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Abstract

We consider a generalized Fibonacci sequence (Gy,) by G1,G2 € Z and Gy, = Gp—1+
Gy —2 for any integer n. Let p be a prime number and let d(p) be the smallest positive
integer n which satisfies p | F,. In this article, we introduce equivalence relations
for the set of generalized Fibonacci sequences. One of the equivalence relations is
defined as follows. We write (G,,) ~* (G})) if there exist integers m and n satisfying
GG, = G, G, (mod p). We prove the following: if p = £2 (mod 5), then the
number of equivalence classes (G,,) satisfying p { G,, for any integer n is (p-+1)/d(p)—1.
If p = £1 (mod 5), then the number is (p — 1)/d(p) + 1. Our results are refinements
of a theorem given by Kozaki and Nakahara in 1999. They proved that there exists
a generalized Fibonacci sequence (G,) such that p t G, for any n € Z if and only
if one of the following three conditions holds: (1) p = 5; (2) p = +1 (mod 5); (3)
p==£2 (mod 5) and d(p) < p+ 1.

Introduction and main results

We consider a generalized Fibonacci sequence (G,,) defined by

Glu GQ € Zv Gn - Gn—l + Gn—2 (n € Z)
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If Gy = 1 and G5 = 1, then it is the Fibonacci sequence (F},), and if G; = 1 and G5 = 3, then
it is the Lucas sequence (L,). It is well-known that such generalized Fibonacci sequences
are periodic modulo m for any natural numbers m. For example, the sequence (F,, mod 3)
is ...1,1,2,0,2,2,1,0,1,1,2,0,... (the period is 8). There are many interesting results
concerning the generalized Fibonacci sequences. We recommend two books by Koshy [2, §7]
and Nakamura [4] as references.

We fix a prime number p, and define two relations ~ and ~* for the set of generalized
Fibonacci sequences. The first relation ~ is defined in our previous paper [1].

Definition 1. Let (G,,) and (G.,) be generalized Fibonacci sequences. We write (G,,) ~ (G},)
if the congruence G2G) = GG (mod p) holds.

Definition 2. Let (G,) and (G!)) be generalized Fibonacci sequences. We write (G,,) ~*
(G%,) if there are some integers m and n satisfying G,,,11G), = G7, Gy, (mod p).

By the definitions, the next lemma follows.
Lemma 3. If (G,) ~ (G)), then we have (G,,) ~* (G})).

Note that if (G,,) satisfies p | G; and p | Go, then we have (G,,) ~ (G},) and (G,) ~* (G!)
for any generalized Fibonacci sequences (G!). We can show by the definition that the first
relation ~ is an equivalence relation for the set {(G,)| pt Gy or pt Ga}.

We will show in §2 that the second relation ~* is also an equivalence relation. Since the
relations ~ and ~* are equivalence relations, we can consider the quotient sets using these
relations. We put

X, ={(G,) | pt Gy or pt Ga}/ ~, Y, ={(Gn) € X, | pt G, for any n € Z}.
X2 = {(G) | ptGror pt Ga}/ ~*, Yy = {{G) € X} | p1 G for any n € Z}.

The sets Y}, and Y, are well-defined by [1, Lemma 2] and Lemma 10 in §2. We considered

the set X = {(G,) [ p1 Gy and p{ Ga}/ ~ and Y, = (G,) € X, | pt G, forany n € Z}
instead of X, and Y, [1]. Note that the cardinality of Y, and Y, are equal. Let p be a prime
number and let d(p) be the smallest positive integer n for which p | F,. We proved the
following theorem in a previous paper [1].

Theorem 4 ([1, Theorem 1 (2)]).
Yl =p+1—dp)

In this article, we will reduce the number of equivalence classes by using the new relation
~* instead of ~, and will prove the following theorem in §3.

Theorem 5. (1) If p = +£2 (mod 5), then we have

Y, p+1
yr =L P72
Yl d(p)  d(p)



(2) If p==+1 (mod 5), then we have

Y| -2 p—1

dip) — d(p) b

¥yl =2+

(3) If p =5, then we have |Y;| = [Y,| = 1.

In §4, we will show that our results imply the following result given by Kozaki and
Nakahara in 1999. An integer m is called the type of a non-divisor when there exists a
generalized Fibonacci sequence (G,,) such that m {1 G,, for any n € Z. For a prime number
p, we denote the period of (F,, mod p) by k(p).

Theorem 6 ([3, Kozaki and Nakaharal). A prime number p is the type of non-divisor if and
only if one of the following three conditions holds.

(1) p=5.
(2) p=1,9,11,13,17,19 (mod 20).
(3) p=3,7 (mod 20) and k(p) < 2(p+1).

In §5, we will give some examples of the cardinalities of the set V), and Y.

2 Equivalence relations

In this section, we will give some lemmas on the relation ~*. The following lemma follows
from the recurrence relation G,, = G,,_1 + G,—_s.

Lemma 7. Let (G,) be a generalized Fibonacci sequence that satisfies p 4 Gy or p t Go. If
p | Gp, then we have pt G,—1 and pt Giq.

Lemma 8. Let (G,,) and (G),) be generalized Fibonacci sequences. If GG, = Gl 1 Gy, (mod p),
then we have Gpi2Gh, ) = G, 9Gy1 (mod p).

Proof.

Gm+2G/n+1 - (Gm—H + Gm>G;1+1
= GG +GnGl
= GG + GG, (by the assumption)
=G (G + G)
= Gm+1G;L+2-



For any integer GG that is not divisible by p, we denote an inverse element modulo p by

G ' (€Z) (ie., GG"' =1 (mod p)).

*

Lemma 9. The relation ~* is an equivalence relation for the set {(G,) | p1 G1 or p{ Ga}.

*

Proof. Since this relation is reflexive and symmetric, we will prove the transitivity: if (G,,) ~
(G1) and (GI,) ~* (G%), then (G,) ~* (G). By the assumption, there exist integers m,n, k
and ¢ satisfying

GG, =G Gy, (mod p) and GGy = Gy, G}, (mod p).
Put ¢t = max(n, k). Using Lemma 8, we get integers m and ¢ satisfying
Gmi1G, = GGy, (mod p) and GGy = Gy, G (mod p). (1)

If we assume p | G, then we get p f G}, using Lemma 7. From (1), we get p | Gy,
and p | G. Therefore we have (G,) ~* (G)) since GGy = 0 = GGy, (mod p). If
we assume p | Gi ,, then we get (G,,) ~* (G7) by the same argument. Next, we assume
p1 G, and pt G).,. Then we get p{ G,, and p { G/ from (1). Hence we get G,,11G,)! =
GGy = GY LG (mod p), and hence G, 1GY = GY,,G,, (mod p). This congruence
implies (G,) ~* (G). O

Lemma 10. Assume (G,),(G},) € {(Gy) | p1 Gy orp 1 Ga}. If (Gy,) ~* (G) and p 1 G,
for any n € Z. Then we have p1 G, for any n € Z.

Proof. We can assume that there exist integers m, n satisfying G411 G, = G, Gy, (mod p).
We assume that there exists an integer ¢ such that p | Gj. Due to the periodicity of
(G! mod p), we can assume ¢ > n. Using Lemma 8, there exists an integer k such that
GGy = GG, (mod p). Since p divides G and does not divide G, we get p | Gj.
This contradicts the assumption. O

Lemma 11. Let (G,) be a generalized Fibonacci sequence. Then there exists an integer n
which satisfies p|G,, if and only if (G,) ~* (F},).

Proof. We first assume that there is an integer n that satisfies p | G,,. We have (G,,) ~* (F},)
since F1G,, =0 = G, 11 Fy (mod p) (note that Fy = 0).

Next, we assume (G,,) ~* (F},). Then there must exist some integers m and n satisfying
GuiF, = F,11G,, (mod p). On the other hand, since Fy = 0 and the periodicity of
(F, mod p), there exists an integer ¢ satisfying p|F, and ¢ > n. By using Lemma 8, we get
an integer k such that Gy 1 F;, = F;11Gy (mod p). Since p 1 Fy41 by Lemma 7, we have

Lemma 12.

(1) X; =Yy U{(E)}-



(2) For any equivalence classes (Gy,) of X5, we can choose the representative (G,) satisfying

PTGl,Gz-

(3) L?tG(/GnG)/ be an equivalence class of Y,5. For any sequences (G),) € (G,), we have
P16y, Gy

Proof. The assertion (1) follows from Lemma 11. We will prove (2). If p | Gy or p | Go, then
we have (G,,) ~* (F},) by Lemma 11. Therefore, we have (G,) = (F},,) and F} = F, = 1. The
assertion (3) follows from Lemma 10. O

3 Equivalence classes

In our previous paper [1], we gave the cardinality of the set Y,. In this section, using this
result, we will prove the main theorem (Theorem 5 in §1) that gives the cardinality of the
set Y.

p

Lemma 13. Let p (# 2,5) be a prime number.
(1) If p=+1 (mod 5), then X? — X —1 =0 has different two solutions in F,,.
(2) If p= =42 (mod 5), then X? — X — 1 =0 does not have a solution in F,.

Proof. The solutions of X2—X —1 = 01in F,, (the algebraic closure of ) are X = 271 (14£+/5).

By the assumption p # 2,5, these solutions are different. We get 2_1(1j:\/5) € F, if and only
5

if v/5 € F,,. Furthermore, this is equivalent to <—> = <§> =1, that is, p= +1 (mod 5). O
p

We next define the number d(p) for a prime number p, and the sequences (f,,) and (g,).

These are important in this article.

Definition 14. Let p be a prime number. Let d(p) denote the smallest positive integer n
which satisfies F;,, = 0 (mod p).

(1) For any integer n which satisfies n #Z 0 (mod d(p)), we define the integer f, (0 < f, <
p — 1) such that f, = F,, 1 F,! (mod p).

(2) Let (G,) be a generalized Fibonacci sequence that satisfies p 1 G,, for any n € Z. We
can then define the integer g, (1 < g, < p— 1) such that g, = G,,,1G,;' (mod p).

We will prove some relations between (f,,), (¢,) and d(p). The following lemma was given
in [1, Lemma 3.

Lemma 15 ([1, Lemma 3|). Let m and n be integers that satisfy m,n # 0 (mod d(p)). We
then have f,, = f, if and only if m = n (mod d(p)).



We can show the following two lemmas by induction on n and the recurrence relation.
Lemma 16. For any n,m € Z, we have G,, = F,,_,Gps1+ From1Gpm-
Lemma 17. For any n € Z, we have

G2y = GGy — G2 = —(G? = Gy G, — G2,

n

For simplicity, we introduce a new notation. If a generalized Fibonacci sequence (G,)
satisfies G; = a and Gy = b, then we denote it as (G,,) = (G(a,b)).

Theorem 18. Assume that (G ) = (G(a,b)) satisfies p 1 Gy, for any n € Z. Furthermore,
let a and b satisfy b* — ab — a* # 0 (mod p). For any integers n and m, we have g, = G, if
and only if n =m (mod d( ))-

Proof. First, by the definition of ¢, and g,,, we have g, = g¢,, if and only if G,,G, 1 =
Gm1Gy, (mod p). Since Gi1 = From1Gir + FoodG and G, = F 0 Gri1 + Foi 1 G
from Lemma 16, we have g, = g,, if and only if

G Foem = GGt (Frmit — Foome1) — G2 Fy o = 0 (mod p). (2)
By Lemma 17, for the left side of (2), we have

G$n+1 nem = GGt (Fr—mir — Foome1) — Go P
=G\ Frm— GuGri1 Frn — G,
= (G72n+1 GnGmy1 — ng)Fn—m

(=)™ NG; = G1Gy = Gy

(=)™ (b* — ab — a*)F,_,, (mod p).

By the assumption b — ab — a? # 0 (mod p), we conclude that g, = g,, if and only if n =m
(mod d(p)). O

For a generalized Fibonacci sequence (G,,), let (g,) be the sequence defined in Definition
14.

Definition 19. Assume (G,,) = (G(a,b)) satisfies p G, for any n € Z. We define the
second period of (G,,) by the period of (g,).

Then we get the following corollary concerning the second period.
Corollary 20. Assume that (G,,) = (G(a,b)) satisfies pt G,, for any n € Z.
(1) If b* — ab — a®* = 0 (mod p), then the second period of (G,,) is equal to 1.

(2) If b* — ab — a®* # 0 (mod p), then the second period of (Gy,) is equal to d(p).



Proof. The assertion (2) follows from Theorem 18. We will prove (1) by showing g, = ¢1 =
ba~! (mod p) for any n € Z. Due to the periodicity of (G,,) mod p, it is sufficient to consider
n € N. We use the induction. When n = 1, the result is shown. We assume that it holds
for any natural numbers less than n + 1. We then have the following congruences.

Int+1 = Gn+2Gr_L-1-1
= (Gpi1+ Gn) (G + Gpon) ™
(Grn G + D)1+ Goa G
(9. + DA +g,20) "
= (ba '+ 1)(1+bta)™?
(by the assumption of the second period 1)
= (ba ' +1) x {bra(ba " + 1)}
=ba ' =g (mod p).

By the above congruences and 1 < g1, ¢,+1 < p — 1, we have g,.1 = g1. O

Lemma 21. Assume that (Gy,) and (G)) satisfy p ¥ G, G!, for any n € Z. Let v be the

second period of (G)). Then we have (G,) ~* (G)) if and only if there exists an integer n
(1 <n <v) such that g, = g1(= GoG1" (mod p)).

Proof. First, we assume g/, = g; for an integer n (1 <n < v). Then we obtain G/, ,G" ' =
GoG1" (mod p) and hence we get (G,) ~* (G%).

Next, we assume (G,) ~* (G!). Then there must exist integers m and n such that
GG, = GGy, (mod p). By Lemma 8 on the forward shift index and the periodicity
of (G,) mod p, there exists an integer n such that G>G], = G|, G1 (mod p). Therefore
we obtain ¢/, = ¢; (mod p). We have g = ¢/, since 1 < gy <p—land1<yg, <p-—1.
Furthermore, we can choose such an integer n satisfying 1 < n < v because the period of
(gh) is equal to v. O

Next, we will prove the main theorem in §1.

Proof of Theorem 5. We can prove (3) directly using [1, Corollary 1 (1)]. We will prove (1)
and (2). Using [1, Theorem 1 (1)], we obtain

Y, = X, — (G ) | 1< < d(p) -2}
X, ={(G,) | pt Gy and pt G}/ ~

={(GLb) [1<b<p-—1}.

(1) We consider an equivalence class (G,,) ((G,) = (G(1,b))) of Y,,. Since p = £2 (mod 5),
we have b* —b— 1 # 0 (mod p) because X? — X — 1 = 0 does not have a solution in
[F, from Lemma 13 (2). Therefore, the second period of (G,,) is d(p) from Corollary 20

7



(2), and all of the values g1, g, . . ., ga(p) are different from each other from Theorem 18
, where g, is the integer such that g, = G, 1G,' (mod p) and 1 < g, < p— 1. From
the definition of the relation ~*, we have (G,,) = (G(1,b)) ~* (G(1, ¢;)) for any i (1 <

i < d(p)). On the other hand, for any equivalence classes (G’) ((G!) = (G(1,V))) of
Y, satisfying 0’ # g1, ..., ga@) (mod p), we have (G,,) ~* (G),) from Lemma 21. Then

for any class (G(1,0)) in Y}, it produces distinct d(p) classes (G(1,g;)) (1 <i < d(p))

Y,
under the equivalence relation ~. Therefore we obtain |Y*| = c’i (p ’) The last equality:
p
Y, 1
Y| P follows from [1, Theorem 1 (2)].
d(p)  d(p)

If p = £1 (mod 5), then X? — X — 1 = 0 has two different solutions a and 3 in F,
from Lemma 13 (1). We consider the generalized Fibonacci sequence (G(1,«)) = (G,,).
Since p t G,, for any n € Z from o —a —1 = 0 (mod p), Lemma 7 and Corollary 20
(1), we have (G(1,«)) € Y,. Similarly, we have (G(1,3)) € Y,. Let b be an integer
satisfying 1 < b < p—1. Since the second periods of (G(1,«)) and (G(1, 5)) are 1 from
Corollary 20 (1), we obtain (G(1,b)) ~* (G(1,«)) if and only if b = a from Lemma
21. By these same arguments, we obtain the same result for (G(1,5)). On the other
hand, d(p) classes (G(1,b)) of Y}, satisfying b # a, 3 become the same class of Y. We
v, -2

d(p)

obtain Y| =2+ , and the last equality follows from [1, Theorem 1 (2)].

O

Comparison with a results of Koézaki and Nakahara

In the section, we will show that our result implies a result given by Kozaki and Nakahara

in 1999.

Definition 22. An integer m is called the type of a non-divisor when there exists a gener-
alized Fibonacci sequence (G,,) such that m 1 G,, for any n € Z.

Definition 23. For a prime number p, we let k(p) denote the period of (F,, mod p).

We can get the following corollary from [1, Theorem 1 and Corollary 1].

Corollary 24 ([1, §1]). A prime number p is the type of non-divisor if and only if one of
the following three conditions holds.

(1)

p=5.

(2) p= =1 (mod 5).

(3) p==42 (mod 5) and d(p) < p+ 1.



We will prove that Theorem 6 in §1 is equivalent to Corollary 24. More specifically, we
will prove (1) or (2) or (3) of Theorem 6 holds if and only if (1) or (2) or (3) of Corollary 24
holds.

Proof. First, we prove that if (1) or (2) or (3) of Theorem 6 holds, then one of (1), (2), or
(3) of Corollary 24 holds.

The case in which (1) of Theorem 6 holds already.

We assume that (2) of Theorem 6 holds. If p = 1,9, 11,19 (mod 20), then we have p = +1
(mod 5). If p = 13,17 (mod 20), then we have p = £2 (mod 5) and p = 1 (mod 4). Using
[1, Lemma 1 (2) and Lemma 4], we have d(p) < p+ 1.

We assume (3) of Theorem 6 holds. In this case, we have p = 3 (mod 4) and p = £2 (mod
5). By p = £2 (mod 5), we have F, = —1 (mod p) and F,;; =0 (mod p) (cf. [4, §6]), and
hence we obtain k(p) # p + 1. If d(p) = p + 1, then we obtain p + 1 | k(p) since d(p) | k(p).
However this is a contradiction, since k(p) # p+ 1, k(p) < 2(p+1) and k(p) | 2(p + 1) hold
(cf. [4, §9]). We conclude that d(p) < p+ 1.

Next, we prove that if (1) or (2) or (3) of Corollary 24 holds, then one of (1), (2), or (3)
of Theorem 6 holds. When (1) of Corollary 24 holds, it is the same as in (1) of Theorem 6.
We assume (2) of Corollary 24 holds. If p =1 (mod 5), then we have p = 1,11 (mod 20). If
p = —1 (mod 5), then we have p = 9,19 (mod 20).

We assume (3) of Corollary 24 holds. When p = 2 (mod 5), we have p = 7,17 (mod
20). When p = —2 (mod 5), we have p = 3,13 (mod 20). If p = 13,17 (mod 20), the
condition (2) of Theorem 6 holds. We consider the case p = 3,7 (mod 20). In this case, we
have p = 3 (mod 4) and p = £2 (mod 5), and hence k(p) | 2(p + 1). From the well-known
formula F,,_1F,41 — F2 = (—1)", we get Fyp)—1Fup)+1 — FdQ(p) = (—1)®) (mod p). Therefore
we have Fg(p)_l = (—=1)®) (mod p) since Fyp) = 0 (mod p) and Fyp)—1 = Fyp)r1 (mod
p). If Fa%(p)fl = —1 (mod p), then this contradicts (?) = —1 since p = 3 (mod 4). If
Fj(p)fl =1 (mod p), then Fy)—; = %1 (mod p) holds. In the case of Fy)—1 = 1 (mod p),

we have k(p) = d(p), and hence k(p) < p + 1. In the case of Fy)—1 = —1 (mod p), we have
k(p) < 2d(p) < 2(p + 1) since Fogpy—1 =1 (mod p). O



5 Examples

[ p [dp) | Yp Yy
3 4 ] 0
515 (G(1,3)) (G(1,3))
7 8 0 0
1| 10 (G(1,4)), (G(1,8)) (G(1,4)), (G(1,8))
(G(1,3)), (G(1,4)), (G(1,5)), (G(1,7)), -
13 7 (G(1,9)), (G(1,10)), (G(1,11)) (G(1,3))
(G(1,3)), (G(1,4)), (G(1,6)), (G(L,7)), (G(1,9)), o
17 9 (G(1,11)), (G(1,12)), (G(1,14)),(G(1,15)) (G(1,3))
19 18 (G(1,5)), (G(1,15)) (G(1,5)), (G(1,15))

Table 1: Examples

6 Acknowledgments

We thank the editor and the referee for reading carefully. We also express our gratitude to
Toru Nakahara for valuable suggestions.

References

[1] M. Aoki and Y. Sakai, On divisibility of generalized Fibonacci numbers, Integers 15
(2015), Paper No. A31.

[2] T. Koshy, Fibonacci and Lucas Numbers with Applications, Pure and Applied Mathe-
matics, 2001.

[3] M. Kozaki and T. Nakahara, On arithmetic properties of generalized Fibonacci se-
quences, Reports of the Faculty of Science and Engineering, Saga University, Mathe-
matics 28 (1999), 1-18.

[4] S. Nakamura, Fibonacci St no Micro Cosmos (Japanese), Nippon Hyoronsha, 2002.

2010 Mathematics Subject Classification: Primary 11B39.
Keywords: Fibonacci number, Lucas number, generalized Fibonacci sequence.

10



Received November 7 2015; revised versions received January 18 2016; January 20 2016;
January 25 2016. Published in Journal of Integer Sequences, February 5 2016.

Return to Journal of Integer Sequences home page.

11


http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction and main results
	Equivalence relations
	Equivalence classes
	Comparison with a results of Kôzaki and Nakahara
	Examples
	Acknowledgments

