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Abstract

We establish a class of polynomials on convex polygons, which provides a new

counting formula to all partitions of a convex polygon by non-intersecting diagonals.

1 Introduction

Counting partitions of a convex polygon of a specified type by using its non-intersecting
diagonals is a problem which can go back to Euler, Catalan, Cayley [1] and Przytycki and
Sikora [2]. Recently, Floater and Lyche [3] showed a way to enumerate all partitions of a
convex polygon of a certain type as follows.
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Proposition 1 (Floater, Lyche [3]). A partition of a convex (n+1)-gon is said to be of type
b = (b2, b3, . . . , bn) if it contains b2 triangles, b3 quadrilaterals, and so on, and in general bi
(i+1)-gons. Then the number of partitions of a convex (n+1)-gon of type b = (b2, b3, . . . , bn)
with b2 + b3 + · · ·+ bn = k and 2b2 + 3b3 + · · ·+ nbn = n+ k − 1, is

C(b) =
(n+ k − 1)(n+ k − 2) · · · (n+ 1)

b2!b3! · · · bn!
.

Inspired by Lee’s result [4], Shephard [5] got an interesting equality on convex polygons
with n+ 2 sides as follows.

Proposition 2 (Lee [4], Shephard [5]). Given a (n+2)-gon, let d1 be the number of diagonals,
d2 be the number of disjoint pairs of diagonals, and, in general, di be the number of sets of
i diagonals of the polygon which are pairwise disjoint. Then we have

d1 − d2 + d3 − · · ·+ (−1)ndn−1 = 1 + (−1)n

The original proof [4] of Proposition 2 is very complicated. We will provide a rather
simple proof in the last part.

We organize this paper as follows. Section 2 shows the main result (Theorem 5) via the
properties of a derivation acting on a special polynomial algebra. In Section 3, we prove
Propositions 1 and 2 by our main result.

2 Main results

We call a vector space A := (A,+) an algebra over the real field R, if A possesses a bilinear
product satisfying (ab)c = a(bc), (a+ b)(c+ d) = ac+ bc+ ad+ bd and (λµ)(ab) = (λa)(µb),
for all λ, µ ∈ R, a, b, c, d ∈ A. Recall that a linear map D mapping A into itself is called a
derivation if D(xy) = (Dx)y + x(Dy) for all x, y ∈ A.

Definition 3. Let A be a polynomial algebra generated by {xi : i ∈ N
+}, i.e., the collection

of the polynomials with the form
∑m

k=1

∑

i1,...,ik∈N
+ ai1,...,ikxi1 · · · xik , where ai1,...,ik ∈ R and

m ∈ N
+. For given yi ∈ A, i ∈ N

+, let D′ : {xi : i ∈ N
+} → A be such that xi 7→ yi, i ∈ N

+.
The unique extension of D′ to A via Leibniz’s law determines a derivation D on A, which is
called the derivation defined by D′.

Lemma 4. Let A be a polynomial algebra generated by {X1, X2, . . . , Xn, . . .}. Assume D is
a derivation with action defined by

DXn = (an+ b)
n−1
∑

i=1

XiXn−i, n ≥ 2, DX1 = 0, (1)

where a and b are given real numbers. Then we have

DmXn =

∏m

k=1
(2an+ (k + 1)b)

m+ 1

∑

i1+i2+···+im+1=n

Xi1Xi2 · · ·Xim+1
. (2)
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Proof. Let X(t) =
∑

i≥1
Xit

i be a generating function. It follows from

X(t)2 =
∑

n≥2

(

n−1
∑

i=1

XiXn−i

)

tn

that

(

at
d

dt
+ b

)

X(t)2 =
∑

n≥2

(

n−1
∑

i=1

XiXn−i

)

(

at
d

dt
+ b

)

tn =
∑

n≥2

(

n−1
∑

i=1

XiXn−i

)

(an+ b)tn

=
∑

n≥1

(DXn)t
n = DX(t).

Similarly, the statement (2) becomes

DmX =
1

m+ 1

m
∏

i=1

(

2at
d

dt
+ (i+ 1)b

)

Xm+1, (3)

where X := X(t). It is evident that (3) holds for m = 1. Assume that (3) holds for m = k.
Now we show that (3) holds for m = k+1. In fact, together with (3) for m = k and the fact

DXm = mXm−1DX = mXm−1

(

at
d

dt
+ b

)

X2

= 2amXmt
d

dt
X + bmXm+1

=
m

m+ 1

(

2at
d

dt
+ (m+ 1)b

)

Xm+1,

we immediately obtain

Dk+1X = D(DkX) = D

(

1

k + 1

k
∏

i=1

(

2a
d

dt
+ (i+ 1)b

)

Xk+1

)

=
1

k + 1

k
∏

i=1

(

2at
d

dt
+ (i+ 1)b

)

DXk+1

=
1

k + 1

k
∏

i=1

(

2at
d

dt
+ (i+ 1)b

)

k + 1

k + 2

(

2at
d

dt
+ (k + 2)b

)

Xk+2

=
1

k + 2

k+1
∏

i=1

(

2at
d

dt
+ (i+ 1)b

)

Xk+2.

Therefore, by mathematical induction, we have completed the proof.
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We call a strictly convex polygon with n + 2 sides a (n + 2)-gon, denoted by Xn, where
n ∈ N

+. Given an integer n ≥ 2, we use ∆ to denote a set of diagonals of Xn which are
pairwise disjoint. It should be noted that a ∆ with m elements divides Xn into m+1 convex
polygons, Xi1 , Xi2 , . . . , Xim and Xim+1

for some i1, i2, . . . , im and im+1 in {1, 2, . . . , n}. The
set of such convex polygons is said to be a partition of the original convex polygon. We
symbolically set f(∆) =

∏m+1

j=1
Xij and Card ∆ = m. Figure 1 provides two examples of Xn

for n = 8 and n = 10, respectively.
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Figure 1: The left figure shows X8 with ∆ = {AD,AG,DG} and the corresponding par-
tition {ABCD,DEFG,AGHIJ,ADG}, where Card ∆ = 3, f(∆) = X1X2X2X3. The
right figure shows X10 with ∆ = {AE,AJ,EJ,EG,GJ} and the corresponding partition
{ABCDE,EFG,GHIJ,AJKL,EGJ,AEJ}, where Card ∆ = 5, f(∆) = X1X1X1X2X2X3.

Theorem 5. Given n ∈ N
+ and m ∈ N, we have

∑

Card ∆=m

f(∆) =
1

m+ 1

(

n+m+ 1

m

)

∑

i1+i2+···+im+1=n

Xi1Xi2 · · ·Xim+1
. (4)

Proof. Consider partitions of Xn with m diagonals, in which the diagonals are labelled, say
with integers 1, 2, · · · ,m. Then the derivation D is an operator that acts as an analogue
combinatorial device for splitting the polygon on a labelled diagonal; consequently, Dm is an
operator that splits the polygon (with m diagonals) into m+1 polygons. We then divide by
m! to remove the effect of labelling the diagonals, so that Dm

m!
is the operator that produces

the counting series for partitioning a polygon into m+ 1 parts.
Next, we calculate DXn. Notice that there are n − 1 diagonals starting from a vertex,

and each diagonal divides Xn into two parts. So we have n−1 ways to divide Xn, which can
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be expressed as X1Xn−1+X2Xn−2+ · · ·+Xn−1X1 by using our notation. Since Xn has n+2
vertices, the whole set of partitions of Xn can be written as (n+2)

∑n−1

i=1
XiXn−i. However,

each diagonal has two ends, and will be counted twice. Consequently, we should divide it by
2, and get DXn = n+2

2

∑n−1

i=1
XiXn−i. Taking a = 1

2
and b = 1 in Lemma 4, we have

∑

Card ∆=m

f(∆) =
1

m!
DmXn =

1

m+ 1

(

n+m+ 1

m

)

∑

i1+i2+···+im+1=n

Xi1Xi2 · · ·Xim+1
.

3 Applications

A result about partitioning polygons is as follows.

Corollary 6. Given i1, i2, . . . , im+1 with i1+i2+· · ·+im+1 = n. Then the number of different
ways of cutting Xn into sub-polygons Xi1 , Xi2 , . . . , Xim+1

by diagonals is S
m+1

(

n+m+1

m

)

, where
S is the number of permutations of i1, i2, . . . , im+1.

Proof. By Theorem 5, we obtain that there exist S
m+1

(

n+m+1

m

)

ways to divide Xn into
Xi1 , Xi2 , . . . , Xim+1

, where S is the number of permutations of i1, i2, . . . , im+1.

One can easily verify that Proposition 1 is equivalent to Corollary 6.

Example 7 (Catalan numbers). Let m = n− 1. Then i1 = i2 = · · · = im+1 = 1 is the only
positive integer solution of i1 + i2 + · · · + im+1 = n. Hence S = 1, and we get the Catalan
numbers 1

n

(

2n

n−1

)

= 1

n+1

(

2n

n

)

.

Next we give a new proof for Proposition 2 by using Theorem 5 and the residue theorem.

Proof of Proposition 2. Consider Xn. Notice that the number of positive integer solutions
of i1 + i2 + · · · + im+1 = n is

(

n−1

m

)

. By Theorem 5, there are
∑

i1+i2+···+im+1=n

1

m+1

(

n+m+1

m

)
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monomials on the right-hand side of (4). Thus we get dm = 1

m+1

(

n−1

m

)(

n+m+1

m

)

, and then

n−1
∑

k=1

(−1)kdk =
n−1
∑

k=1

(−1)k−1

(

n−1

k

)

k + 1

(

n+ k + 1

k

)

=
n−1
∑

k=1

(−1)k−1

(

n

k+1

)

n
Res

(

(1 + u)n+k+1

uk+1
, 0

)

=
1

n
Res

(

(1 + u)n
n−1
∑

k=1

(−1)k−1

(

n

k + 1

)

(1 + u)k+1

uk+1
, 0

)

=
1

n
Res

(

(1 + u)n
(

(1−
u+ 1

u
)n − (1− n

u+ 1

u
)

)

, 0

)

=
1

n
Res

(

(1 + u)n
(

(−
1

u
)n − 1 + n

u+ 1

u

)

, 0

)

=
1

n

(

(−1)nRes

(

(1 + u)n

un
, 0

)

+ nRes

(

(1 + u)n+1

u
, 0

))

=
1

n

(

(−1)n
(

n

n− 1

)

+ n · 1

)

= 1 + (−1)n,

where Res(f(u), 0) means the residue of function f(u) at u = 0.

Remark 8. Proposition 2 also follows immediately from the hypergeometric summation for-
mula, by

n−1
∑

k=1

(−1)kdk =
n−1
∑

k=1

(−1)k−1

(

n−1

k

)

k + 1

(

n+ k + 1

k

)

=
1

n

(

n−

n−1
∑

i=1

(

n

n− k − 1

)(

−n− 2

k

)

)

=
1

n

(

n−

(

−2

n− 1

))

=
1

n
(n+ (−1)nn) = 1 + (−1)n.

4 Acknowledgments

The authors thank the anonymous referee for his/her careful reading and helpful comments.
The proofs of Lemma 4 and Theorem 5, were effectively simplified by the referee. Moreover,
he/she also gave the above remark.

References

[1] A. Cayley, On the partition of a polygon, Proc. Lond. Math. Soc. (3) 22 (1890), 237–262.

6



[2] J. H. Przytycki and A. S. Sikora, Polygon dissections and Euler, Fuss, Kirkman, and
Cayley numbers, J. Combin. Theory Ser. A 92 (2000), 68–76.

[3] M. S. Floater and T. Lyche, Divided differences of inverse functions and partitions of a
convex polygon, Math. Comp. 77 (2008), 2295–2308.

[4] C. W. Lee, The associahedron and triangulations of the n-gon, European J. Combin. 10
(1989), 551–560.

[5] G. C. Shephard, A polygon problem, Amer. Math. Monthly 102 (1995), 505–507.

2010 Mathematics Subject Classification: Primary 51E12; Secondary 05A15, 13N15, 16W25.
Keywords: polygon, diagonal, combinatorial enumeration, derivation, generating function.

(Concerned with sequence A000108.)

Received April 9 2014; revised versions received April 26 2014; February 4 2015; March 14
2015; July 29 2015; August 6 2015. Published in Journal of Integer Sequences, August 18
2015.

Return to Journal of Integer Sequences home page.

7

http://oeis.org/A000108
http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	Main results
	Applications
	Acknowledgments

