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Abstract

From a 1956 paper of Erdős, we know that the base-two pseudoprimes and the

Carmichael numbers both have a convergent sum of reciprocals. We prove that the

values of these sums are less than 33 and 28, respectively.

1 Introduction

By Fermat’s little theorem, if p is a prime number then for all a ∈ Z we have ap ≡ a (mod
p). However, a number p satisfying this property need not be a prime. For all a ∈ Z, a
base-a Fermat pseudoprime (or briefly, an a-pseudoprime) is a composite number n such
that gcd(a, n) = 1 and an ≡ a (mod n). A Carmichael number is an odd composite number
n for which an ≡ a (mod n) for all integers a, and so is an a-pseudoprime for all a with
gcd(a, n) = 1.

Let P2 = {341, 561, 645, 1105, . . .} be the set of 2-pseudoprimes, also called Poulet or
Sarrus numbers, and let P2(x) = |{n ∈ P2 : n ≤ x}| be the corresponding counting function.
Let C = {561, 1105, 1729, . . .} be the set of Carmichael numbers and write its counting
function as C(x) = |{n ∈ C : n ≤ x}|. Erdős [11] proved that for sufficiently large x, we
have

P2(x) < x/ exp(c1
√

log x log log x)
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and

C(x) < x/ exp

(

c2 log x log log log x

log log x

)

for constants c1, c2 > 0. This implies that both sets have asymptotic density zero, as well as
the stronger statement that both sets have a bounded sum of reciprocals. Pomerance [18]
improved these bounds, showing that

P2(x) < x/ exp

(

log x log log log x

2 log log x

)

for all sufficiently large x, and that the constant c2 in the above bound on C(x) may be
taken as 1.

In the other direction, it is well known that there are infinitely many pseudoprimes with
respect to a given base. In 1994 Alford, Granville and Pomerance [1] proved that there
are infinitely many Carmichael numbers. In particular, they proved that C(x) > x2/7 for
sufficiently large x. Their work has since been improved by Harman [13] to show that for
large x, the inequality C(x) > xα holds for some constant α > 1/3.

In this paper we determine explicit upper and lower bounds for the sum of reciprocals of
2-pseudoprimes, as well as for the sum of reciprocals of Carmichael numbers. This extends
previous work [4, 5, 3, 14] on reciprocal sums. See [5] for a discussion of reciprocal sums and
their importance in number theory.

2 Preliminary lemmas

We state several preliminary lemmas. Throughout the paper m,n and k denote positive
integers, p denotes a prime number, π(x) is the prime counting function, log x denotes the
natural logarithm and P (n) denotes the largest prime factor of n. Put x0 = exp(100) and
y0 = exp(10). We begin with Korselt’s criterion [7, Thm. 3.4.6] which provides a useful
characterization of Carmichael numbers.

Lemma 1 (Korselt’s Criterion). A positive integer n is a Carmichael number if and only

if it is composite, squarefree, and for each prime p|n we have p− 1|n− 1.

It follows from Korselt’s criterion that Carmichael numbers are odd and have at least
three different prime factors.

The following lemma involves certain divisibility properties possessed by all 2-pseudoprimes.
In particular, it shows that if a 2-pseudoprime n is divisible by p2 for a prime p, then p must
be a Wieferich prime, that is,

2p−1 ≡ 1 (mod p2).

It follows that p is greater than or equal to 1093, the smallest Wieferich prime, see [7, p. 31].

Lemma 2. Let n be a 2-pseudoprime. If p2|n then p is a Wieferich prime. Furthermore, if

7|n then n ≡ 1 (mod 3).
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Proof. Suppose that p2|n and let k be the order of 2 in (Z/p2Z)×. Thus k|ϕ(p2) = p(p− 1).
Now 2n−1 ≡ 1 (mod n), so 2n−1 ≡ 1 (mod p2), and thus k|n − 1, so k does not divide p.
Thus k|p− 1, so that 2p−1 ≡ 1 (mod p2). This completes the proof of the first assertion.

For the second assertion, we have 2n−1 ≡ 1 (mod n), so if 7|n then 2n−1 ≡ 1 (mod 7).
The order of 2 modulo 7 is 3, so 3|n− 1.

We will also use explicit versions of several classical theorems. The following modification
of [2, Thm. 3.2] gives fairly sharp explicit bounds on the partial sums of the harmonic series.

Lemma 3. For all x ≥ 1,
∣

∣

∣

∣

∣

∑

n≤x

1

n
− (log x+ γ)

∣

∣

∣

∣

∣

<
1

x

where γ = 0.5772156649 . . . denotes Euler’s constant.

We will also use the following modification of [3, Lem. 6.2] to bound the sum of reciprocals
of numbers in a certain interval and residue class.

Lemma 4. Let a ∈ Z and d = 2
9
∏

i=2

p2i , where pi denotes the i-th prime number. We have

∑

n≡a(d)

1019<n≤x0

1

n
<

56.25587

d
.

Proof. Let b = (1019 − d + 1)/d and c = x0/d. Without loss of generality, we may assume
that a ∈ {0, . . . , d− 1}. By Lemma 3 we have

∑

b<k≤c

1

dk + a
≤ 1

d

(

100− log(1019 − d+ 1) +
1

c
+

1

b

)

<
56.25587

d
.

We will use Dusart’s bounds [10, Thm. 5.6] on the sum of reciprocals of prime numbers
up to x.

Lemma 5. For all x ≥ 2278383, we have

∣

∣

∣

∣

∣

∑

p≤x

1

p
− (log log x+ B)

∣

∣

∣

∣

∣

<
0.2

log3 x
,

where B = 0.2614972128476 . . . denotes the Mertens constant.

We will also use Dusart’s bounds [10, Cor. 5.2 & Thm. 5.9].
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Lemma 6. For all x > 1 we have

π(x) ≤ x

log x

(

1 +
1

log x
+

2.53816

log2 x

)

,

and for all x ≥ 599 we have

π(x) ≥ x

log x

(

1 +
1

log x

)

.

Lemma 7. For all x ≥ 2278382, we have

∏

p≤x

(

1− 1

p

)

≥ exp(−γ)
log x

(

1− 0.2

log3 x

)

.

We will also use the following result [9, Lem. 9.6].

Lemma 8. Let f be a multiplicative function such that f(n) ≥ 0 for all n, and such that

there exist constants A and B such that for all x > 1, we have

∑

p≤x

f(p) log p ≤ Ax and
∑

p

∑

α≥2

f (pα)

pα
log pα ≤ B. (1)

Then, for x > 1, we have

∑

n≤x

f(n) ≤ (A+ B + 1)
x

log x

∑

n≤x

f(n)

n
.

The following lemma makes the implied constants in [9, Lem. 9.7] explicit and modifies
[3, Lem. 2.4].

Lemma 9. Let f be a multiplicative function such that 0 ≤ f(pα) ≤ exp
(

2α
3

)

for all primes

p and integers α ≥ 1, and such that f (pα) = p2α/(3 log y) for all p ≤ y. Then for all x ≥ x0
and y ≥ y0, we have

∑

n≤x

f(n) ≤ 9.68765388x
∏

p≤x

(

(

1− 1

p

)

∑

α≥0

f(pα)

pα

)

.

Proof. We wish to apply Lemma 8, and so we first establish values of A and B to use in
inequality (1) above. We have

∑

p≤x

f(p) log p ≤ exp(2/3)θ(x) ≤ 1.00000075 exp(2/3)x ≤ 1.94773551x, (2)

using the bound θ(x) < 1.00000075x for all x > 0 [17, Cor. 2]. We also have y ≥ y0 and

f (pα) = p2α/(3 log y)
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whenever p ≤ y. For brevity, let g(t) = (f(t) · log t)/t. We have
∑

p

∑

α≥2

g (pα) =
∑

p<y0

∑

α≥2

g (pα) +
∑

p>y0

∑

α≥2

g (pα) .

Starting to bound the sum with p = 2, observe that

∑

α≥2

g (2α) ≤
∑

α≥2

α(log 2) · 2α/15
2α

= log 2
∑

α≥2

α
(

21/15−1
)α

< 1.23661725.

Here we used the fact that
∑

α≥2

αrα−1 =
2r − r2

(1− r)2

for |r| < 1. By similar reasoning,
∑

3≤p<y0

∑

α≥2

g (pα) < 1.25448156.

Let h(t) = (2− e2/3/t)(log t)/(t− e2/3)2. By partial summation we have

∑

p>y0

∑

α≥2

g (pα) ≤ e4/3
∑

p>y0

(2− e2/3/p) log p

(p− e2/3)2

= e4/3
(

−h(y0)π(y0)−
∫ ∞

y0

π(t)h′(t) dt

)

< e4/3

(

−h(y0)π(y0) +
∫ ∞

y0

π(t) · 2(2− e2/3

t
) log t dt

(t− e2/3)3

)

< e4/3

(

−h(y0)π(y0) +
∫ ∞

y0

2t · 1.1253816(2− e2/3

t
) dt

(t− e2/3)3

)

= e4/3

(

−0.00010166 +
1.1253816 ·

(

4e10 − 3e2/3
)

(e2/3 − e10)
2

)

< 0.00038973.

Here we used Lemma 6. Furthermore, for all x ≥ x0 we have

1.781072775
∏

p≤x

(

1− 1

p

)

≥ 1

log x
.

by Lemma 7. Applying Lemma 8 with A = 1.94773551 and B = 2.49148854, and noting
that A + B + 1 = 5.43922405 and 5.43922405 · 1.781072775 < 9.68765388, we complete the
proof of the lemma.
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We now prove the following explicit upper bound on de Bruijn’s function Ψ(x, y), defined
as the number of numbers up to x that are y-smooth (that is, free of prime factors exceeding
y).

Lemma 10. For all x ≥ x0 and y ≥ y0, we have

Ψ(x, y) ≤ 31.928253x1−1/(2 log y).

Proof. We follow [9, Thm. 9.5]. By Rankin’s method, if β > 0, then

Ψ(x, y) ≤ x3/4 +
∑

n≤x

( n

x3/4

)β

χy(n), (3)

where χy(n) = 1 if P (n) ≤ y and χy(n) = 0 if P (n) > y. Set β = 2
3 log y

. By Lemma 9, we
have that

∑

n≤x

nβχy(n) ≤ 9.68765388x
∏

p≤y

(

(

1− p−1
)

∑

α≥0

pα(β−1)

)

. (4)

Now, for any given value of p,
(

1− 1

p

)

∑

α≥0

pα(β−1) =

(

1− 1

p

)

1

1− pβ−1
=

p− 1

p− pβ
= 1 +

pβ − 1

p− pβ
.

For p ≤ 13, the product contributes a factor less than 1.18817106 to the product in inequality
(4). Bounding this second term for p > 13, we see that

pβ − 1

p− pβ
=

p

p− pβ
· p

β − 1

p
< 1.07648742 · p

β − 1

p

since for p ≥ 17,
p

p− pβ
≤
(

17

17− 171/15

)

< 1.07648742.

For 0 < t ≤ 2
3
we have et − 1 ≤ 1.4216011t and therefore we may bound

y
∑

p=17

1.07648742 · p
β − 1

p
=

y
∑

p=17

1.07648742 · exp
(

log pβ
)

− 1

p

≤ 1.4216011 · 1.07648742β
∑

p≤y

log p

p

< 1.4216011 · 1.07648742β log y.

Here we used Rosser and Schoenfeld’s bound (3.23), [19, p. 70],

∑

p≤y

log p

p
< log y − 1.3325 +

1

log y
< log y

6



for y ≥ 32. We therefore have inequality (4) bounded above by

9.68765388 · 1.18817106e1.4216011·1.07648742β log y ≤ 31.9282527.

Using this in inequality (3) for x ≥ x0 gives the bound

Ψ(x, y) ≤ x3/4 + 31.9282527x1−1/(2 log y) ≤ 31.928253x1−1/(2 log y).

3 The sum of reciprocals of base-two pseudoprimes

We prove explicit bounds on the sum of reciprocals of 2-pseudoprimes by expanding Luca
and De Koninck’s proof [9, Prop. 9.11] of the following result.

Proposition 11. For all c < 1/(2
√
2) we have P2(x) ≪ x exp

(

−c
√
log x

)

.

By partial summation, it follows that the sum of reciprocals is convergent.

Theorem 12. The sum of the reciprocals of base-two pseudoprimes satisfies

0.0152608 <
∑

n∈P2

1

n
< 33.

To prove Theorem 12 we split the 2-pseudoprimes into three ranges.

3.1 The small range

We first compute the reciprocal sum over n ≤ 1019. Feitsma [12] has computed an exhaus-
tive list of all 2-pseudoprimes n ≤ 1019. We use this information to directly compute the
reciprocal sum from the 2-pseudoprimes n ≤ 1012 to seven decimal places as

∑

n∈P2

n≤1012

1

n
= 0.0152608 . . . .

For each k = 12, . . . , 18, the contribution to the reciprocal sum from 2-pseudoprimes n such
that 10k < n ≤ 10k+1 is bounded above by the number of such n times 10−k. We thus obtain

∑

n∈P2

n≤1019

1

n
≤ 0.0152612.
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3.2 The middle range

We now bound the reciprocal sum over n such that 1019 < n ≤ x0. By Lemma 2, all 2-
pseudoprimes are odd and not divisible by the square of any prime p < 1093. Therefore,
they must lie in one of

D =
9
∏

i=2

(p2i − 1)

residue classes modulo d, where d is as defined in Lemma 4. Also by Lemma 2, no 2-
pseudoprime is congruent to 0 or 14 modulo 21. Therefore we may rule out 30 more residue
classes modulo 3272. Thus 2-pseudoprimes must lie in one of

D′ = 354 · 24 · 120 · 168 · 288 · 360 · 528

residue classes modulo d. Therefore by Lemma 4, we have

∑

n∈P

1019<n≤x0

1

n
<

56.25587D′

d
< 21.196317.

We may also remove the contribution to the sum from prime numbers. By Lemma 5, we
have

∑

1019<p≤x0

1

p
> 0.826696.

The sum in the middle range is therefore bounded above by

21.196317− 0.826696 = 20.369621.

3.3 The large range

Finally, we bound the reciprocal sum over 2-pseudoprimes n > x0. Let x > x0 and define
y = exp(

√
log x), with y0 = y(x0) = exp(10). For ease of notation, write p = P (n) and define

tp as the multiplicative order of 2 modulo p. Define the set Q = {p : tp < p1/4}, and let
Q(x) = |{p ∈ Q : p ≤ x}|. Each 2-pseudoprime n > x0 falls into exactly one of the following
categories:

1. p ≤ y,

2. p > y and p ∈ Q,

3. p > y and p 6∈ Q.

For each 1 ≤ i ≤ 3, write Ai for the set of 2-pseudoprimes n ≤ x satisfying property i above
and put Ai(x) = |{n ∈ Ai : n ≤ x}|.
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Observe that A1(x) = Ψ(x, y). By Lemma 10 we have

Ψ(x, y) ≤ 31.928253x/ exp(u/2)

where u =
log x

log y
=

log x√
log x

=
√

log x. We thus have

A1(x) ≤
31.928253x

exp
(

0.5
√
log x

)

for x > x0. Therefore, by partial summation,

∑

n∈A1

n>x0

1

n
≤
∫ ∞

x0

31.928253 dt

t exp
(

0.5
√
log t

) =

∫ ∞

100

31.928253 dw

exp(
√

w/4)

= 31.928253
[

4e−
√
w/2(

√
w + 2)

]100

∞
< 10.326283.

Here we used substitution followed by integration by parts.
We now consider the second set, A2. We first show that

Q(x) < 0.01588
√
x

for all x. A computer check shows that the claim holds for x ≤ e22, that Q(e22) = 26, and
that

∏

p∈Q
p≤e22

p > e496.34447.

Assume that x > e22. We have

∏

p∈Q
p≤x

p <
∏

t<x1/4

2t = exp



log 2
∑

t<x1/4

t



 ≤ exp
(

0.34799x1/2
)

,

while also

∏

p∈Q
p≤x

p =
∏

p∈Q
p≤e22

p
∏

p∈Q
e22<p≤x

p > e496.34447
(

e22
)Q(x)−26

= e22Q(x)−75.65553,

so that Q(x) < 0.01588x1/2 for all x as claimed. We thus have

A2(x) <
∑

2≤m<x/y

0.01588
( x

m

)1/2

≤ 0.01588x1/2
∫ x/y

1

dt

t1/2
<

0.03176x

y1/2
.
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By partial summation, we therefore have

∑

n∈A2

n>x0

1

n
≤
∫ ∞

x0

0.03176 dt

t exp(
√

(log t)/4)
=

∫ ∞

100

0.03176 dw

exp(
√

w/4)
< 0.0102719.

Let n ∈ A3 and let p = P (n). Then tp ≥ p1/4 > y1/4. Following [11] we show that for
such n we have n ≡ p (mod ptp). We clearly have n ≡ p (mod p). We also have n ≡ p (mod
tp). To see this, note that n − p = (n − 1) − (p − 1). We have tp|p − 1 by Fermat’s little
theorem, and tp|n−1 since n is a 2-pseudoprime and p|n. Since tp < p we have gcd(p, tp) = 1,
and thus also n ≡ p (mod ptp) as claimed. Thus the number of such n is bounded above by
x/(ptp) + 1. Also n > p (since p is not a pseudoprime), so the number of such n is in fact
bounded above by x/(ptp). Thus the number of 2-pseudoprimes in A3 satisfies

A3(x) ≤
∑

p>y

x

ptp
≤ x

∑

p>y

1

p5/4
.

By Lemma 6 we have t/(log t) · (1 + 1/ log t) ≤ π(t) ≤ 1.1253816t/ log t for t ≥ y0. Thus by
partial summation we have

A3(x) ≤ x

(

−π(y)
y5/4

+
5

4

∫ ∞

y

π(t)

t9/4
dt

)

≤ x

(

−1 + 1/ log y

y1/4 log y
+

5(1.1253816)

4

∫ ∞

y

dt

(log t)t5/4

)

= x

(

−1 + 1/ log y

y1/4 log y
− 5.626908

4
Ei

(

− log y

4

))

= x

(

− 1 + 1/
√
log x√

log x · exp
√

(log x)/16
− 1.406727 · Ei

(

−
√
log x

4

)

)

,

where

Ei(x) = −
∫ ∞

−x

e−t

t
dt

denotes the exponential integral function. By another application of partial summation, we
thus have

∑

n∈A3

n>x0

1

n
≤ −

∫ ∞

x0





1 + 1/
√
log t

t
√
log t · exp(

√

(log t)/16)
+

1.406727 · Ei
(

−
√
log t
4

)

t



 dt

= −
∫ ∞

100

(1 + 1/
√
w) dw

√
w · exp(

√

w/16)
− 1.406727

∫ ∞

100

Ei

(

−
√
w

4

)

dw

= −8e−2.5 + 2Ei(−2.5) + 1.406727
(

100Ei(−2.5) + 56e−2.5
)

< 2.2550278.
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Here we substituted w = log t and used integration by parts. Adding the contributions from
the small, middle and large ranges, we obtain

0.0152612 + 20.369621 + 12.5915827 < 32.9765,

completing the proof of Theorem 12.

4 The sum of reciprocals of the Carmichael numbers

Theorem 13. The sum of reciprocals of Carmichael numbers satisfies

0.004706 <
∑

n∈C

1

n
< 27.8724.

To prove Theorem 13, we modify the small, middle and large ranges from the proof of
Theorem 12 above.

4.1 The small range: n ≤ 1021

A table of all 10000 Carmichael numbers up to 1713045574801 has been computed by
R. Pinch, [15, 16]. Their contribution to the reciprocal sum is easily computed to be
0.004706 . . .. Pinch also determined that there are 20128200 additional Carmichael num-
bers up to 1021. Therefore an upper bound for the sum of reciprocals of all Carmichael
numbers n ≤ 1021 is given by

0.004707 + 20128200/1713045574803 < 0.0047188.

4.2 The middle range: 1021 < n ≤ x0 = exp(100)

We will use the following slight modification of Lemma 4, whose proof is nearly identical.

Lemma 14. Let a ∈ Z and d′ = 2
10
∏

i=2

p2i , where pi denotes the i-th prime number. We have

∑

n≡a(d′)

1021<n≤x0

1

n
<

51.6882395

d′
.

Since Carmichael numbers are odd and squarefree by Lemma 1, they must lie in one of

E =
10
∏

i=2

(p2i − 1)

11



residue classes modulo d′.
We may also remove the contribution to the sum from prime numbers. By Lemma 5 we

have
∑

1021<p≤x0

1

p
> 0.7266133.

It follows from Lemma 1 that Carmichael numbers have at least three prime factors,
so we may also remove the contribution to the sum from odd, squarefree numbers in the
middle range with exactly two prime factors. Let π2(x) = |{n = pq ≤ x : p < q}| denote
the counting function of squarefree numbers with exactly two prime factors. Similarly, let
π∗
2(x) = |{n = pq ≤ x : 2 < p < q}| denote the counting function of odd squarefree numbers

with exactly two prime factors. By a slight modification of Bayless and Klyve’s lower bound
[6] on π2(x), we are able to show that for all x ≥ 1021, we have

π∗
2(x) ≥

x(log log x− 0.300711)

log x
.

Letting A∗ denote the set of odd squarefree numbers with exactly two prime factors, we
therefore obtain by partial summation that

∑

1021<n≤x0

n∈A∗

1

n
≥ log log x0 − 0.300711

100
− log log 1021 − 0.300711

log 1021
+ I,

where

I =

∫ x0

1021

(log log t− 0.300711)dt

t log t
=

∫ 100

log 1021

(logw − 0.300711)dw

w

=

[

log2w

2
− 0.300711 logw

]100

log 1021
.

It follows that
∑

1021<n≤x0

n∈A∗

1

n
> 2.8327533.

Therefore, the contribution to the reciprocal sum from the middle range is bounded above
by

51.6882395E/d′ − 0.7266133− 2.8327533 < 17.5412697.

4.3 The large range: n > x0

Finally, we bound the reciprocal sum over Carmichael numbers n > x0. Let x > x0 and
recall our definitions y = exp(

√
log x) and y0 = y(x0) = exp(10). Write p = P (n). We split

the Carmichael numbers n > x0 into two categories.

12



1. p ≤ y

2. p > y.

For i = 1, 2, write Bi for the set of Carmichael numbers n ≤ x satisfying property i above
and put Bi(x) = |{n ∈ Bi : n ≤ x}|.

By the same argument in the proof of Theorem 12 above, we have

B1(x) = Ψ(x, y) ≤ 31.928253x

exp
(

0.5
√
log x

)

by Lemma 10, and
∑

n∈B1

n>x0

1

n
< 10.326283.

We next determine an upper bound for B2(x). Observe that if p|n for a Carmichael number
n, then n ≡ p (mod p(p − 1)). To see this, we clearly have p|n − p. Furthermore, since
n− p = (n− 1)− (p− 1) and since p− 1|n− 1 by Lemma 1, we have p− 1|n− p. It follows
that n ≡ p (mod p(p− 1)), since gcd(p, p− 1) = 1.

Therefore, the number of Carmichael numbers n ≤ x which are divisible by a given prime
p is bounded above by x/(p(p− 1)). We therefore have

B2(x) ≤
∑

p>y

x

p(p− 1)
= x

∑

p>y

1

p(p− 1)
.

By partial summation, we have

∑

p>y

1

p(p− 1)
= − π(y)

y(y − 1)
+

∫ ∞

y

π(t)(2t− 1) dt

t2(t− 1)2

≤ −π(y)
y2

+

∫ ∞

y

0.112539 · 2t dt
t(t− 1)2

≤ − 1

y log y

(

1 +
1

log y

)

+

∫ ∞

y

0.11255 · 2 dt
t2

=
0.2251

y
− 1

y log y

(

1 +
1

log y

)

.

Here we used Lemma 6 to bound

t

log t

(

1 +
1

log t

)

≤ π(t) ≤ 0.112539t

for all t ≥ y0. Therefore, for all x ≥ x0 we have

B2(x) ≤
x

y

(

0.2251− 1

log y

(

1 +
1

log y

))

.
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It follows by another application of partial summation that

∑

n∈B2

n>x0

1

n
≤
∫ ∞

x0

1

t exp
√
log t

(

0.2251− 1√
log t

(

1 +
1√
log t

))

dt

=

∫ ∞

100

1

exp
√
w

(

0.2251− 1√
w

(

1 +
1√
w

))

dw < 0.000126.

Adding the contributions from the small, middle and large ranges, we obtain 0.0047188+
17.5412697 + 10.326409 < 27.8724, completing the proof of Theorem 13.

5 Concluding remarks

It will take more work to substantially sharpen the upper bound on the sum of reciprocals
of 2-pseudoprimes. In fact, the result is close to optimal for the arguments used, in the
following sense.

Reworking the arguments for different choices of the cutoff x = x0 for the large range, the
coefficients appearing in the bounds for each case tend to vary relatively slowly. Therefore
we may attempt to roughly optimize the bound by minimizing the function

f(x) = 0.0152612 + 0.37679(log x− log(1019 − d+ 1))− I + I1 + I2 + I3,

which represents the major contributions from the small, middle and large ranges to the
reciprocal sum, where d is as defined in Lemma 4, and

I = log log x− log log 1019 − 0.2

log3 x
− 0.2

log3 1019
,

I1 =

∫ ∞

log x

31.928253 dw

exp(
√

w/4)
,

I2 =

∫ ∞

log x

0.03176 dw

exp
√

w/4
,

I3 = −
∫ ∞

log x

(

1 + 1/
√
w

√
w · exp(

√

w/16)
+ 1.406727 · Ei

(

−
√
w

4

)

)

dw.

Applying the fundamental theorem of calculus and again substituting w = log x, the deriva-
tive is given by

f ′(x) =
1

x
(0.37679− J − J1 − J2 + J3) ,

where

J =
1

w
+

0.6

w4
,
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J1 =
31.928253

exp(
√

w/4)
,

J2 =
0.03176

exp(
√

w/4)
,

and

J3 =
1 + 1/

√
w

√
w · exp(

√

w/16)
+ 1.406727 · Ei

(

−
√
w

4

)

.

Solving graphically for w, we find that the critical point is approximately w ≈ 79 so that
x ≈ exp(79), and we have f(exp(79)) ≈ 32. This indicates that our cutoff of x0 = exp(100)
for the large range is close to optimal for the method of argument used, especially keeping
in mind that lowering the cutoff to x0 = exp(79) will in fact raise the constants appearing
in the various upper bounds for the large range.

Furthermore, adjusting the coefficient in our definition of y = e
√
c log x and reconsidering

the argument, our choice of c = 1 used above gave better bounds than larger or smaller
values of c that we also considered. However, it may be possible to further optimize the
choice of coefficients, including those used in the proof of Lemma 10 bounding the count of
smooth numbers.

Another possible way to improve this bound would be to find a way to effectively utilize
more information about the 2-pseudoprimes. For instance, more specific residue classes in
the middle range could be ruled out using an inclusion-exclusion argument.

Perhaps the bound on the sum of reciprocals of Carmichael numbers could be further
optimized by utilizing more information about them, as well as optimizing the cutoff x0.
Another possibility for improving the bound for the sum of reciprocals of Carmichael numbers
in the middle range is to use an inclusion-exclusion argument to remove not only the odd
squarefree numbers with exactly two prime factors, but also the ones which fall in certain
specific residue classes that can be ruled out.

Furthermore, Damg̊ard et al [8, Thm. 5] proved that for all x ≥ 1, the number N(x) of
Carmichael numbers up to x with exactly three prime factors satisfies the upper bound

N(x) ≤ 0.25
√
x(log x)11/4.

Obtaining an explicit lower bound on the count of odd, squarefree numbers up to x having
exactly three prime factors would therefore allow one to remove the contribution from all
such numbers in the middle range and replace it using this tighter bound.
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