Combinatorial Enumeration of Partitions of a Convex Polygon

Dong Zhang and Dongyi Wei
Peking University
Beijing 100871
P. R. China
dongzhang@pku.edu.cn jnwdyi@163.com

Demin Zhang Xinxiang
Henan
P. R. China
winlxm1972@sina.cn

Abstract

We establish a class of polynomials on convex polygons, which provides a new counting formula to all partitions of a convex polygon by non-intersecting diagonals.

1 Introduction

Counting partitions of a convex polygon of a specified type by using its non-intersecting diagonals is a problem which can go back to Euler, Catalan, Cayley [1] and Przytycki and Sikora [2]. Recently, Floater and Lyche [3] showed a way to enumerate all partitions of a convex polygon of a certain type as follows.

Proposition 1 (Floater, Lyche [3]). A partition of a convex $(n+1)$-gon is said to be of type $\mathbf{b}=\left(b_{2}, b_{3}, \ldots, b_{n}\right)$ if it contains b_{2} triangles, b_{3} quadrilaterals, and so on, and in general b_{i} $(i+1)$-gons. Then the number of partitions of a convex $(n+1)$-gon of type $\mathbf{b}=\left(b_{2}, b_{3}, \ldots, b_{n}\right)$ with $b_{2}+b_{3}+\cdots+b_{n}=k$ and $2 b_{2}+3 b_{3}+\cdots+n b_{n}=n+k-1$, is

$$
C(\mathbf{b})=\frac{(n+k-1)(n+k-2) \cdots(n+1)}{b_{2}!b_{3}!\cdots b_{n}!}
$$

Inspired by Lee's result [4], Shephard [5] got an interesting equality on convex polygons with $n+2$ sides as follows.

Proposition 2 (Lee [4], Shephard [5]). Given a ($n+2$)-gon, let d_{1} be the number of diagonals, d_{2} be the number of disjoint pairs of diagonals, and, in general, d_{i} be the number of sets of i diagonals of the polygon which are pairwise disjoint. Then we have

$$
d_{1}-d_{2}+d_{3}-\cdots+(-1)^{n} d_{n-1}=1+(-1)^{n}
$$

The original proof [4] of Proposition 2 is very complicated. We will provide a rather simple proof in the last part.

We organize this paper as follows. Section 2 shows the main result (Theorem 5) via the properties of a derivation acting on a special polynomial algebra. In Section 3, we prove Propositions 1 and 2 by our main result.

2 Main results

We call a vector space $\mathcal{A}:=(\mathcal{A},+)$ an algebra over the real field \mathbb{R}, if \mathcal{A} possesses a bilinear product satisfying $(a b) c=a(b c),(a+b)(c+d)=a c+b c+a d+b d$ and $(\lambda \mu)(a b)=(\lambda a)(\mu b)$, for all $\lambda, \mu \in \mathbb{R}, a, b, c, d \in \mathcal{A}$. Recall that a linear map D mapping \mathcal{A} into itself is called a derivation if $D(x y)=(D x) y+x(D y)$ for all $x, y \in \mathcal{A}$.
Definition 3. Let \mathcal{A} be a polynomial algebra generated by $\left\{x_{i}: i \in \mathbb{N}^{+}\right\}$, i.e., the collection of the polynomials with the form $\sum_{k=1}^{m} \sum_{i_{1}, \ldots, i_{k} \in \mathbb{N}^{+}} a_{i_{1}, \ldots, i_{k}} x_{i_{1}} \cdots x_{i_{k}}$, where $a_{i_{1}, \ldots, i_{k}} \in \mathbb{R}$ and $m \in \mathbb{N}^{+}$. For given $y_{i} \in \mathcal{A}, i \in \mathbb{N}^{+}$, let $D^{\prime}:\left\{x_{i}: i \in \mathbb{N}^{+}\right\} \rightarrow \mathcal{A}$ be such that $x_{i} \mapsto y_{i}, i \in \mathbb{N}^{+}$. The unique extension of D^{\prime} to \mathcal{A} via Leibniz's law determines a derivation D on \mathcal{A}, which is called the derivation defined by D^{\prime}.

Lemma 4. Let \mathcal{A} be a polynomial algebra generated by $\left\{X_{1}, X_{2}, \ldots, X_{n}, \ldots\right\}$. Assume D is a derivation with action defined by

$$
\begin{equation*}
D X_{n}=(a n+b) \sum_{i=1}^{n-1} X_{i} X_{n-i}, n \geq 2, \quad D X_{1}=0 \tag{1}
\end{equation*}
$$

where a and b are given real numbers. Then we have

$$
\begin{equation*}
D^{m} X_{n}=\frac{\prod_{k=1}^{m}(2 a n+(k+1) b)}{m+1} \sum_{i_{1}+i_{2}+\cdots+i_{m+1}=n} X_{i_{1}} X_{i_{2}} \cdots X_{i_{m+1}} \tag{2}
\end{equation*}
$$

Proof. Let $X(t)=\sum_{i \geq 1} X_{i} t^{i}$ be a generating function. It follows from

$$
X(t)^{2}=\sum_{n \geq 2}\left(\sum_{i=1}^{n-1} X_{i} X_{n-i}\right) t^{n}
$$

that

$$
\begin{aligned}
\left(a t \frac{d}{d t}+b\right) X(t)^{2} & =\sum_{n \geq 2}\left(\sum_{i=1}^{n-1} X_{i} X_{n-i}\right)\left(a t \frac{d}{d t}+b\right) t^{n}=\sum_{n \geq 2}\left(\sum_{i=1}^{n-1} X_{i} X_{n-i}\right)(a n+b) t^{n} \\
& =\sum_{n \geq 1}\left(D X_{n}\right) t^{n}=D X(t)
\end{aligned}
$$

Similarly, the statement (2) becomes

$$
\begin{equation*}
D^{m} X=\frac{1}{m+1} \prod_{i=1}^{m}\left(2 a t \frac{d}{d t}+(i+1) b\right) X^{m+1} \tag{3}
\end{equation*}
$$

where $X:=X(t)$. It is evident that (3) holds for $m=1$. Assume that (3) holds for $m=k$. Now we show that (3) holds for $m=k+1$. In fact, together with (3) for $m=k$ and the fact

$$
\begin{aligned}
D X^{m} & =m X^{m-1} D X=m X^{m-1}\left(a t \frac{d}{d t}+b\right) X^{2} \\
& =2 a m X^{m} t \frac{d}{d t} X+b m X^{m+1} \\
& =\frac{m}{m+1}\left(2 a t \frac{d}{d t}+(m+1) b\right) X^{m+1}
\end{aligned}
$$

we immediately obtain

$$
\begin{aligned}
D^{k+1} X & =D\left(D^{k} X\right)=D\left(\frac{1}{k+1} \prod_{i=1}^{k}\left(2 a \frac{d}{d t}+(i+1) b\right) X^{k+1}\right) \\
& =\frac{1}{k+1} \prod_{i=1}^{k}\left(2 a t \frac{d}{d t}+(i+1) b\right) D X^{k+1} \\
& =\frac{1}{k+1} \prod_{i=1}^{k}\left(2 a t \frac{d}{d t}+(i+1) b\right) \frac{k+1}{k+2}\left(2 a t \frac{d}{d t}+(k+2) b\right) X^{k+2} \\
& =\frac{1}{k+2} \prod_{i=1}^{k+1}\left(2 a t \frac{d}{d t}+(i+1) b\right) X^{k+2} .
\end{aligned}
$$

Therefore, by mathematical induction, we have completed the proof.

We call a strictly convex polygon with $n+2$ sides a $(n+2)$-gon, denoted by X_{n}, where $n \in \mathbb{N}^{+}$. Given an integer $n \geq 2$, we use Δ to denote a set of diagonals of X_{n} which are pairwise disjoint. It should be noted that a Δ with m elements divides X_{n} into $m+1$ convex polygons, $X_{i_{1}}, X_{i_{2}}, \ldots, X_{i_{m}}$ and $X_{i_{m+1}}$ for some $i_{1}, i_{2}, \ldots, i_{m}$ and i_{m+1} in $\{1,2, \ldots, n\}$. The set of such convex polygons is said to be a partition of the original convex polygon. We symbolically set $f(\Delta)=\prod_{j=1}^{m+1} X_{i_{j}}$ and Card $\Delta=m$. Figure 1 provides two examples of X_{n} for $n=8$ and $n=10$, respectively.

Figure 1: The left figure shows X_{8} with $\Delta=\{A D, A G, D G\}$ and the corresponding partition $\{A B C D, D E F G, A G H I J, A D G\}$, where Card $\Delta=3, f(\Delta)=X_{1} X_{2} X_{2} X_{3}$. The right figure shows X_{10} with $\Delta=\{A E, A J, E J, E G, G J\}$ and the corresponding partition $\{A B C D E, E F G, G H I J, A J K L, E G J, A E J\}$, where Card $\Delta=5, f(\Delta)=X_{1} X_{1} X_{1} X_{2} X_{2} X_{3}$.

Theorem 5. Given $n \in \mathbb{N}^{+}$and $m \in \mathbb{N}$, we have

$$
\begin{equation*}
\sum_{\operatorname{Card} \Delta=m} f(\Delta)=\frac{1}{m+1}\binom{n+m+1}{m} \sum_{i_{1}+i_{2}+\cdots+i_{m+1}=n} X_{i_{1}} X_{i_{2}} \cdots X_{i_{m+1}} \tag{4}
\end{equation*}
$$

Proof. Consider partitions of X_{n} with m diagonals, in which the diagonals are labelled, say with integers $1,2, \cdots, m$. Then the derivation D is an operator that acts as an analogue combinatorial device for splitting the polygon on a labelled diagonal; consequently, D^{m} is an operator that splits the polygon (with m diagonals) into $m+1$ polygons. We then divide by $m!$ to remove the effect of labelling the diagonals, so that $\frac{D^{m}}{m!}$ is the operator that produces the counting series for partitioning a polygon into $m+1$ parts.

Next, we calculate $D X_{n}$. Notice that there are $n-1$ diagonals starting from a vertex, and each diagonal divides X_{n} into two parts. So we have $n-1$ ways to divide X_{n}, which can
be expressed as $X_{1} X_{n-1}+X_{2} X_{n-2}+\cdots+X_{n-1} X_{1}$ by using our notation. Since X_{n} has $n+2$ vertices, the whole set of partitions of X_{n} can be written as $(n+2) \sum_{i=1}^{n-1} X_{i} X_{n-i}$. However, each diagonal has two ends, and will be counted twice. Consequently, we should divide it by 2, and get $D X_{n}=\frac{n+2}{2} \sum_{i=1}^{n-1} X_{i} X_{n-i}$. Taking $a=\frac{1}{2}$ and $b=1$ in Lemma 4, we have

$$
\sum_{\text {Card } \Delta=m} f(\Delta)=\frac{1}{m!} D^{m} X_{n}=\frac{1}{m+1}\binom{n+m+1}{m} \sum_{i_{1}+i_{2}+\cdots+i_{m+1}=n} X_{i_{1}} X_{i_{2}} \cdots X_{i_{m+1}}
$$

3 Applications

A result about partitioning polygons is as follows.
Corollary 6. Given $i_{1}, i_{2}, \ldots, i_{m+1}$ with $i_{1}+i_{2}+\cdots+i_{m+1}=n$. Then the number of different ways of cutting X_{n} into sub-polygons $X_{i_{1}}, X_{i_{2}}, \ldots, X_{i_{m+1}}$ by diagonals is $\frac{S}{m+1}\left(\begin{array}{c}n+m+1\end{array}\right)$, where S is the number of permutations of $i_{1}, i_{2}, \ldots, i_{m+1}$.

Proof. By Theorem 5, we obtain that there exist $\frac{S}{m+1}\binom{n+m+1}{m}$ ways to divide X_{n} into $X_{i_{1}}, X_{i_{2}}, \ldots, X_{i_{m+1}}$, where S is the number of permutations of $i_{1}, i_{2}, \ldots, i_{m+1}$.

One can easily verify that Proposition 1 is equivalent to Corollary 6.
Example 7 (Catalan numbers). Let $m=n-1$. Then $i_{1}=i_{2}=\cdots=i_{m+1}=1$ is the only positive integer solution of $i_{1}+i_{2}+\cdots+i_{m+1}=n$. Hence $S=1$, and we get the Catalan numbers $\frac{1}{n}\binom{2 n}{n-1}=\frac{1}{n+1}\binom{2 n}{n}$.

Next we give a new proof for Proposition 2 by using Theorem 5 and the residue theorem.
Proof of Proposition 2. Consider X_{n}. Notice that the number of positive integer solutions of $i_{1}+i_{2}+\cdots+i_{m+1}=n$ is $\binom{n-1}{m}$. By Theorem 5, there are $\sum_{i_{1}+i_{2}+\cdots+i_{m+1}=n} \frac{1}{m+1}\binom{n+m+1}{m}$
monomials on the right-hand side of (4). Thus we get $d_{m}=\frac{1}{m+1}\binom{n-1}{m}\binom{n+m+1}{m}$, and then

$$
\begin{aligned}
\sum_{k=1}^{n-1}(-1)^{k} d_{k} & =\sum_{k=1}^{n-1}(-1)^{k-1} \frac{\binom{n-1}{k}}{k+1}\binom{n+k+1}{k} \\
& =\sum_{k=1}^{n-1}(-1)^{k-1} \frac{\binom{n}{k+1}}{n} \operatorname{Res}\left(\frac{(1+u)^{n+k+1}}{u^{k+1}}, 0\right) \\
& =\frac{1}{n} \operatorname{Res}\left((1+u)^{n} \sum_{k=1}^{n-1}(-1)^{k-1}\binom{n}{k+1} \frac{(1+u)^{k+1}}{u^{k+1}}, 0\right) \\
& =\frac{1}{n} \operatorname{Res}\left((1+u)^{n}\left(\left(1-\frac{u+1}{u}\right)^{n}-\left(1-n \frac{u+1}{u}\right)\right), 0\right) \\
& =\frac{1}{n} \operatorname{Res}\left((1+u)^{n}\left(\left(-\frac{1}{u}\right)^{n}-1+n \frac{u+1}{u}\right), 0\right) \\
& =\frac{1}{n}\left((-1)^{n} \operatorname{Res}\left(\frac{(1+u)^{n}}{u^{n}}, 0\right)+n \operatorname{Res}\left(\frac{(1+u)^{n+1}}{u}, 0\right)\right) \\
& =\frac{1}{n}\left((-1)^{n}\binom{n}{n-1}+n \cdot 1\right) \\
& =1+(-1)^{n},
\end{aligned}
$$

where $\operatorname{Res}(f(u), 0)$ means the residue of function $f(u)$ at $u=0$.
Remark 8. Proposition 2 also follows immediately from the hypergeometric summation formula, by

$$
\begin{aligned}
\sum_{k=1}^{n-1}(-1)^{k} d_{k} & =\sum_{k=1}^{n-1}(-1)^{k-1} \frac{\binom{n-1}{k}}{k+1}\binom{n+k+1}{k}=\frac{1}{n}\left(n-\sum_{i=1}^{n-1}\binom{n}{n-k-1}\binom{-n-2}{k}\right) \\
& =\frac{1}{n}\left(n-\binom{-2}{n-1}\right)=\frac{1}{n}\left(n+(-1)^{n} n\right)=1+(-1)^{n} .
\end{aligned}
$$

4 Acknowledgments

The authors thank the anonymous referee for his/her careful reading and helpful comments. The proofs of Lemma 4 and Theorem 5, were effectively simplified by the referee. Moreover, he/she also gave the above remark.

References

[1] A. Cayley, On the partition of a polygon, Proc. Lond. Math. Soc. (3) 22 (1890), 237-262.
[2] J. H. Przytycki and A. S. Sikora, Polygon dissections and Euler, Fuss, Kirkman, and Cayley numbers, J. Combin. Theory Ser. A 92 (2000), 68-76.
[3] M. S. Floater and T. Lyche, Divided differences of inverse functions and partitions of a convex polygon, Math. Comp. 77 (2008), 2295-2308.
[4] C. W. Lee, The associahedron and triangulations of the n-gon, European J. Combin. 10 (1989), 551-560.
[5] G. C. Shephard, A polygon problem, Amer. Math. Monthly 102 (1995), 505-507.

2010 Mathematics Subject Classification: Primary 51E12; Secondary 05A15, 13N15, 16W25. Keywords: polygon, diagonal, combinatorial enumeration, derivation, generating function.
(Concerned with sequence A000108.)

Received April 9 2014; revised versions received April 26 2014; February 4 2015; March 14 2015; July 29 2015; August 6 2015. Published in Journal of Integer Sequences, August 18 2015.

Return to Journal of Integer Sequences home page.

