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Abstract

We establish a class of polynomials on convex polygons, which provides a new
counting formula to all partitions of a convex polygon by non-intersecting diagonals.

1 Introduction

Counting partitions of a convex polygon of a specified type by using its non-intersecting
diagonals is a problem which can go back to Euler, Catalan, Cayley [1] and Przytycki and
Sikora [2]. Recently, Floater and Lyche [3] showed a way to enumerate all partitions of a
convex polygon of a certain type as follows.
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Proposition 1 (Floater, Lyche [3]). A partition of a convex (n+1)-gon is said to be of type
b = (b, bs, ..., by,) if it contains by triangles, by quadrilaterals, and so on, and in general b;
(i41)-gons. Then the number of partitions of a convex (n+1)-gon of type b = (b, bs, ..., by)
wlthbz+b3++bn:k and2b2+3b3—|—~~—|—nbn:n—i—k:—l, 18

(n+k—-—1)n+k—=2)---(n+1)
bolbs! - - - by,

Inspired by Lee’s result [4], Shephard [5] got an interesting equality on convex polygons
with n + 2 sides as follows.

C(b) =

Proposition 2 (Lee [4], Shephard [5]). Given a (n+2)-gon, let d; be the number of diagonals,
dy be the number of disjoint pairs of diagonals, and, in general, d; be the number of sets of
1 diagonals of the polygon which are pairuise disjoint. Then we have

dy —do+dyg—---+(—1)"dp—y =1+ (—1)"

The original proof [4] of Proposition 2 is very complicated. We will provide a rather
simple proof in the last part.

We organize this paper as follows. Section 2 shows the main result (Theorem 5) via the
properties of a derivation acting on a special polynomial algebra. In Section 3, we prove
Propositions 1 and 2 by our main result.

2 Main results

We call a vector space A := (A, +) an algebra over the real field R, if A possesses a bilinear
product satisfying (ab)c = a(bc), (a+0b)(c+d) = ac+ bc+ ad+ bd and (Ap)(ab) = (Aa)(ub),
for all \,u € R, a,b,c,d € A. Recall that a linear map D mapping A into itself is called a
derivation if D(zy) = (Dx)y + x(Dy) for all z,y € A.

Definition 3. Let A be a polynomial algebra generated by {z; : i € N*} i.e., the collection
of the polynomials with the form > ;" Zil ..... inen+ Qiy,ix iy Ty, where a;, i, € R and
m € N*. For given y; € A, i € Nt let D' : {x; : i € N*} — A be such that x; — y;, i € N*.
The unique extension of D' to A via Leibniz’s law determines a derivation D on A, which is
called the derivation defined by D’.

Lemma 4. Let A be a polynomial algebra generated by { X1, Xs, ..., X,,...}. Assume D is
a derivation with action defined by
n—1
DX, = (an+0) Y X;X,_;, n>2, DX; =0, (1)
i=1
where a and b are given real numbers. Then we have

[T, (2an + (k + 1)b)
D"X, = = E Xy Xy - Xi - 2
_'_1 m-+ ( )

i1+t Fimp1=n



Proof. Let X(t) =, X;t' be a generating function. Tt follows from

Xt =Y (nz_l Xan_Z) "

n>2 \i=1
that
d n—1 d n—1
2 _ n o__ n
(ata + b) Xt =Y (Z Xanl-) (at% + b) "= (Z XZ-Xni) (an + b)t
n>2 =1 n>2 =1
= (DX,)t" = DX(t).
n>1
Similarly, the statement (2) becomes
DX = ﬁ 20t 4 i+ 1p) X (3)
m+ 172 dt ’

where X := X(¢). It is evident that (3) holds for m = 1. Assume that (3) holds for m = k.
Now we show that (3) holds for m = k+ 1. In fact, together with (3) for m = k and the fact

d
DX™ =mX"™ DX = mX™! (ata + b) X?

d
= 2amet%X + bmX ™!
m

d
= ——7 | 2at— 1 Xl
m+1(atdt+(m+ )b) ’

we immediately obtain

k

o

+1i:1

k
_ 1 d - k+1
=+ H <2atdt + (i + 1)b> DX

k
1 d E+1 d
= 2at— + (i + 1)b | —— [ 2at— + (k + 2)b | X*+?
k+1H<adt+(Z+>>k+2(adt+(+>>

1 d
=— 2at— + (i + 1)b | X**2.
ol ( at— + (i +1) )
Therefore, by mathematical induction, we have completed the proof. O
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We call a strictly convex polygon with n 4 2 sides a (n + 2)-gon, denoted by X,,, where
n € NT. Given an integer n > 2, we use A to denote a set of diagonals of X,, which are
pairwise disjoint. It should be noted that a A with m elements divides X,, into m+ 1 convex
polygons, X, X;,,...,X;, and X;  for some iy,is,..., %, and 4,41 in {1,2,...,n}. The
set of such convex polygons is said to be a partition of the original convex polygon. We
symbolically set f(A) = H;n:ﬁl X, and Card A = m. Figure 1 provides two examples of X,
for n = 8 and n = 10, respectively.

Figure 1: The left figure shows Xg with A = {AD, AG, DG} and the corresponding par-
tition {ABCD, DEFG,AGHIJ,ADG}, where Card A = 3, f(A) = X;X2X5X3. The
right figure shows Xjo with A = {AE, AJ, EJ, EG,GJ} and the corresponding partition
{ABCDE,EFG,GHIJ,AJKL,EGJ,AEJ}, where Card A =5, f(A) = X3 X7 X1 X0 X, X5.

Theorem 5. Given n € Nt and m € N, we have

3 f(A):mLH<n+:Z+1> 3 X0 Xy X (4)

Card A=m i1+t Flmp1=n

Proof. Consider partitions of X,, with m diagonals, in which the diagonals are labelled, say
with integers 1,2,--- ,m. Then the derivation D is an operator that acts as an analogue
combinatorial device for splitting the polygon on a labelled diagonal; consequently, D™ is an
operator that splits the polygon (with m diagonals) into m + 1 polygons. We then divide by
m! to remove the effect of labelling the diagonals, so that % is the operator that produces
the counting series for partitioning a polygon into m + 1 parts.

Next, we calculate DX,,. Notice that there are n — 1 diagonals starting from a vertex,

and each diagonal divides X, into two parts. So we have n — 1 ways to divide X,,, which can
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be expressed as X1 X,,_1+ X2 X,,_o+---+ X,,_1 X7 by using our notation. Since X,, has n+ 2
vertices, the whole set of partitions of X,, can be written as (n + 2) Z;:ll X;X,,_;. However,

each diagonal has two ends, and will be counted twice. Consequently, we should divide it by
2, and get DX, = ”T*Q E;:ll X; X, _;. Taking a = % and b =1 in Lemma 4, we have

. 1 n+m+1
P s=1 GV JD DI SR

Card A=m i1+io+ - Fimp1=n
m
3 Applications
A result about partitioning polygons is as follows.
Corollary 6. Given iy,ia, ..., 0yny1 With 1y +is+---+i,11 = n. Then the number of different
. . . . n+m-+1
ways of cutting X, into sub-polygons X;,, Xy,, ..., X, ., by diagonals is miﬂ( et ), where
S is the number of permutations of iq1,%2, ..., tmi1-
Proof. By Theorem 5, we obtain that there exist miﬂ (”+$+1) ways to divide X,, into

X, X , X1, where S is the number of permutations of i1, 49, . .., 41 O

29 e

One can easily verify that Proposition 1 is equivalent to Corollary 6.

Example 7 (Catalan numbers). Let m =n — 1. Then iy =iy = -+ = 4,41 = 1 is the only
positive integer solution of iy + iy + -+ 4+ 7,01 = n. Hence S = 1, and we get the Catalan
numbers (") = 5 (7).

Next we give a new proof for Proposition 2 by using Theorem 5 and the residue theorem.

Proof of Proposition 2. Consider X,,. Notice that the number of positive integer solutions
of iy +io 4+ -+ F+ iy = nis (”77_11) By Theorem 5, there are 3 ;(n+m+1)

o . m—+1 m
112+ +im41=n



monomials on the right-hand side of (4). Thus we get d,, = —2< ("~ 1) ("""}, and then

NEA Y ("

n

k=1 k=1
n—1 L nt+k+1
_ k—1 <k+1) (1 +u)"*
— ];:1(—1) p Res( s ,0
n—1
1 o n (1 +u)ktt
—— 1 n -1 k—1 AN )
L (( () g
1 u+1 u+1
= — 1 (1 — n_(1—
nRes (( + u) (( ” ) (I1—n ” )) ,0)
1 1 1
= —Res ((1 +u)" ((——)" —1+nZ il ) ,0)
n U U
14+u

() e ()

el

=1+ (_1)nv
where Res(f(u),0) means the residue of function f(u) at u = 0. O

Remark 8. Proposition 2 also follows immediately from the hypergeometric summation for-
mula, by

n

S wra= S () 3 (S0 (0)
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