

Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.2

# New Congruences for Partitions where the Odd Parts are Distinct

Liuquan Wang Department of Mathematics National University of Singapore Singapore, 119076 Singapore wangliuquan@u.nus.edu mathlqwang@163.com

#### Abstract

Let pod(n) denote the number of partitions of n wherein odd parts are distinct (and even parts are unrestricted). We find some new interesting congruences for pod(n) modulo 3, 5 and 9.

#### 1 Introduction and Main Results

Let  $\psi(q)$  be one of Ramanujan's theta functions, namely

$$\psi(q) = \sum_{n=0}^{\infty} q^{n(n+1)/2} = \frac{(q^2; q^2)_{\infty}^2}{(q; q)_{\infty}}$$

We let pod(n) (see <u>A006950</u>) denote the number of partitions of n wherein the odd parts are distinct (and even parts are unrestricted). For example, pod(4) = 3 since there are 3 different partitions of 3 such that the odd parts are distinct, namely 4 = 3 + 1 = 2 + 2. The generating function of pod(n) is given by

$$\sum_{n=0}^{\infty} \operatorname{pod}(n)q^n = \frac{(-q;q^2)_{\infty}}{(q^2;q^2)_{\infty}} = \frac{1}{\psi(-q)}.$$
(1)

The arithmetic properties of pod(n) were first studied by Hirschhorn and Sellers [4] in 2010. They obtained some interesting congruences involving the following infinite family of Ramanujan-type congruences: for any integers  $\alpha \ge 0$  and  $n \ge 0$ ,

$$\operatorname{pod}\left(3^{2\alpha+3}n + \frac{23 \times 3^{2\alpha+2} + 1}{8}\right) \equiv 0 \pmod{3}.$$

Later on Radu and Sellers [7] obtained other deep congruences for pod(n) modulo 5 and 7, such as

$$pod(135n+8) \equiv pod(135n+107) \equiv pod(135n+116) \equiv 0 \pmod{5}$$
, and

$$pod(567n + 260) \equiv pod(567n + 449) \equiv 0 \pmod{7}.$$

For nonnegative integers n and k, let  $r_k(n)$  (resp.,  $t_k(n)$ ) denote the number of representations of n as sum of k squares (resp., triangular numbers). In 2011, based on the generating function of pod(3n + 2) found in [4], Lovejoy and Osburn [6] discovered the following arithmetic relation:

$$\operatorname{pod}(3n+2) \equiv (-1)^n r_5(8n+5) \pmod{3}.$$
 (2)

Following their steps, we will present some new congruences modulo 5 and 9 for pod(n). Firstly, we find that (2) can be improved to a congruence modulo 9.

**Theorem 1.** For any integer  $n \ge 0$ , we have

$$\operatorname{pod}(3n+2) \equiv 2(-1)^{n+1}r_5(8n+5) \pmod{9}.$$

The following result will be a consequence of Theorem 1 upon invoking some properties of  $r_5(n)$ .

**Theorem 2.** Let  $p \ge 3$  be a prime, and N be a positive integer such that  $pN \equiv 5 \pmod{8}$ . Let  $\alpha$  be any nonnegative integer. (1) If  $p \equiv 1 \pmod{3}$ , then

$$\operatorname{pod}\left(\frac{3p^{6\alpha+5}N+1}{8}\right) \equiv 0 \pmod{3},$$

and

$$\operatorname{pod}\left(\frac{3p^{18\alpha+17}N+1}{8}\right) \equiv 0 \pmod{9}.$$

(2) If  $p \equiv 2 \pmod{3}$ , then

$$\operatorname{pod}\left(\frac{3p^{4\alpha+3}N+1}{8}\right) \equiv 0 \pmod{9}.$$

Secondly, with the same method used in proving Theorem 1, we can establish a similar congruence for pod(n) modulo 5.

**Theorem 3.** For any integer  $n \ge 0$ , we have

$$pod(5n+2) \equiv 2(-1)^n r_3(8n+3) \pmod{5}.$$

Some miscellaneous congruences can be deduced from this theorem.

**Theorem 4.** For any integers  $n \ge 0$  and  $\alpha \ge 1$ , we have

$$\operatorname{pod}\left(5^{2\alpha+2}n + \frac{11 \cdot 5^{2\alpha+1} + 1}{8}\right) \equiv 0 \pmod{5},$$

and

$$\operatorname{pod}\left(5^{2\alpha+2}n + \frac{19 \cdot 5^{2\alpha+1} + 1}{8}\right) \equiv 0 \pmod{5}.$$

**Theorem 5.** Let  $p \equiv 4 \pmod{5}$  be a prime, and N be a positive integer which is coprime to p such that  $pN \equiv 3 \pmod{8}$ . We have

$$\operatorname{pod}\left(\frac{5p^3N+1}{8}\right) \equiv 0 \pmod{5}.$$

For example, let p = 19 and N = 8n + 1 where  $n \ge 0$  and  $n \not\equiv 7 \pmod{19}$ . We have

$$pod(34295n + 4287) \equiv 0 \pmod{5}.$$

**Theorem 6.** Let  $p \ge 3$  be a prime, and N be a positive integer which is not divisible by p such that  $pN \equiv 3 \pmod{8}$ . Let  $\alpha$  be any nonnegative integer. (1) If  $p \equiv 1 \pmod{5}$ , we have

$$\operatorname{pod}\left(\frac{5p^{10\alpha+9}N+1}{8}\right) \equiv 0 \pmod{5}.$$

(2) If  $p \equiv 2, 3, 4 \pmod{5}$ , we have

$$\operatorname{pod}\left(\frac{5p^{8\alpha+7}N+1}{8}\right) \equiv 0 \pmod{5}.$$

#### 2 Preliminaries

**Lemma 7.** (Cf. [7, Lemma 1.2].) Let p be a prime and  $\alpha$  be a positive integer. Then

$$(q;q)^{p^{\alpha}}_{\infty} \equiv (q^p;q^p)^{p^{\alpha-1}}_{\infty} \pmod{p^{\alpha}}.$$

**Lemma 8.** For any prime  $p \ge 3$ , we have

$$t_4\left(pn + \frac{p-1}{2}\right) \equiv t_4(n) \pmod{p}, \quad t_8(pn + p - 1) \equiv t_8(n) \pmod{p^3}.$$

*Proof.* By [2, Theorem 3.6.3], we know  $t_4(n) = \sigma(2n+1)$ . For any positive integer N, we have

$$\sigma(N) = \sum_{d \mid N, p \mid d} d + \sum_{d \mid N, p \nmid d} d \equiv \sum_{d \mid N, p \nmid d} d \pmod{p}$$

Let N = 2n + 1 and N = p(2n + 1), respectively. It is easy to deduce that  $\sigma(p(2n + 1)) \equiv \sigma(2n + 1) \pmod{p}$ . This clearly implies the first congruence.

From [2, Eq.(3.8.3), page 81], we know

$$t_8(n) = \sum_{\substack{d \mid (n+1) \\ d \text{ odd}}} \left(\frac{n+1}{d}\right)^3$$

By a similar argument we can prove the second congruence.

**Lemma 9.** (*Cf.* [1].) For  $1 \le k \le 7$ , we have

$$r_k(8n+k) = 2^k \left(1 + \frac{1}{2} \binom{k}{4}\right) t_k(n).$$

**Lemma 10.** (Cf. [3].) Let  $p \ge 3$  be a prime and n be a positive integer such that  $p^2 \nmid n$ . For any integer  $\alpha \ge 0$ , we have

$$r_5(p^{2\alpha}n) = \left(\frac{p^{3\alpha+3}-1}{p^3-1} - p\left(\frac{n}{p}\right)\frac{p^{3\alpha}-1}{p^3-1}\right)r_5(n),$$

where  $\left(\frac{\cdot}{p}\right)$  denotes the Legendre symbol.

**Lemma 11.** (Cf. [5].) Let  $p \ge 3$  be a prime. For any integers  $n \ge 1$  and  $\alpha \ge 0$ , we have

$$r_3(p^{2\alpha}n) = \left(\frac{p^{\alpha+1}-1}{p-1} - \left(\frac{-n}{p}\right)\frac{p^{\alpha}-1}{p-1}\right)r_3(n) - p\frac{p^{\alpha}-1}{p-1}r_3(n/p^2),$$

where we take  $r_3(n/p^2) = 0$  unless  $p^2|n$ .

## 3 Proofs of the Theorems

Proof of Theorem 1. Let p = 3 in Lemma 8. We deduce that  $t_8(3n+2) \equiv t_8(n) \pmod{9}$ . By (1) we have

$$\psi(q)^9 \sum_{n=0}^{\infty} \operatorname{pod}(n)(-q)^n = \psi(q)^8 = \sum_{n=0}^{\infty} t_8(n)q^n.$$

By Lemma 7 we obtain  $\psi(q)^9 \equiv \psi(q^3)^3 \pmod{9}$ . Hence

$$\psi(q^3)^3 \sum_{n=0}^{\infty} \text{pod}(n)(-q)^n \equiv \sum_{n=0}^{\infty} t_8(n)q^n \pmod{9}.$$

If we extract those terms of the form  $q^{3n+2}$  on both sides, we obtain

$$\psi(q^3)^3 \sum_{n=0}^{\infty} \operatorname{pod}(3n+2)(-q)^{3n+2} \equiv \sum_{n=0}^{\infty} t_8(3n+2)q^{3n+2} \pmod{9}.$$

Dividing both sides by  $q^2$ , then replacing  $q^3$  by q, we get

$$\psi(q)^3 \sum_{n=0}^{\infty} \operatorname{pod}(3n+2)(-q)^n \equiv \sum_{n=0}^{\infty} t_8(3n+2)q^n \equiv \sum_{n=0}^{\infty} t_8(n)q^n = \psi(q)^8 \pmod{9}.$$

Hence

$$\sum_{n=0}^{\infty} \text{pod}(3n+2)(-q)^n \equiv \psi(q)^5 \equiv \sum_{n=0}^{\infty} t_5(n)q^n \pmod{9}$$

Comparing the coefficients of  $q^n$  on both sides, we deduce that  $pod(3n+2) \equiv (-1)^n t_5(n)$ (mod 9).

Let k = 5 in Lemma 9. We obtain  $t_5(n) = r_5(8n + 5)/112$ , and from this the theorem follows. 

Proof of Theorem 2. (1) Let n = pN in Lemma 10, and then we replace  $\alpha$  by  $3\alpha + 2$ . Since

$$\frac{p^{9\alpha+9}-1}{p^3-1} = 1 + p^3 + \dots + p^{3(3\alpha+2)} \equiv 0 \pmod{3},$$

we deduce that  $r_5(p^{6\alpha+5}N) \equiv 0 \pmod{3}$ . Let  $n = \frac{p^{6\alpha+5}N-5}{8}$  in Theorem 1. We deduce that  $\operatorname{pod}(\frac{3p^{6\alpha+5}N+1}{8}) \equiv 0 \pmod{3}$ . Similarly, let n = pN in Lemma 10 and we replace  $\alpha$  by  $9\alpha + 8$ . Since  $p \equiv 1 \pmod{3}$ implies  $p^3 \equiv 1 \pmod{9}$ , we have

$$\frac{p^{27\alpha+27}-1}{p^3-1} = 1 + p^3 + \dots + p^{3(9\alpha+8)} \equiv 0 \pmod{9}.$$

Hence  $r_5(p^{18\alpha+17}N) \equiv 0 \pmod{9}$ . Let  $n = \frac{p^{18\alpha+17}N-5}{8}$  in Theorem 1. We deduce that  $\operatorname{pod}(\frac{3p^{18\alpha+17}N+1}{8}) \equiv 0 \pmod{9}$ .

(2) Let n = pN in Lemma 10, and then we replace  $\alpha$  by  $2\alpha + 1$ . Note that  $p \equiv 2 \pmod{2}$ 3) implies  $p^3 \equiv -1 \pmod{9}$ . Since  $p^{6\alpha+6} \equiv 1 \pmod{9}$ , we have  $r_5(p^{4\alpha+3}N) \equiv 0 \pmod{9}$ . Let  $n = \frac{p^{4\alpha+3}N-5}{8}$  in Theorem 1. We complete our proof. 

Proof of Theorem 3. Let p = 5 in Lemma 8. We deduce that  $t_4(5n+2) \equiv t_4(n) \pmod{5}$ . By (1) we have

$$\psi(q)^5 \sum_{n=0}^{\infty} \operatorname{pod}(n)(-q)^n = \psi(q)^4 = \sum_{n=0}^{\infty} t_4(n)q^n.$$

By Lemma 7 we obtain  $\psi(q)^5 \equiv \psi(q^5) \pmod{5}$ . Hence

$$\psi(q^5) \sum_{n=0}^{\infty} \text{pod}(n) (-q)^n \equiv \sum_{n=0}^{\infty} t_4(n) q^n \pmod{5}.$$

If we extract those terms of the form  $q^{5n+2}$  on both sides, we obtain

$$\psi(q^5) \sum_{n=0}^{\infty} \operatorname{pod}(5n+2)(-q)^{5n+2} \equiv \sum_{n=0}^{\infty} t_4(5n+2)q^{5n+2} \pmod{5}.$$

Dividing both sides by  $q^2$ , and then replacing  $q^5$  by q, we get

$$\psi(q)\sum_{n=-\infty}^{\infty} \operatorname{pod}(5n+2)(-q)^n \equiv \sum_{n=0}^{\infty} t_4(5n+2)q^n \equiv \sum_{n=0}^{\infty} t_4(n)q^n = \psi(q)^4 \pmod{5}.$$

Hence we have

$$\sum_{n=0}^{\infty} \operatorname{pod}(5n+2)(-q)^n \equiv \psi(q)^3 = \sum_{n=0}^{\infty} t_3(n)q^n \pmod{5}.$$

Comparing the coefficients of  $q^n$  on both sides, we deduce that  $pod(5n+2) \equiv (-1)^n t_3(n)$ (mod 5).

Let k = 3 in Lemma 9. We obtain  $t_3(n) = r_3(8n+3)/8$ , from which the theorem follows. 

Proof of Theorem 4. Let p = 5 and n = 5m + r  $(r \in \{1, 4\})$  in Lemma 11. Since  $\left(\frac{-r}{5}\right) = 1$ , we deduce that  $r_3(5^{2\alpha}(5m + r)) \equiv 0 \pmod{5}$  for any integer  $\alpha \ge 1$ . Let  $n = \frac{5^{2\alpha}(40m+a)-3}{8}$   $(a \in \{11, 19\})$ . By Theorem 3, we have

$$r_3(8n+3) = r_3(5^{2\alpha}(40m+a)) \equiv 0 \pmod{5}.$$

Hence

$$\operatorname{pod}\left(5^{2\alpha+2}m + \frac{a \cdot 5^{2\alpha+1} + 1}{8}\right) = \operatorname{pod}(5n+2) \equiv 2(-1)^n r_3(8n+3) \equiv 0 \pmod{5}.$$

*Proof of Theorem 5.* Let  $\alpha = 1$  and n = pN in Lemma 11. We have

$$r_3(p^3N) = (1+p)r_3(pN) \equiv 0 \pmod{5}.$$

Let  $n = \frac{p^3 N - 3}{8}$  in Theorem 3. We have

$$\operatorname{pod}\left(\frac{5p^3N+1}{8}\right) = \operatorname{pod}(5n+2) \equiv 2(-1)^n r_3(8n+3) = 2(-1)^n r_3(p^3N) \equiv 0 \pmod{5}.$$

Proof of Theorem 6. (1) Let n = pN in Lemma 11, and then we replace  $\alpha$  by  $5\alpha + 4$ . We have

$$\frac{p^{5\alpha+5}-1}{p-1} = 1 + p + \dots + p^{5\alpha+4} \equiv 0 \pmod{5}.$$

Hence  $r_3(p^{10\alpha+9}N) \equiv 0 \pmod{5}$ . Let  $n = \frac{p^{10\alpha+9}N-3}{8}$  in Theorem 3. We have

$$\operatorname{pod}\left(\frac{5p^{10\alpha+9}N+1}{8}\right) = \operatorname{pod}(5n+2) \equiv 2(-1)^n r_3(p^{10\alpha+9}N) \equiv 0 \pmod{5}.$$

(2) Let n = pN in Lemma 11, and then replace  $\alpha$  by  $4\alpha + 3$ . Since  $p^{4\alpha+4} \equiv 1 \pmod{5}$ , we deduce that  $r_3(p^{8\alpha+7}N) \equiv 0 \pmod{5}$ . Let  $n = \frac{p^{8\alpha+7}N-3}{8}$  in Theorem 3. We have

$$\operatorname{pod}\left(\frac{5p^{8\alpha+7}N+1}{8}\right) = \operatorname{pod}(5n+2) \equiv 2(-1)^n r_3(p^{8\alpha+7}N) \equiv 0 \pmod{5}.$$

### References

- P. Barrucand, S. Cooper, and M. D. Hirschhorn, Relations between squares and triangles, Discrete Math. 248 (2002), 245–247.
- [2] B. C. Berndt, Number Theory in the Spirit of Ramanujan. Amer. Math. Soc., 2006.
- [3] S. Cooper, Sums of five, seven and nine squares, Ramanujan J. 6 (2002), 469–490.
- [4] M. D. Hirschhorn and J. A. Sellers, Arithmetic properties of partitions with odd parts distinct, *Ramanujan J.* 22 (2010), 273–284.
- [5] M. D. Hirschhorn and J. A. Sellers, On representations of a number as a sum of three squares, *Discrete Math.* **199** (1999), 85–101.
- [6] J. Lovejoy and R. Osburn, Quadratic forms and four partition functions modulo 3, Integers 11 (2011), Paper A4.
- [7] S. Radu and J. A. Sellers, Congruence properties modulo 5 and 7 for the pod function, Int. J. Number Theory 7 (2011), 2249–2259.

2010 Mathematics Subject Classification: Primary 05A17; Secondary 11P83. Keywords: congruence, partition, distinct odd parts, theta function, sum of squares.

(Concerned with sequences  $\underline{A000041}$  and  $\underline{A006950}$ .)

Received January 8 2015; revised version received February 22 2015. Published in *Journal of Integer Sequences*, May 12 2015.

Return to Journal of Integer Sequences home page.