

Journal of Integer Sequences, Vol. 18 (2015), Article 15.9.4

Combinatorial Enumeration of Partitions of a Convex Polygon

Dong Zhang and Dongyi Wei Peking University Beijing 100871 P. R. China dongzhang@pku.edu.cn jnwdyi@163.com

Demin Zhang Xinxiang Henan P. R. China winlxm1972@sina.cn

Abstract

We establish a class of polynomials on convex polygons, which provides a new counting formula to all partitions of a convex polygon by non-intersecting diagonals.

1 Introduction

Counting partitions of a convex polygon of a specified type by using its non-intersecting diagonals is a problem which can go back to Euler, Catalan, Cayley [1] and Przytycki and Sikora [2]. Recently, Floater and Lyche [3] showed a way to enumerate all partitions of a convex polygon of a certain type as follows.

Proposition 1 (Floater, Lyche [3]). A partition of a convex (n+1)-gon is said to be of type $\mathbf{b} = (b_2, b_3, \ldots, b_n)$ if it contains b_2 triangles, b_3 quadrilaterals, and so on, and in general b_i (i+1)-gons. Then the number of partitions of a convex (n+1)-gon of type $\mathbf{b} = (b_2, b_3, \ldots, b_n)$ with $b_2 + b_3 + \cdots + b_n = k$ and $2b_2 + 3b_3 + \cdots + nb_n = n + k - 1$, is

$$C(\mathbf{b}) = \frac{(n+k-1)(n+k-2)\cdots(n+1)}{b_2!b_3!\cdots b_n!}$$

Inspired by Lee's result [4], Shephard [5] got an interesting equality on convex polygons with n + 2 sides as follows.

Proposition 2 (Lee [4], Shephard [5]). Given a (n+2)-gon, let d_1 be the number of diagonals, d_2 be the number of disjoint pairs of diagonals, and, in general, d_i be the number of sets of i diagonals of the polygon which are pairwise disjoint. Then we have

$$d_1 - d_2 + d_3 - \dots + (-1)^n d_{n-1} = 1 + (-1)^n$$

The original proof [4] of Proposition 2 is very complicated. We will provide a rather simple proof in the last part.

We organize this paper as follows. Section 2 shows the main result (Theorem 5) via the properties of a derivation acting on a special polynomial algebra. In Section 3, we prove Propositions 1 and 2 by our main result.

2 Main results

We call a vector space $\mathcal{A} := (\mathcal{A}, +)$ an algebra over the real field \mathbb{R} , if \mathcal{A} possesses a bilinear product satisfying (ab)c = a(bc), (a+b)(c+d) = ac+bc+ad+bd and $(\lambda\mu)(ab) = (\lambda a)(\mu b)$, for all $\lambda, \mu \in \mathbb{R}$, $a, b, c, d \in \mathcal{A}$. Recall that a linear map D mapping \mathcal{A} into itself is called a derivation if D(xy) = (Dx)y + x(Dy) for all $x, y \in \mathcal{A}$.

Definition 3. Let \mathcal{A} be a polynomial algebra generated by $\{x_i : i \in \mathbb{N}^+\}$, i.e., the collection of the polynomials with the form $\sum_{k=1}^{m} \sum_{i_1,\ldots,i_k \in \mathbb{N}^+} a_{i_1,\ldots,i_k} x_{i_1} \cdots x_{i_k}$, where $a_{i_1,\ldots,i_k} \in \mathbb{R}$ and $m \in \mathbb{N}^+$. For given $y_i \in \mathcal{A}$, $i \in \mathbb{N}^+$, let $D' : \{x_i : i \in \mathbb{N}^+\} \to \mathcal{A}$ be such that $x_i \mapsto y_i, i \in \mathbb{N}^+$. The unique extension of D' to \mathcal{A} via Leibniz's law determines a derivation D on \mathcal{A} , which is called the derivation defined by D'.

Lemma 4. Let \mathcal{A} be a polynomial algebra generated by $\{X_1, X_2, \ldots, X_n, \ldots\}$. Assume D is a derivation with action defined by

$$DX_n = (an+b) \sum_{i=1}^{n-1} X_i X_{n-i}, \ n \ge 2, \ DX_1 = 0,$$
(1)

where a and b are given real numbers. Then we have

$$D^m X_n = \frac{\prod_{k=1}^m (2an + (k+1)b)}{m+1} \sum_{i_1 + i_2 + \dots + i_{m+1} = n} X_{i_1} X_{i_2} \cdots X_{i_{m+1}}.$$
 (2)

Proof. Let $X(t) = \sum_{i \ge 1} X_i t^i$ be a generating function. It follows from

$$X(t)^{2} = \sum_{n \ge 2} \left(\sum_{i=1}^{n-1} X_{i} X_{n-i} \right) t^{n}$$

that

$$\left(at\frac{d}{dt}+b\right)X(t)^{2} = \sum_{n\geq 2}\left(\sum_{i=1}^{n-1}X_{i}X_{n-i}\right)\left(at\frac{d}{dt}+b\right)t^{n} = \sum_{n\geq 2}\left(\sum_{i=1}^{n-1}X_{i}X_{n-i}\right)(an+b)t^{n}$$
$$= \sum_{n\geq 1}(DX_{n})t^{n} = DX(t).$$

Similarly, the statement (2) becomes

$$D^{m}X = \frac{1}{m+1} \prod_{i=1}^{m} \left(2at \frac{d}{dt} + (i+1)b \right) X^{m+1},$$
(3)

where X := X(t). It is evident that (3) holds for m = 1. Assume that (3) holds for m = k. Now we show that (3) holds for m = k + 1. In fact, together with (3) for m = k and the fact

$$DX^{m} = mX^{m-1}DX = mX^{m-1}\left(at\frac{d}{dt} + b\right)X^{2}$$
$$= 2amX^{m}t\frac{d}{dt}X + bmX^{m+1}$$
$$= \frac{m}{m+1}\left(2at\frac{d}{dt} + (m+1)b\right)X^{m+1},$$

we immediately obtain

$$\begin{split} D^{k+1}X &= D(D^kX) = D\left(\frac{1}{k+1}\prod_{i=1}^k \left(2a\frac{d}{dt} + (i+1)b\right)X^{k+1}\right) \\ &= \frac{1}{k+1}\prod_{i=1}^k \left(2at\frac{d}{dt} + (i+1)b\right)DX^{k+1} \\ &= \frac{1}{k+1}\prod_{i=1}^k \left(2at\frac{d}{dt} + (i+1)b\right)\frac{k+1}{k+2}\left(2at\frac{d}{dt} + (k+2)b\right)X^{k+2} \\ &= \frac{1}{k+2}\prod_{i=1}^{k+1} \left(2at\frac{d}{dt} + (i+1)b\right)X^{k+2}. \end{split}$$

Therefore, by mathematical induction, we have completed the proof.

We call a strictly convex polygon with n + 2 sides a (n + 2)-gon, denoted by X_n , where $n \in \mathbb{N}^+$. Given an integer $n \geq 2$, we use Δ to denote a set of diagonals of X_n which are pairwise disjoint. It should be noted that a Δ with m elements divides X_n into m + 1 convex polygons, $X_{i_1}, X_{i_2}, \ldots, X_{i_m}$ and $X_{i_{m+1}}$ for some i_1, i_2, \ldots, i_m and i_{m+1} in $\{1, 2, \ldots, n\}$. The set of such convex polygons is said to be a partition of the original convex polygon. We symbolically set $f(\Delta) = \prod_{j=1}^{m+1} X_{i_j}$ and Card $\Delta = m$. Figure 1 provides two examples of X_n for n = 8 and n = 10, respectively.

Figure 1: The left figure shows X_8 with $\Delta = \{AD, AG, DG\}$ and the corresponding partition $\{ABCD, DEFG, AGHIJ, ADG\}$, where Card $\Delta = 3$, $f(\Delta) = X_1X_2X_2X_3$. The right figure shows X_{10} with $\Delta = \{AE, AJ, EJ, EG, GJ\}$ and the corresponding partition $\{ABCDE, EFG, GHIJ, AJKL, EGJ, AEJ\}$, where Card $\Delta = 5$, $f(\Delta) = X_1X_1X_1X_2X_2X_3$.

Theorem 5. Given $n \in \mathbb{N}^+$ and $m \in \mathbb{N}$, we have

$$\sum_{\text{Card }\Delta=m} f(\Delta) = \frac{1}{m+1} \binom{n+m+1}{m} \sum_{i_1+i_2+\dots+i_{m+1}=n} X_{i_1} X_{i_2} \cdots X_{i_{m+1}}.$$
 (4)

Proof. Consider partitions of X_n with m diagonals, in which the diagonals are labelled, say with integers $1, 2, \dots, m$. Then the derivation D is an operator that acts as an analogue combinatorial device for splitting the polygon on a labelled diagonal; consequently, D^m is an operator that splits the polygon (with m diagonals) into m + 1 polygons. We then divide by m! to remove the effect of labelling the diagonals, so that $\frac{D^m}{m!}$ is the operator that produces the counting series for partitioning a polygon into m + 1 parts.

Next, we calculate DX_n . Notice that there are n-1 diagonals starting from a vertex, and each diagonal divides X_n into two parts. So we have n-1 ways to divide X_n , which can be expressed as $X_1X_{n-1} + X_2X_{n-2} + \cdots + X_{n-1}X_1$ by using our notation. Since X_n has n+2 vertices, the whole set of partitions of X_n can be written as $(n+2)\sum_{i=1}^{n-1}X_iX_{n-i}$. However, each diagonal has two ends, and will be counted twice. Consequently, we should divide it by 2, and get $DX_n = \frac{n+2}{2}\sum_{i=1}^{n-1}X_iX_{n-i}$. Taking $a = \frac{1}{2}$ and b = 1 in Lemma 4, we have

$$\sum_{\text{Card }\Delta=m} f(\Delta) = \frac{1}{m!} D^m X_n = \frac{1}{m+1} \binom{n+m+1}{m} \sum_{i_1+i_2+\dots+i_{m+1}=n} X_{i_1} X_{i_2} \cdots X_{i_{m+1}}.$$

3 Applications

A result about partitioning polygons is as follows.

Corollary 6. Given $i_1, i_2, \ldots, i_{m+1}$ with $i_1+i_2+\cdots+i_{m+1}=n$. Then the number of different ways of cutting X_n into sub-polygons $X_{i_1}, X_{i_2}, \ldots, X_{i_{m+1}}$ by diagonals is $\frac{S}{m+1}\binom{n+m+1}{m}$, where S is the number of permutations of $i_1, i_2, \ldots, i_{m+1}$.

Proof. By Theorem 5, we obtain that there exist $\frac{S}{m+1}\binom{n+m+1}{m}$ ways to divide X_n into $X_{i_1}, X_{i_2}, \ldots, X_{i_{m+1}}$, where S is the number of permutations of $i_1, i_2, \ldots, i_{m+1}$.

One can easily verify that Proposition 1 is equivalent to Corollary 6.

Example 7 (Catalan numbers). Let m = n - 1. Then $i_1 = i_2 = \cdots = i_{m+1} = 1$ is the only positive integer solution of $i_1 + i_2 + \cdots + i_{m+1} = n$. Hence S = 1, and we get the Catalan numbers $\frac{1}{n} \binom{2n}{n-1} = \frac{1}{n+1} \binom{2n}{n}$.

Next we give a new proof for Proposition 2 by using Theorem 5 and the residue theorem.

Proof of Proposition 2. Consider X_n . Notice that the number of positive integer solutions of $i_1 + i_2 + \cdots + i_{m+1} = n$ is $\binom{n-1}{m}$. By Theorem 5, there are $\sum_{i_1+i_2+\cdots+i_{m+1}=n} \frac{1}{m+1} \binom{n+m+1}{m}$

monomials on the right-hand side of (4). Thus we get $d_m = \frac{1}{m+1} \binom{n-1}{m} \binom{n+m+1}{m}$, and then

$$\begin{split} \sum_{k=1}^{n-1} (-1)^k d_k &= \sum_{k=1}^{n-1} (-1)^{k-1} \frac{\binom{n-1}{k}}{k+1} \binom{n+k+1}{k} \\ &= \sum_{k=1}^{n-1} (-1)^{k-1} \frac{\binom{n}{k+1}}{n} \operatorname{Res} \left(\frac{(1+u)^{n+k+1}}{u^{k+1}}, 0 \right) \\ &= \frac{1}{n} \operatorname{Res} \left((1+u)^n \sum_{k=1}^{n-1} (-1)^{k-1} \binom{n}{k+1} \frac{(1+u)^{k+1}}{u^{k+1}}, 0 \right) \\ &= \frac{1}{n} \operatorname{Res} \left((1+u)^n \left((1-\frac{u+1}{u})^n - (1-n\frac{u+1}{u}) \right), 0 \right) \\ &= \frac{1}{n} \operatorname{Res} \left((1+u)^n \left((-\frac{1}{u})^n - 1 + n\frac{u+1}{u} \right), 0 \right) \\ &= \frac{1}{n} \left((-1)^n \operatorname{Res} \left(\frac{(1+u)^n}{u^n}, 0 \right) + n \operatorname{Res} \left(\frac{(1+u)^{n+1}}{u}, 0 \right) \right) \\ &= \frac{1}{n} \left((-1)^n \binom{n}{n-1} + n \cdot 1 \right) \\ &= 1 + (-1)^n, \end{split}$$

where $\operatorname{Res}(f(u), 0)$ means the residue of function f(u) at u = 0.

Remark 8. Proposition 2 also follows immediately from the hypergeometric summation formula, by

$$\sum_{k=1}^{n-1} (-1)^k d_k = \sum_{k=1}^{n-1} (-1)^{k-1} \frac{\binom{n-1}{k}}{k+1} \binom{n+k+1}{k} = \frac{1}{n} \left(n - \sum_{i=1}^{n-1} \binom{n}{n-k-1} \binom{-n-2}{k} \right)$$
$$= \frac{1}{n} \left(n - \binom{-2}{n-1} \right) = \frac{1}{n} (n + (-1)^n n) = 1 + (-1)^n.$$

4 Acknowledgments

The authors thank the anonymous referee for his/her careful reading and helpful comments. The proofs of Lemma 4 and Theorem 5, were effectively simplified by the referee. Moreover, he/she also gave the above remark.

References

[1] A. Cayley, On the partition of a polygon, Proc. Lond. Math. Soc. (3) 22 (1890), 237–262.

- [2] J. H. Przytycki and A. S. Sikora, Polygon dissections and Euler, Fuss, Kirkman, and Cayley numbers, J. Combin. Theory Ser. A 92 (2000), 68–76.
- [3] M. S. Floater and T. Lyche, Divided differences of inverse functions and partitions of a convex polygon, *Math. Comp.* 77 (2008), 2295–2308.
- [4] C. W. Lee, The associahedron and triangulations of the n-gon, European J. Combin. 10 (1989), 551–560.
- [5] G. C. Shephard, A polygon problem, Amer. Math. Monthly 102 (1995), 505–507.

2010 Mathematics Subject Classification: Primary 51E12; Secondary 05A15, 13N15, 16W25. Keywords: polygon, diagonal, combinatorial enumeration, derivation, generating function.

(Concerned with sequence $\underline{A000108}$.)

Received April 9 2014; revised versions received April 26 2014; February 4 2015; March 14 2015; July 29 2015; August 6 2015. Published in *Journal of Integer Sequences*, August 18 2015.

Return to Journal of Integer Sequences home page.