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Abstract

We consider a generalized Fibonacci sequence (Gn) by G1, G2 ∈ Z and Gn = Gn−1+
Gn−2 for any integer n. Let p be a prime number and let d(p) be the smallest positive
integer n which satisfies p | Fn. In this article, we introduce equivalence relations
for the set of generalized Fibonacci sequences. One of the equivalence relations is
defined as follows. We write (Gn) ∼∗ (G′

n) if there exist integers m and n satisfying
Gm+1G

′
n ≡ G′

n+1Gm (mod p). We prove the following: if p ≡ ±2 (mod 5), then the

number of equivalence classes (Gn) satisfying p ∤ Gn for any integer n is (p+1)/d(p)−1.
If p ≡ ±1 (mod 5), then the number is (p − 1)/d(p) + 1. Our results are refinements
of a theorem given by Kôzaki and Nakahara in 1999. They proved that there exists
a generalized Fibonacci sequence (Gn) such that p ∤ Gn for any n ∈ Z if and only
if one of the following three conditions holds: (1) p = 5; (2) p ≡ ±1 (mod 5); (3)
p ≡ ±2 (mod 5) and d(p) < p+ 1.

1 Introduction and main results

We consider a generalized Fibonacci sequence (Gn) defined by

G1, G2 ∈ Z, Gn = Gn−1 +Gn−2 (n ∈ Z).
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If G1 = 1 and G2 = 1, then it is the Fibonacci sequence (Fn), and if G1 = 1 and G2 = 3, then
it is the Lucas sequence (Ln). It is well-known that such generalized Fibonacci sequences
are periodic modulo m for any natural numbers m. For example, the sequence (Fn mod 3)
is . . . 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, . . . (the period is 8). There are many interesting results
concerning the generalized Fibonacci sequences. We recommend two books by Koshy [2, §7]
and Nakamura [4] as references.

We fix a prime number p, and define two relations ∼ and ∼∗ for the set of generalized
Fibonacci sequences. The first relation ∼ is defined in our previous paper [1].

Definition 1. Let (Gn) and (G′
n) be generalized Fibonacci sequences. We write (Gn) ∼ (G′

n)
if the congruence G2G

′
1 ≡ G′

2G1 (mod p) holds.

Definition 2. Let (Gn) and (G′
n) be generalized Fibonacci sequences. We write (Gn) ∼∗

(G′
n) if there are some integers m and n satisfying Gm+1G

′
n ≡ G′

n+1Gm (mod p).

By the definitions, the next lemma follows.

Lemma 3. If (Gn) ∼ (G′
n), then we have (Gn) ∼∗ (G′

n).

Note that if (Gn) satisfies p | G1 and p | G2, then we have (Gn) ∼ (G′
n) and (Gn) ∼∗ (G′

n)
for any generalized Fibonacci sequences (G′

n). We can show by the definition that the first
relation ∼ is an equivalence relation for the set {(Gn)| p ∤ G1 or p ∤ G2}.

We will show in §2 that the second relation ∼∗ is also an equivalence relation. Since the
relations ∼ and ∼∗ are equivalence relations, we can consider the quotient sets using these
relations. We put

Xp := {(Gn) | p ∤ G1 or p ∤ G2}/ ∼, Yp := {(Gn) ∈ Xp | p ∤ Gn for any n ∈ Z}.
X∗

p := {(Gn) | p ∤ G1 or p ∤ G2}/ ∼∗, Y ∗
p := {(Gn) ∈ X∗

p | p ∤ Gn for any n ∈ Z}.

The sets Yp and Y ∗
p are well-defined by [1, Lemma 2] and Lemma 10 in §2. We considered

the set X ′
p = {(Gn) | p ∤ G1 and p ∤ G2}/ ∼ and Y ′

p = {(Gn) ∈ X ′
p | p ∤ Gn for any n ∈ Z}

instead of Xp and Yp [1]. Note that the cardinality of Yp and Y ′
p are equal. Let p be a prime

number and let d(p) be the smallest positive integer n for which p | Fn. We proved the
following theorem in a previous paper [1].

Theorem 4 ([1, Theorem 1 (2)]).

|Yp| = p+ 1− d(p)

In this article, we will reduce the number of equivalence classes by using the new relation
∼∗ instead of ∼, and will prove the following theorem in §3.

Theorem 5. (1) If p ≡ ±2 (mod 5), then we have

|Y ∗
p | =

|Yp|
d(p)

=
p+ 1

d(p)
− 1.

2



(2) If p ≡ ±1 (mod 5), then we have

|Y ∗
p | = 2 +

|Yp| − 2

d(p)
=

p− 1

d(p)
+ 1.

(3) If p = 5, then we have |Y ∗
p | = |Yp| = 1.

In §4, we will show that our results imply the following result given by Kôzaki and
Nakahara in 1999. An integer m is called the type of a non-divisor when there exists a
generalized Fibonacci sequence (Gn) such that m ∤ Gn for any n ∈ Z. For a prime number
p, we denote the period of (Fn mod p) by k(p).

Theorem 6 ([3, Kôzaki and Nakahara]). A prime number p is the type of non-divisor if and

only if one of the following three conditions holds.

(1) p = 5.

(2) p ≡ 1, 9, 11, 13, 17, 19 (mod 20).

(3) p ≡ 3, 7 (mod 20) and k(p) < 2(p+ 1).

In §5, we will give some examples of the cardinalities of the set Yp and Y ∗
p .

2 Equivalence relations

In this section, we will give some lemmas on the relation ∼∗. The following lemma follows
from the recurrence relation Gn = Gn−1 +Gn−2.

Lemma 7. Let (Gn) be a generalized Fibonacci sequence that satisfies p ∤ G1 or p ∤ G2. If

p | Gn, then we have p ∤ Gn−1 and p ∤ Gn+1.

Lemma 8. Let (Gn) and (G
′
n) be generalized Fibonacci sequences. If Gm+1G

′
n ≡ G′

n+1Gm (mod p),
then we have Gm+2G

′
n+1 ≡ G′

n+2Gm+1 (mod p).

Proof.

Gm+2G
′
n+1 = (Gm+1 +Gm)G

′
n+1

= Gm+1G
′
n+1 +GmG

′
n+1

≡ Gm+1G
′
n+1 +Gm+1G

′
n (by the assumption)

= Gm+1(G
′
n+1 +G′

n)

= Gm+1G
′
n+2.
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For any integer G that is not divisible by p, we denote an inverse element modulo p by
G−1 (∈ Z) (i.e., GG−1 ≡ 1 (mod p)).

Lemma 9. The relation ∼∗ is an equivalence relation for the set {(Gn) | p ∤ G1 or p ∤ G2}.

Proof. Since this relation is reflexive and symmetric, we will prove the transitivity: if (Gn) ∼∗

(G′
n) and (G′

n) ∼∗ (G′′
n), then (Gn) ∼∗ (G′′

n). By the assumption, there exist integers m,n, k
and ℓ satisfying

Gm+1G
′
n ≡ G′

n+1Gm (mod p) and G′
k+1G

′′
ℓ ≡ G′′

ℓ+1G
′
k (mod p).

Put t = max(n, k). Using Lemma 8, we get integers m and ℓ satisfying

Gm+1G
′
t ≡ G′

t+1Gm (mod p) and G′
t+1G

′′
ℓ ≡ G′′

ℓ+1G
′
t (mod p). (1)

If we assume p | G′
t, then we get p ∤ G′

t+1 using Lemma 7. From (1), we get p | Gm

and p | G′′
ℓ . Therefore we have (Gn) ∼∗ (G′′

n) since Gm+1G
′′
ℓ ≡ 0 ≡ G′′

ℓ+1Gm (mod p). If
we assume p | G′

t+1, then we get (Gn) ∼∗ (G′′
n) by the same argument. Next, we assume

p ∤ G′
t and p ∤ G′

t+1. Then we get p ∤ Gm and p ∤ G′′
ℓ from (1). Hence we get Gm+1G

−1
m ≡

G′
t+1G

′
t
−1 ≡ G′′

ℓ+1G
′′
ℓ
−1 (mod p), and hence Gm+1G

′′
ℓ ≡ G′′

ℓ+1Gm (mod p). This congruence
implies (Gn) ∼∗ (G′′

n).

Lemma 10. Assume (Gn), (G
′
n) ∈ {(Gn) | p ∤ G1 or p ∤ G2}. If (Gn) ∼∗ (G′

n) and p ∤ Gn

for any n ∈ Z. Then we have p ∤ G′
n for any n ∈ Z.

Proof. We can assume that there exist integers m,n satisfying Gm+1G
′
n ≡ G′

n+1Gm (mod p).
We assume that there exists an integer ℓ such that p | G′

ℓ. Due to the periodicity of
(G′

n mod p), we can assume ℓ ≥ n. Using Lemma 8, there exists an integer k such that
Gk+1G

′
ℓ ≡ G′

ℓ+1Gk (mod p). Since p divides G′
ℓ and does not divide G′

ℓ+1, we get p | Gk.
This contradicts the assumption.

Lemma 11. Let (Gn) be a generalized Fibonacci sequence. Then there exists an integer n
which satisfies p|Gn if and only if (Gn) ∼∗ (Fn).

Proof. We first assume that there is an integer n that satisfies p | Gn. We have (Gn) ∼∗ (Fn)
since F1Gn ≡ 0 ≡ Gn+1F0 (mod p) (note that F0 = 0).

Next, we assume (Gn) ∼∗ (Fn). Then there must exist some integers m and n satisfying
Gm+1Fn ≡ Fn+1Gm (mod p). On the other hand, since F0 = 0 and the periodicity of
(Fn mod p), there exists an integer ℓ satisfying p|Fℓ and ℓ ≥ n. By using Lemma 8, we get
an integer k such that Gk+1Fℓ ≡ Fℓ+1Gk (mod p). Since p ∤ Fℓ+1 by Lemma 7, we have
p | Gk.

Lemma 12.

(1) X∗
p = Y ∗

p ∪ {(Fn)}.
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(2) For any equivalence classes (Gn) of X
∗
p , we can choose the representative (Gn) satisfying

p ∤ G1, G2.

(3) Let (Gn) be an equivalence class of Y ∗
p . For any sequences (G′

n) ∈ (Gn), we have

p ∤ G′
1, G

′
2.

Proof. The assertion (1) follows from Lemma 11. We will prove (2). If p | G1 or p | G2, then
we have (Gn) ∼∗ (Fn) by Lemma 11. Therefore, we have (Gn) = (Fn) and F1 = F2 = 1. The
assertion (3) follows from Lemma 10.

3 Equivalence classes

In our previous paper [1], we gave the cardinality of the set Yp. In this section, using this
result, we will prove the main theorem (Theorem 5 in §1) that gives the cardinality of the
set Y ∗

p .

Lemma 13. Let p ( 6= 2, 5) be a prime number.

(1) If p ≡ ±1 (mod 5), then X2 −X − 1 = 0 has different two solutions in Fp.

(2) If p ≡ ±2 (mod 5), then X2 −X − 1 = 0 does not have a solution in Fp.

Proof. The solutions ofX2−X−1 = 0 in Fp (the algebraic closure of Fp) areX = 2−1(1±
√
5).

By the assumption p 6= 2, 5, these solutions are different. We get 2−1(1±
√
5) ∈ Fp if and only

if
√
5 ∈ Fp. Furthermore, this is equivalent to

(

5

p

)

=
(p

5

)

= 1, that is, p ≡ ±1 (mod 5).

We next define the number d(p) for a prime number p, and the sequences (fn) and (gn).
These are important in this article.

Definition 14. Let p be a prime number. Let d(p) denote the smallest positive integer n
which satisfies Fn ≡ 0 (mod p).

(1) For any integer n which satisfies n 6≡ 0 (mod d(p)), we define the integer fn (0 ≤ fn ≤
p− 1) such that fn ≡ Fn+1F

−1
n (mod p).

(2) Let (Gn) be a generalized Fibonacci sequence that satisfies p ∤ Gn for any n ∈ Z. We
can then define the integer gn (1 ≤ gn ≤ p− 1) such that gn ≡ Gn+1G

−1
n (mod p).

We will prove some relations between (fn), (gn) and d(p). The following lemma was given
in [1, Lemma 3].

Lemma 15 ([1, Lemma 3]). Let m and n be integers that satisfy m,n 6≡ 0 (mod d(p)). We

then have fm = fn if and only if m ≡ n (mod d(p)).
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We can show the following two lemmas by induction on n and the recurrence relation.

Lemma 16. For any n,m ∈ Z, we have Gn = Fn−mGm+1 + Fn−m−1Gm.

Lemma 17. For any n ∈ Z, we have

G2
n+1 −GnGn+1 −G2

n = −(G2
n −Gn−1Gn −G2

n−1).

For simplicity, we introduce a new notation. If a generalized Fibonacci sequence (Gn)
satisfies G1 = a and G2 = b, then we denote it as (Gn) = (G(a, b)).

Theorem 18. Assume that (Gn) = (G(a, b)) satisfies p ∤ Gn for any n ∈ Z. Furthermore,

let a and b satisfy b2 − ab− a2 6≡ 0 (mod p). For any integers n and m, we have gn = gm if

and only if n ≡ m (mod d(p)).

Proof. First, by the definition of gn and gm, we have gn = gm if and only if GmGn+1 ≡
Gm+1Gn (mod p). Since Gn+1 = Fn−m+1Gm+1+Fn−mGm and Gn = Fn−mGm+1+Fn−m−1Gm

from Lemma 16, we have gn ≡ gm if and only if

G2
m+1Fn−m −GmGm+1(Fn−m+1 − Fn−m−1)−G2

mFn−m ≡ 0 (mod p). (2)

By Lemma 17, for the left side of (2), we have

G2
m+1Fn−m −GmGm+1(Fn−m+1 − Fn−m−1)−G2

mFn−m

≡ G2
m+1Fn−m −GmGm+1Fn−m −G2

mFn−m

≡ (G2
m+1 −GmGm+1 −G2

m)Fn−m

≡ (−1)m−1(G2
2 −G1G2 −G2

1)Fn−m

≡ (−1)m−1(b2 − ab− a2)Fn−m (mod p).

By the assumption b2 − ab− a2 6≡ 0 (mod p), we conclude that gn ≡ gm if and only if n ≡ m
(mod d(p)).

For a generalized Fibonacci sequence (Gn), let (gn) be the sequence defined in Definition
14.

Definition 19. Assume (Gn) = (G(a, b)) satisfies p ∤ Gn for any n ∈ Z. We define the
second period of (Gn) by the period of (gn).

Then we get the following corollary concerning the second period.

Corollary 20. Assume that (Gn) = (G(a, b)) satisfies p ∤ Gn for any n ∈ Z.

(1) If b2 − ab− a2 ≡ 0 (mod p), then the second period of (Gn) is equal to 1.

(2) If b2 − ab− a2 6≡ 0 (mod p), then the second period of (Gn) is equal to d(p).
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Proof. The assertion (2) follows from Theorem 18. We will prove (1) by showing gn = g1 ≡
ba−1 (mod p) for any n ∈ Z. Due to the periodicity of (Gn) mod p, it is sufficient to consider
n ∈ N. We use the induction. When n = 1, the result is shown. We assume that it holds
for any natural numbers less than n+ 1. We then have the following congruences.

gn+1 ≡ Gn+2G
−1
n+1

≡ (Gn+1 +Gn)(Gn +Gn−1)
−1

≡ (Gn+1G
−1
n + 1)(1 +Gn−1G

−1
n )−1

≡ (gn + 1)(1 + g−1
n−1)

−1

≡ (ba−1 + 1)(1 + b−1a)−1

(by the assumption of the second period 1)

≡ (ba−1 + 1)× {b−1a(ba−1 + 1)}−1

≡ ba−1 ≡ g1 (mod p).

By the above congruences and 1 ≤ g1, gn+1 ≤ p− 1, we have gn+1 = g1.

Lemma 21. Assume that (Gn) and (G′
n) satisfy p ∤ Gn, G

′
n for any n ∈ Z. Let ν be the

second period of (G′
n). Then we have (Gn) ∼∗ (G′

n) if and only if there exists an integer n
(1 ≤ n ≤ ν) such that g′n = g1(≡ G2G

−1
1 (mod p)).

Proof. First, we assume g′n = g1 for an integer n (1 ≤ n ≤ ν). Then we obtain G′
n+1G

′
n
−1 ≡

G2G
−1
1 (mod p) and hence we get (Gn) ∼∗ (G′

n).
Next, we assume (Gn) ∼∗ (G′

n). Then there must exist integers m and n such that
Gm+1G

′
n ≡ G′

n+1Gm (mod p). By Lemma 8 on the forward shift index and the periodicity
of (Gn) mod p, there exists an integer n such that G2G

′
n ≡ G′

n+1G1 (mod p). Therefore
we obtain g′n ≡ g1 (mod p). We have g1 = g′n since 1 ≤ g1 ≤ p − 1 and 1 ≤ gn ≤ p − 1.
Furthermore, we can choose such an integer n satisfying 1 ≤ n ≤ ν because the period of
(g′n) is equal to ν.

Next, we will prove the main theorem in §1.

Proof of Theorem 5. We can prove (3) directly using [1, Corollary 1 (1)]. We will prove (1)
and (2). Using [1, Theorem 1 (1)], we obtain

Yp = X ′
p − {(G(1, fi)) | 1 ≤ i ≤ d(p)− 2}

X ′
p := {(Gn) | p ∤ G1 and p ∤ G2}/ ∼
= {(G(1, b)) | 1 ≤ b ≤ p− 1}.

(1) We consider an equivalence class (Gn) ((Gn) = (G(1, b))) of Yp. Since p ≡ ±2 (mod 5),
we have b2 − b − 1 6≡ 0 (mod p) because X2 −X − 1 = 0 does not have a solution in
Fp from Lemma 13 (2). Therefore, the second period of (Gn) is d(p) from Corollary 20
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(2), and all of the values g1, g2, . . . , gd(p) are different from each other from Theorem 18
, where gn is the integer such that gn = Gn+1G

−1
n (mod p) and 1 ≤ gn ≤ p− 1. From

the definition of the relation ∼∗, we have (Gn) = (G(1, b)) ∼∗ (G(1, gi)) for any i (1 ≤
i ≤ d(p)). On the other hand, for any equivalence classes (G′

n) ((G′
n) = (G(1, b′))) of

Yp satisfying b′ 6≡ g1, . . . , gd(p) (mod p), we have (Gn) ≁
∗ (G′

n) from Lemma 21. Then

for any class (G(1, b)) in Y ∗
p , it produces distinct d(p) classes (G(1, gi)) (1 ≤ i ≤ d(p))

under the equivalence relation ∼. Therefore we obtain |Y ∗
p | =

|Yp|
d(p)

. The last equality:

|Yp|
d(p)

=
p+ 1

d(p)
− 1 follows from [1, Theorem 1 (2)].

(2) If p ≡ ±1 (mod 5), then X2 − X − 1 = 0 has two different solutions α and β in Fp

from Lemma 13 (1). We consider the generalized Fibonacci sequence (G(1, α)) = (Gn).
Since p ∤ Gn for any n ∈ Z from α2 − α − 1 ≡ 0 (mod p), Lemma 7 and Corollary 20
(1), we have (G(1, α)) ∈ Yp. Similarly, we have (G(1, β)) ∈ Yp. Let b be an integer
satisfying 1 ≤ b ≤ p−1. Since the second periods of (G(1, α)) and (G(1, β)) are 1 from
Corollary 20 (1), we obtain (G(1, b)) ∼∗ (G(1, α)) if and only if b = α from Lemma
21. By these same arguments, we obtain the same result for (G(1, β)). On the other
hand, d(p) classes (G(1, b)) of Yp satisfying b 6= α, β become the same class of Y ∗

p . We

obtain |Y ∗
p | = 2 +

|Yp| − 2

d(p)
, and the last equality follows from [1, Theorem 1 (2)].

4 Comparison with a results of Kôzaki and Nakahara

In the section, we will show that our result implies a result given by Kôzaki and Nakahara
in 1999.

Definition 22. An integer m is called the type of a non-divisor when there exists a gener-
alized Fibonacci sequence (Gn) such that m ∤ Gn for any n ∈ Z.

Definition 23. For a prime number p, we let k(p) denote the period of (Fn mod p).

We can get the following corollary from [1, Theorem 1 and Corollary 1].

Corollary 24 ([1, §1]). A prime number p is the type of non-divisor if and only if one of

the following three conditions holds.

(1) p = 5.

(2) p ≡ ±1 (mod 5).

(3) p ≡ ±2 (mod 5) and d(p) < p+ 1.
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We will prove that Theorem 6 in §1 is equivalent to Corollary 24. More specifically, we
will prove (1) or (2) or (3) of Theorem 6 holds if and only if (1) or (2) or (3) of Corollary 24
holds.

Proof. First, we prove that if (1) or (2) or (3) of Theorem 6 holds, then one of (1), (2), or
(3) of Corollary 24 holds.

The case in which (1) of Theorem 6 holds already.
We assume that (2) of Theorem 6 holds. If p ≡ 1, 9, 11, 19 (mod 20), then we have p ≡ ±1

(mod 5). If p ≡ 13, 17 (mod 20), then we have p ≡ ±2 (mod 5) and p ≡ 1 (mod 4). Using
[1, Lemma 1 (2) and Lemma 4], we have d(p) < p+ 1.

We assume (3) of Theorem 6 holds. In this case, we have p ≡ 3 (mod 4) and p ≡ ±2 (mod
5). By p ≡ ±2 (mod 5), we have Fp ≡ −1 (mod p) and Fp+1 ≡ 0 (mod p) (cf. [4, §6]), and
hence we obtain k(p) 6= p+ 1. If d(p) = p+ 1, then we obtain p+ 1 | k(p) since d(p) | k(p).
However this is a contradiction, since k(p) 6= p+ 1, κ(p) < 2(p+ 1) and k(p) | 2(p+ 1) hold
(cf. [4, §9]). We conclude that d(p) < p+ 1.

Next, we prove that if (1) or (2) or (3) of Corollary 24 holds, then one of (1), (2), or (3)
of Theorem 6 holds. When (1) of Corollary 24 holds, it is the same as in (1) of Theorem 6.
We assume (2) of Corollary 24 holds. If p ≡ 1 (mod 5), then we have p ≡ 1, 11 (mod 20). If
p ≡ −1 (mod 5), then we have p ≡ 9, 19 (mod 20).

We assume (3) of Corollary 24 holds. When p ≡ 2 (mod 5), we have p ≡ 7, 17 (mod
20). When p ≡ −2 (mod 5), we have p ≡ 3, 13 (mod 20). If p ≡ 13, 17 (mod 20), the
condition (2) of Theorem 6 holds. We consider the case p ≡ 3, 7 (mod 20). In this case, we
have p ≡ 3 (mod 4) and p ≡ ±2 (mod 5), and hence k(p) | 2(p + 1). From the well-known
formula Fn−1Fn+1−F 2

n = (−1)n, we get Fd(p)−1Fd(p)+1−F 2
d(p) ≡ (−1)d(p) (mod p). Therefore

we have F 2
d(p)−1 ≡ (−1)d(p) (mod p) since Fd(p) ≡ 0 (mod p) and Fd(p)−1 ≡ Fd(p)+1 (mod

p). If F 2
d(p)−1 ≡ −1 (mod p), then this contradicts

(−1

p

)

= −1 since p ≡ 3 (mod 4). If

F 2
d(p)−1 ≡ 1 (mod p), then Fd(p)−1 ≡ ±1 (mod p) holds. In the case of Fd(p)−1 ≡ 1 (mod p),

we have k(p) = d(p), and hence k(p) < p+ 1. In the case of Fd(p)−1 ≡ −1 (mod p), we have
k(p) ≤ 2d(p) < 2(p+ 1) since F2d(p)−1 ≡ 1 (mod p).
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5 Examples

p d(p) Yp Y ∗

p

3 4 ∅ ∅

5 5 (G(1, 3)) (G(1, 3))

7 8 ∅ ∅

11 10 (G(1, 4)), (G(1, 8)) (G(1, 4)), (G(1, 8))

(G(1, 3)), (G(1, 4)), (G(1, 5)), (G(1, 7)),

13 7 (G(1, 9)), (G(1, 10)), (G(1, 11)) (G(1, 3))

(G(1, 3)), (G(1, 4)), (G(1, 6)), (G(1, 7)), (G(1, 9)),

17 9 (G(1, 11)), (G(1, 12)), (G(1, 14)), (G(1, 15)) (G(1, 3))

19 18 (G(1, 5)), (G(1, 15)) (G(1, 5)), (G(1, 15))

Table 1: Examples
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