(Concerned with sequences A000041 and A006950.)

Received January 8 2015; revised version received February 22 2015. Published in Journal of Integer Sequences, May 122015.

Return to Journal of Integer Sequences home page.

