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Abstract

Let pod_(n) denote the number of partition k-tuples of n wherein odd parts are dis-
tinct (and even parts are unrestricted). We establish some interesting infinite families
of congruences and internal congruences modulo 4, 16, and 5 for pod_y(n), pod_4(n),
and pod_g(n), respectively. We also find Ramanujan-type congruences modulo 5 for
pod_s(n) and densities of pod_4(n), pod_s(n), pod_4(n), and pod_g(n) modulo 4, 5,
16, and 5, respectively.

1 Introduction

For |¢| < 1, Ramanujan’s theta functions ¢(q) and ¢(q) are defined by

n2 Tl2
() =142 ¢" = > ¢ =(-¢:¢)%(d* )
n=1

n=—oo
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and

TR < P I (7
¥ (q) ZZZQ = Z q :W’ (2)
n=0 n=-—00 ’ o0

where (a;¢)o = (1 —a)(1 —aq)(1 —ag?)---.
Let pod(n) denote the number of partitions of n wherein odd parts are distinct (and even
parts are unrestricted). The generating function of pod(n) is

[e.9]

n __ (—q; q2)oo 1
2_pod(n)d" = (%P U(=q)

In 2010, Hirschhorn and Sellers [5] proved that, for all &« > 0 and n > 0,

n=0

23 x 322 11
8

pod (320‘+3n + ) =0 (mod 3).

They also found some internal congruences such as
pod(81n + 17) = 5pod(9n + 2) (mod 27).

Recently, Wang [10] established new congruences for pod(n). For example, for each a > 1
and n > 0,

11 52a+1 1
. 5 i )EO (mod 5).

Let pod_(n) denote the number of partition k-tuples of n wherein odd parts are distinct
(and even parts are unrestricted). The generating function of pod_,(n) is

pod (52a+2n +

k

N w_ et 1
2o = G e = g @

Chen and Lin [3] established congruences modulo 3 and 5 for pod_,(n). For example, for
a>1landn >0,

11 x 5% +1
pod_, (50‘“71 + XT+) =0 (mod 5).

Wang [8, 9] has established congruences modulo 7, 9, and 11 satisfied by pod_5(n) and
congruences modulo 5, 9, and 81 satisfied by pod_,(n) by employing theta function identities.
For example, for « > 1 and n > 0,

23 x 3%+l 43
8

pod_g <32a+2n + ) =0 (mod9)

and
Hx3%4+1
+

d 3a+1
pod_y4 ( n 9

) =0 (mod9).
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He also found some internal congruences such as
pod_,(27n +5) = —pod_,(9n +2) (mod 9).

In this paper, we establish congruences modulo powers of 2 and modulo 5 for pod_,(n)
for k € {2,3,4,6}. In this vein, in Section 3, we find infinite family of congruences and
internal congruences modulo 4 satisfied by pod_,(n) and we also find density of pod_,(n)
modulo 4. In Section 4, we prove Ramanujan-type congruences modulo 5 for pod_5(n) and
that pod_4(n) is divisible by 5 at least 1/30 of the time. In Section 5, we establish infinite
family of congruences and internal congruences modulo 16 satisfied by pod_,(n) following
density of pod_,(n) modulo 16. In Section 6, we determine infinite family of congruences
and internal congruences modulo 5 satisfied by pod_g(n) and we also determine density of
pod_g(n) modulo 5.

2 Preliminaries

The following results are useful in proving our main results.

Lemma 1. /2, pp. 40-49] We have

o(q) = o(q") + 2q0(¢°), (4)
0(q)? = ¢(¢*)* + 4qy(¢")?, (5)
v(q) = f(*, %) + qv(q”) (6)
= f(@",¢") + af (@, ) + *V(¢*), (7)
U(q)? = (@) (). (8)
Lemma 2. [1, Eq. 1.6.7, p. 26] We have
Ha. V(@) = (0)® — q (). (9)
Lemma 3. Let ih(n)q” = q(q)*. Then
> h(5n+3)¢" =1(g)*  (mod 5). (10)



Proof. From (7), it follows that

> h(n)g" =

q(f(qlo,qw) +qf( 5 20) +q3¢( 25))4

=12¢°f(¢", 4"’ F (¢, ) (™) + 44" £ (4", 4" )0 (¢%°)°
+12¢°f(q 10 0 (@, )0(d*)? + 64" f(q 10 7" (q*)?
ARG P T ) + 40 T, 4P ole®)
+6q f(q10’q15)2 ( 5 q20) +q f( 5 20) +q13¢(q25)4
+4q' f(¢",¢") f (¢, ) + 6¢° f (¢, ; ) (q*)
+44" f(¢°, )0 (@) +12¢° f(¢"°, 15)f(q5 )’ (q™)
+4¢" f(¢°, ) (@) + af (4", 15)

which yields

> hGn+3)q" =20f(¢*, ") F(a. V(@) + f(¢* ¢°)* fla, ¢*)

n=0

+q*(¢”)"  (mod 5).

Using (9) in the above equation, we arrive at (10). O

Lemma 4. Let Y g(n)q™ =¥ (q)*. Then

> gn+1)q" = 2(q)* — qo(¢°)*. (11)

Proof. 1t follows from (7) that

> gln)g" =

= (£(d"°,4") + af (&, ¢®) + ¢*¥(®))”
= ") + 20" 0(®) f(°, ) + 2% (¢®) f (4", ¢"°)
+ @ f (@) +2af (0. ¢°) f (@, ™) + f(d", "),

which yields
Zg (5n+1)¢" = 2f(¢* ¢*) f(¢,4") + q¥(¢°)*.

Using (9) in the above equation, we arrive at (11). O
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Lemma 5. [/, Theorem 2.1] For any odd prime, p,

2

p—3
2 m24+m p2+@m+lp  p-(mtl)p pe—1 2

) = > g™ f(q pae ot )+q (e, (12)
m=0

Furthermore, ™ 2 P2t (mod p), for 0 <m < P3°.

3 Arithmetic properties of pod_,(n)

In this section, we prove the infinite family of congruences and internal congruences modulo
4 for pod_,(n).

3.1 Infinite family of congruences modulo 4

Theorem 6. Let p be any odd prime such that (_72) =—1and o> 0. Then

e 2a
> pod s (2 ) gt = 20000t (mod (13)
n=0

and, for alln >0 and 1 <& <p-—1,

pod_, (2192"‘“(19” +&) + %) =0 (mod 4). (14)
Proof. We have
S pod_y(n)g" = w(_lqy (15)
Invoking (8) and (15),
- n 1
;pOd‘Q(n)q — Y(Pe(-q)
(= —p=g)"
¥(q?)
1+ —p(=q) + (1 —o(=9)* +
¥(g?)
= 2= SO(_(]> mo rom
== (modd) from (1)



Using (4) in the above equation, we find that

S 2 — p(q*) + 2q¥(¢°)
pod_,(n)q¢" = mod 4),
; 2( ) w(qg) ( )
which yields
o0 4
> pod ,(2n+1)¢" = ) (mod 4). (16)
e ¥(q)
From the binomial theorem, we can see that for any prime p and for each positive integer /,
(6:0)" = (¢"¢")"  (mod p'). (17)
In view of (17), (16) can be expressed as
> pod ,(2n+1)¢" = 2(q)¥(¢®) (mod 4), (18)

n=0

which is the @ = 0 case of (13). If we assume that (13) holds for some o > 0, then,
substituting (12) in (13),

0 3 2a+ 1
> pod_, (21)2‘“% + pT> q"
n=0
p—3
’\ m’im p2+@m+l)p  p?—(@m+lp 21 2
E2<Zq 2 f(q =g )+qp8 ¥(g")
m=0

p—3
3 -

x (Z g f (qu“m“)p, qu‘(2m“)p> +q" 1@/)(6121”2)) (mod 4). (19)
m=0

For any odd prime, p, and 0 < my,my < (p — 3)/2, consider the congruence

2 2 2
my +my ms+my _ 3p®—3
L =
which implies that
(2m; +1)*+2(2my +1)>=0 (mod p). (20)
-1
Since (_72> = —1, the only solution of the congruence (20) is m; = mq = ])T Therefore,

3p2—3

2_
equating the coefficients of ¢”"* *5~ from both sides of (19), dividing throughout by ¢~ 3
and then replacing ¢” by ¢, we obtain

Sovody (2 + ) g = ou@ut) moan. (2
n=0



Equating the coefficients of ¢”" on both sides of (21) and then replacing ¢” by ¢, we obtain

0 N 3p2a+2 +1 N
> pod_, (2192 Pt ———— ) ¢" = 20(9)¥(¢")  (mod 4),
n=0
which is the o + 1 case of (13).
Equating the coefficients of ¢""™¢ for 1 < & < p — 1 from (21), we arrive at (14). O

Corollary 7. Let p be any odd prime such that (%) = —1. Then pod_,(n) is divisible by

4 for at least m of all nonnegative integers n.

. . a 2a+2
Proof. The arithmetic sequences {2p2 Hpn+&)+2—H:a> O} for1<&<p—1,o0n

which pod_,(+) is 0 modulo 4, do not intersect. These sequences account for

TV (S B o
P 2p2  2pt 28 S 2(p+1)

of all nonnegative integers. O]

3.2 Some internal congruences

Theorem 8. For each n > 0,

pod_,(54n + 25) = pod_,(6n+3) (mod 4), (22)
pod_,(54n + 43) = pod_,(6n +5) (mod 4), (23)
pod_,(162n + 7) = 2pod_,(18n + 1) (mod 4), (24)
pod_,(162n + 115) = 2pod_,(18n + 13) (mod 4). (25)
Proof. 1f i a(n)q™ = 1¥(q)Y(q*), then the authors [6] found that
n=0
> aBn)g" = v(q)elq) — qt(a*)e(q°). (26)
n=0
Using (26), we can express (18) as
> pod_y(6n+1)¢" = 2(q)¢(q) — 2qv(¢°)¥(¢°)  (mod 4). (27)
n=0
Invoking (1) and (27),
> pod_,(6n+1)¢" = 2¢(q) + 2q1(¢*)¢(¢°)  (mod 4). (28)
n=0

7



Substituting (6) into (28) and extracting the terms involving ¢*"*,

o0

> pod_y(18n + 7)¢" = 20(q”) + 20 (q)¢(¢*)  (mod 4),

n=0

which is equivalent to

Zpod_2(18n +71)q" = 2u(¢®) + Z pod_,(2n +1)¢" (mod 4). (29)
n=0 n=0

Equating the coefficients of ¢*"*! and ¢*"™2 from (29), we arrive at (22) and (23), respectively.
Equating the coefficients of ¢*" and then replacing ¢ by ¢ from (29),

Z pod_,(54n + 7)q ) + Z pod_,(6n + 1)¢" (mod 4). (30)
Invoking (28) and (30),

Y pod_y(54n +T)g" =2 pod_y(6n + 1)¢" — 2qv(¢°)¥(¢°) (mod 4),  (31)

Equating the coefficients of ¢*" and ¢*"™ from (31), we arrive at (24) and (25), respectively.

]
4 Ramanujan-type congruences for pod_5(n)
In this section, we prove the Ramanujan-type congruences modulo 5 for pod_s(n).
Theorem 9. For each a > 1,
52 13
pod_s (52a+1n + %) =0 (mod 5), (32)

where =13, 21, 29, and 37.
Proof. We have

- w1
HZ:OPOd—3<n)(_1) q _w(q)g‘

It follows from (17) that

> pod (n)(-1)"¢" = 10 (mod 5)
= (1615) S gn)g (mod 5).



Extracting the terms involving ¢°"*!, dividing throughout by ¢ and then replacing ¢° by g,

(e o]

S +1 n 1 n
§p0d3(5n +1)(=1)""¢" = m ;g(&z +1)¢" (mod 5)
= ! o 5)2 mo rom
=50 (2¢(9)* — q¥(¢°)?)  (mod 5) f (11)
= 2(¢) — q(¢")(@)* (mod 5) using (17).  (33)

Substituting (7) into (33) and from the Lemma (3) , we find that

> pod_y(5n+ 1)(=1)"q" =2£(¢'",¢") + 20/ (¢, ¢*°) + 207 (¢*)

n=0

— () > h(n)g"  (mod 5),

which implies that

oo

> pod_4(25n +16)(—1)"q" = 2¢(¢°) — v(q) Y _ h(5n+3)¢"  (mod 5)

n=0 n=0

=2¢(¢°) —¥(q)* (mod 5) using (10). (34)
Using (17), (34) can be expressed as
Z pod_4(25n +16)(—1)"¢" = ¥ (¢°) (mod 5). (35)

Extracting the terms involving ¢°" from (35),

Z pod_5(125n + 16)(—1)"¢" = ¥(q) (mod 5)

= f(¢"¢") + af (. ¢*) + ¢*¢¥(¢*) (mod 5),

which yields

> pod_4(625n +391)(—1)"'¢" = ¢(¢°)  (mod 5). (36)

n=0

From (35), (36), and by induction, we find that for each a > 1,

- 2c¢ 52a+1 + 3 n+l n — o 5
S pod_y 570+ T2 ) (<1 = (-1)"() (mod 5). (37)
n=0

Equating the coefficients of ¢°**¢ for 1 < ¢ < 4 from (37), we arrive at (32). O

9



Corollary 10. The function pod_s(n) is divisible by 5 for at least % of all nonnegative
mtegers n.

Proof. The arithmetic sequences {520‘“71 + % o> 1} for p =13, 21, 29, and 37, on

which pod_5(-) is 0 modulo 5, do not intersect. These sequences account for

41+1+1+ !
5% 55 BT 30

of all nonnegative integers. [

5 Arithmetic properties of pod_,(n)

In this section, we prove the infinite family of congruences and internal congruences modulo
16 for pod_,(n).

5.1 Infinite family of congruences modulo 16

Theorem 11. Let p be any prime such that p =3 (mod 4) and « > 0. Then

- 2c p2a + 1 n 2
Z pod_, [ 2p*“n + 4= 41)(q)* (mod 16) (38)
n=0
and, for all nonnegative integersn and 1 < & <p—1,
2a42 1
pod_, (Qph“(pn +&) + ]%) =0 (mod 16). (39)
Proof. We have
- 1
pod_,(n)q¢" = . 40

Invoking (8) and (40),

oo

> pod_y(n)q" =

n=0

b
(@*)*¢(—q)?
(== p(=g*)"
¥(g?)?
L+ (1 —o(=)*) + (1= p(=)*)* +---
¥(g?)?

_ 2= 20" od16) usin
= (P (mod 16) g (1)
_ 2 9(¢?)* + 4q¥(¢*)?
- U(g?)?

(mod 16) from (5),

10



which implies that

Zpod (2n + 1)q 412(5)); (mod 16), (41)
In view of (17), (41) can be expressed as
> “pod_4(2n+1)¢" = 4(q)* (mod 16), (42)

n=0

which is the @ = 0 case of (38). If we assume that (38) holds for some a > 0, then,
substituting (12) into (38),

o 2a0
+1
Zpod_4 (QpZO‘n + pT> q"
n=0
p=3 2
2 m24m P24+ (@2m+)p  p>—(2m+1)p p2—1 p?
=4 > a7 g 2 a2 ) +d o)) (43)
m=0

For any odd prime, p, and 0 < my,my < (p — 3)/2, consider the congruence

m2 +my m%+m2:2p2—2 (mod p)
2 2 T8 b

which implies that
(2my +1)>+ (2my +1)> =0 (mod p). (44)

Since (’71) = —1 for p =3 (mod 4), the only solution of the congruence (44) is my; = mg =

-1
pT. Therefore, equating the coefficients of qp”Jr * from both sides of (43), dividing

2_
throughout by ¢ #5~ and then replacing ¢” by ¢, we obtain

- 2p* — 2 4]
Zpod_4 <2p2a (pn + 2 g ) + P 2+ ) ¢" = 4(¢?)* (mod 16). (45)
n=0

Equating the coefficients of ¢"™ on both sides of (45) and then replacing ¢” by ¢, we obtain

2a42 1
Zpod (2 + ) ¢ = a0 (mod 16),

which is the o + 1 case of (38).
Equating the coefficients of ¢P"*¢ for 1 < & < p — 1 from (45), we arrive at (39). O

11



Corollary 12. Let p be a prime such that p =3 (mod 4). Then pod_,(n) is divisible by 16

for at least m of all nonnegative integers n.

Proof. The arithmetic sequences {2p20‘+1(pn +&) + p2a+22+1 to > O} for 1< ¢<p—1,on

which pod_,(-) is 0 modulo 16, do not intersect. These sequences account for

-1 1+1+1+ o
p 22 T opt T op6 T 2pt1)

of all nonnegative integers. O]

5.2 Some internal congruences

Theorem 13. For each n > 0,

pod_,(50n + 3
pod_,(50n + 23
pod_,(50n + 33
pod_,(50n + 43

= 2pod_,(10n + 1)
= 2pod_,(10n + 5)
= 2pod_,(10n +7)
= 2pod_,(10n +9)

~— — ~— ~—
AEAA
o
o,
—_
D
~— ~— ~— ~—

Proof. It 3~ g(n)q™ = 1¥(q)?, then (42) can be expressed as
n=0

f: pod_4(2n+1)¢" = 4§: g(n)g"  (mod 16),
n=0 =0
which yields
Z pod_,(10n + 3)¢" =4 Z g(dn+1 (mod 16). (46)
Invoking (11) and (46),
Z pod_,(10n + 3)¢" = 8(q)? — 4q1b(¢°)*  (mod 16). (47)

Substituting (42) into (47),

Zpod (10n + 3)¢" QZpod (2n+ 1)¢" — 4q1(¢°)*  (mod 16),

n=0

equating the coefficients of ¢°**% for i = 0, 2, 3, and 4 from the above equation, we obtain

the desired results. ]

12



6 Arithmetic properties of pod_4(n)

In this section, we prove the infinite family of congruences and internal congruences modulo
5 for pod_g(n).

6.1 Infinite family of congruences modulo 5

Theorem 14. Let p be any prime such that p =3 (mod 4) and o > 0. Then

o)

5p* +3
> pod_g <5p2“n + 2 1 ) ¢"=1(q)® (mod 5)

n=0

and, for eachn >0 and 1 <& <p—1,

5 2a42 3
pod_g (5p2“+1(pn + &) + %) =0 (mod 5).

Proof. We have

> pod_g(n)q" = T (48)
In view of (17), (48) can be expressed as
- ngn = V@
;podm)(—l) "= ey (med 9 (49)
Substituting (7) into (49),
- e = F@000) +af (@ ) + U6
;pod_e(n)( 1)"q" = L (mod 5),
which yields
S 0o N2l d") | 2af( 6 fla,a")v(d)
2 pordolon + (11" =T Va2
+ qu$3 (mod 5). (50)
Invoking (9) and (50),
Zpod_6(5n +2)(—=1)"¢" Ew(q>2 + q21i}b<(qq5)): _9 w<q5)2 + qu(q5)2
! B 2¢(q5>4 21/}((]5)4 mo
agr T g Mt o



which implies that

o0

> pod_¢(5n +2)(~1)"¢" = ¢(q)* (mod 5). (52)

n=0

The remainder of the proof is similar to that of Theorem 11, but rather than (42), we use
(52). O

Corollary 15 Let p be a prime such that p =3 (mod 4). Then pod_g(n) is divisible by 5

for at least HeIs) +1) of all nonnegative integers n.

Proof. The arithmetic sequences {5p2a+1(pn +£&)+ w > O} for1<&<p—1,on

which pod_4(+) is 0 modulo 5, do not intersect. These sequences account for

o (L] L L, 1
P 502 | Bpt | 5pb 5+ 1)

of all nonnegative integers. O]

6.2 Some internal congruences

Theorem 16. For each n > 0,

pod_g(125n + 7) = 3pod_4(25n + 2)  (mod 5),
pod_4(125n + 57) = 3pod_4(25n + 12)  (mod 5),
pod_g(125n + 82) = 3pod_4(25n 4+ 17)  (mod 5),

pod_g(125n + 107) = 3pod_4(25n + 22)  (mod 5).

Proof. The proof is similar to that of Theorem 13, but rather than (42), we use (52). O
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