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Abstract

Vincular and covincular patterns are generalizations of classical patterns allowing
restrictions on the indices and values of the occurrences in a permutation. In this paper
we study the integer sequences arising as the enumerations of permutations simultane-
ously avoiding a vincular and a covincular pattern, both of length 3, with at most one
restriction. We see familiar sequences, such as the Catalan and Motzkin numbers, but
also some previously unknown sequences which have close links to other combinatorial
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objects such as lattice paths and integer partitions. Where possible we include a gener-
ating function for the enumeration. One of the cases considered settles a conjecture by
Pudwell (2010) on the Wilf-equivalence of barred patterns. We also give an alternative
proof of the classic result that permutations avoiding 123 are counted by the Catalan
numbers.

1 Introduction

A permutation π contains a classical pattern p, which is itself a permutation, if π contains
a subword which is order isomorphic to p. Babson and Steingrímsson [3] introduced a
generalization of classical patterns that allows the requirement that two adjacent letters in a
pattern must be adjacent in the permutation. These are called vincular patterns. A further
extension, called bivincular patterns, was provided by M. Bousquet-Mélou et al. [4]. We call
the special case when only constraints on values are allowed covincular patterns. The set
of bivincular patterns is closed under the action of the symmetry group of the square and
an alternative way of describing the covincular patterns is that they are inverses of vincular
patterns.

Simultaneous avoidance of two vincular patterns was studied by Claesson and Mansour
[7] and by Kitaev [13]. Allowing one of the patterns to be covincular is a natural follow
up question and leads to some well-known sequences. The overall goal of this paper is to
count the number of permutations simultaneously avoiding a length 3 vincular and a length
3 covincular pattern, where both patterns force at most one restriction. A summary of our
results can be found in Table 1; these results are detailed in Sections 2 through 10. One of our
methods can be adapted to give a new simple proof of the classical result that permutations
avoiding the classical pattern 123 are counted by the Catalan numbers; see Section 11. The
Appendix contains all the results from the paper collected by their respective enumeration.

We now present the definitions and notation we use. An alphabet, X, is a non-empty set.
An element of X is a letter. A finite sequence of letters from X is called a word. The word
with no letters is called the empty word and is denoted ǫ. For a word w we say that the
length of the word, denoted |w|, is the number of letters in w, that is, if w = x1x2 · · · xn then
|w| = n. A subword of w is a finite sequence xi1xi2 · · · xik where 1 ≤ i1 < i2 < · · · < ik ≤ n.

As we are interested in permutations the alphabet we use is [n] = {1, 2, . . . , n} for some
n ∈ N = {0, 1, 2, . . .}. A length n permutation is a length n word x = x1x2 · · · xn of this
alphabet with no repeated letters where xi = π(i). Let Sn denote the set of all length n
permutations. Let w = w1w2 · · ·wk and v = v1v2 · · · vk be words with distinct letters. We
say that w is order isomorphic to v if, for all i and j, we have wi < wj precisely when vi < vj.
For example 53296 and 32154 are order isomorphic.

Definition 1 (Bousquet-Mélou et al. [4, page 4]). A bivincular pattern is a triple, p =
(σ,X, Y ), where σ ∈ Sk is the underlying permutation and X and Y are subsets of {0, 1, . . . , k}.
An occurrence of p in π ∈ Sn is a subsequence w = π(i1) · · · π(ik) order isomorphic to σ such

2



that
∀x ∈ X, ix+1 = ix + 1 and ∀y ∈ Y, jy+1 = jy + 1,

where {π(i1), . . . , π(ik)} = {j1, . . . , jk} and j1 < j2 < · · · < jk. By convention, i0 = j0 = 0
and ik+1 = jk+1 = n+ 1. If such an occurrence exists we say that π contains σ.

We define the length of a bivincular pattern p = (σ,X, Y ), denoted |p|, to be |σ|. Further,
a permutation avoids p if it does not contain p. If Y = ∅ then p is a vincular pattern. If
X = ∅ then p is a covincular pattern. If X = Y = ∅ then p is a classical pattern. For
example, the permutation 15423 contains an occurrence of (123, {2}, ∅), namely the subword
123, but avoids (123, {1}, ∅). The permutation 23514 contains an occurrence of (312, ∅, {2}),
namely the subword 523, but avoids (312, ∅, {1}). The sets of all length n permutations
avoiding the pattern p is denoted

Avn(p) = {π ∈ Sn : π avoids p} ,

and, for P a set of patterns, Avn(P ) = ∩p∈PAvn(p) and Av(P ) = ∪n≥0Avn(P ).
Below we use a pictorial representation of vincular and covincular patterns. For a length

n bivincular pattern p = (σ,X, Y ): First draw the collection of points from the underlying
permutation i.e. (k, σk) where 1 ≤ k ≤ n. Then, for each i ∈ X, shade the ith column and,
for each j ∈ Y , shade the jth row; see Figure 1. The shading is used to denote the empty
regions in the permutation if we were to overlay the grid onto an occurrence of the pattern.

Figure 1: (231, ∅, ∅), (123, {2}, ∅), (123, {1}, ∅), (312, ∅, {2}), and (312, ∅, {1})

Remark 2. If p = (σ,X, Y ) and p′ = (σ,X ′, Y ′), where X ′ ⊆ X and Y ′ ⊆ Y , then we
immediately have that Avn(p

′) ⊆ Avn(p).

We are interested in |Avn(p, r)| where p = (σ,X, ∅) is a length 3 vincular pattern with
X ∈ {∅, {1}, {2}}, and r = (τ, ∅, Y ) is a length 3 covincular pattern with Y ∈ {∅, {1}, {2}},
in a sense completing the work by Claesson and Mansour [7]. We do not consider the
following cases: 1) The case where X = Y = ∅ since this is classical avoidance of two length
3 patterns, which was done by Simion and Schmidt [17]; 2) The case when either X or Y
contains 0 or 3 since this forces the patterns to occur with the first or last, smallest or largest,
letters in the permutation and would introduce too many cases to be considered in a single
paper; 3) The case when X or Y contain {1, 2} since these would be more naturally treated
in the context of consecutive patterns, see e.g., Elizalde and Noy [10].

An important property of the set of bivincular patterns, as noted by Bousquet-Mélou
et al. [4], is that it is closed under the symmetries of the square. The set of patterns we
are interested in—the union of vincular and covincular patterns—is also closed under these
symmetries, and we make the following observation.
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Lemma 3. Let π be a permutation and p be a pattern, and let π∗ and p∗ be the permutation
and pattern with the same symmetry applied to both π and p. Then π avoids p if and only if
π∗ avoids p∗.

From this we immediately see that if we can find the enumeration of Av(p, r), for a single
pair of patterns p and r, then we automatically have the enumeration for up to 8 other
symmetric cases. This reduces the amount of work to be done considerably. In particular,
we need only consider when Y 6= ∅ as otherwise we could take a symmetry to a case where
instead X = ∅. Let

P =
{

(σ,X, ∅) : σ ∈ S3, X ∈
{

∅, {1}, {2}
}

}

;

R =
{

(σ, ∅, Y ) : σ ∈ S3, Y ∈ {{1}, {2}
}

}

In total we have |P × R| = (3! · 3) · (3! · 2) = 216 pairs of patterns to consider. In Table 1
we summarize our results on permutations avoiding a pair of patterns from P ×R.

Enumeration # pairs OEIS

Cn 24 A000108
(

n

2

)

+ 1 16 A000124

2n−1 104 A000079
n
∑

i=0

(
(

i+1

2

)

n− i

)

8 A121690

n
∑

k=0

(
(

k+1

2

)

+ n− k − 1

n− k

)

8 A098569

Mn 16 A001006

OGF: 1 +
∑

n≥0

xn+1Ln(1 + x) 8 A249560

OGF: 1 + x
1−x

∑

n≥0

n+1
∑

k=0

xi+kLn+1,k

(

1

1−x

)

8 A249561

a recurrence relation 8 A249563

a recurrence relation 4 A249562

finite 12 -

Table 1: The number of permutations avoiding a pair of patterns in P ×R.

In Table 1, Cn and Mn are the Catalan and Motzkin numbers, respectively. The sequences
A249560–A249563 were added to the OEIS [18] by the authors. In A249560 and A249561,

Ln(q) =
∑n

m=0

[

n

m

]

q
and Ln,k(q) = qn+(

k

2)
[

n−1

k−1

]

q
enumerate specific types of lattice paths and

their areas.
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It is sometimes possible to show that avoiding a given pattern p is equivalent to avoiding
a simpler pattern p′. The following lemma states three instances of this that are used here.
This lemma is part of a more general result called the shading lemma, due to Hilmarsson et
al. [12, Lemma 3.11].

We first need to introduce the idea of a mesh pattern. In our previous pictures we shaded
entire rows or columns. In a mesh pattern we can shade individual squares in the diagram.
As an example, below is a mesh pattern with a single square shaded:

.

A subsequence π(i)π(j)π(k) of π ∈ Sn, that is order isomorphic to 132, is an occurrence of
this particular pattern if there does not exist an m such that j < m < k and π(m) < π(i).
Mesh patterns satisfy a property analogous to Remark 2: given a pattern p = (σ,B), where
B is the set of squares shaded, and p′ = (σ,B′), where B′ ⊆ B, then Avn(p

′) ⊆ Avn(p). The
original definition of mesh patterns was given by Brändén and Claesson [5].

Lemma 4. (i) Avn

( )

= Avn

( )

(ii) Avn

( )

= Avn

( )

.

(iii) Avn

( )

= Avn

( )

.

Proof. For (i) see [3, Lemma 2] and for (ii) and (iii) see [12, Lemma 3.11].

Remark 5. It is important to note that Avn(132, {2}, ∅) 6= Avn(132, ∅, ∅). For example,
2413 /∈ Av4(132, ∅, ∅) but 2413 ∈ Av4(132, {2}, ∅).

2 Catalan numbers (A000108)

There are 24 pairs (p, r) ∈ P × R such that |Avn(p, r)| = Cn. These break down to five
cases once symmetries are considered; see Table 2 in the Appendix for a full list. They can
all be simplified to the avoidance of a single classical pattern. We look at a case for each
argument. By Remark 2 we have:

Proposition 6. Avn

(

,

)

= Avn(123).

Similarly, by first using Lemma 4i on the first pattern and then using Remark 2 on the
resulting pair we have:
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Proposition 7. Avn

(

,

)

= Avn(132).

It is well known that the enumeration for avoiding any classical pattern of length 3 is
given by the Catalan numbers; see Knuth [14, Section 2.2.1, Exercises 4 and 5]. Thus the
sets in the propositions above all have cardinality Cn. In Section 11 we present a new proof
that |Avn(123)| = Cn.

The rest of the pairs that are counted by the Catalan numbers all follow a very similar
argument so we move on to the next case.

3 Central polygonal numbers (A000124)

After considering symmetries there are three pairs (p, r) ∈ P×R such that |Avn(p, r)| =
(

n

2

)

+
1; see Table 2 in the Appendix. They all reduce to the already known case |Avn(123, 231)| =
(

n

2

)

+ 1 done by Simion and Schmidt [17].

Proposition 8. Avn

(

,

)

= Avn(123, 231).

Proof. Use symmetry and Lemma 4i.

Proposition 9. Avn

(

,

)

= Avn(123, 231).

Proof. After applying Lemma 4 we see that the set we are interested in is

B = Av

(

,

)

.

We want to show that B is equal to A = Av(123, 231). It is clear than A ⊆ B. We will show
B ⊆ A by contraposition. Assume that π /∈ A. If π contains 231 then it immediately follows
that π /∈ B. If π contains 123 then either π contains

in which case π /∈ B, or else it contains the pattern where there is a point in the shaded
square. This would create an occurrence of 1342 which contains an occurrence of 231 and
hence we would have π /∈ B. Therefore A = B.

Proposition 10. Avn

(

,

)

= Avn(123, 231).

Proof. Apply Lemma 4i and then Proposition 9.
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4 Powers of 2 (A000079)

After considering symmetries there are 19 different pairs (p, r) ∈ P×R such that Avn(p, r) =
2n−1 and we list them in Table 2 of the Appendix. Most of the cases reduce to

|Avn(123, 132)| = |Avn(132, 312)| = |Avn(231, 312)| = 2n−1,

as shown by Simion and Schmidt [17]. There are two non-trivial cases where we use the
structure of the set to find a generating function for the enumeration.

Proposition 11. Let p = and r = . The number of permutations in

Avn(p, r) is 2n−1, for n ≥ 1.

Proof. Let A be the set of avoiders in question and let π ∈ A. As π avoids p, the points
after the minimum of π form a decreasing sequence. Moreover, in order to ensure that the
permutation avoids r, every point to the right of the minimum must be greater than every
point on the left of the minimum. Therefore, all non-empty permutations of A have the form

A

where A symbolizes a (possibly empty) permutation which avoids the patterns, and
symbolizes a decreasing permutation. As the structure is so rigid we can find the ordinary
generating function of the avoiders by multiplying together the ordinary generating functions
of the component parts. There is one decreasing permutation of length n and so the ordinary
generating function is 1/(1− x). The ordinary generating function of a single point is x. If
A is the ordinary generating function for A, then it follows that

A = A · x ·
1

1− x
+ 1

where we add 1 for the empty permutation which trivially avoids both patterns. Rearranging
we get

A =
1− x

1− 2x
= 1 +

∑

n≥1

2n−1xn.

Proposition 12. Let p = and r = . The number of permutations in

Avn(p, r) is 2n−1, for n ≥ 1.
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Proof. Let A be the set of avoiders in question. Consider the leftmost point ℓ of a per-
mutation in A. To avoid p the points greater than ℓ must form a decreasing sequence and
similarly to avoid r the points less than ℓ must form decreasing sequence. Therefore the
permutations in A have the form below.

A permutation matching this picture cannot contain an occurrence of p = 123, and every
occurrence of 312 will have the point ℓ preventing it from being an occurrence of r. Hence
these can be encoded with binary strings and so there are 2n−1 such permutations.

5 Left-to-right minima boundaries (A121690)

After symmetries there is exactly one pair (p, r) ∈ P ×R enumerated by the formula in the
following proposition.

Proposition 13. Let p = and r = . The number of permutations in

Avn(p, r) is
n

∑

k=0

(
(

k+1

2

)

n− k

)

.

(a) (b) (c)

Figure 2: The structure of Avn(p, r) from Proposition 13

In the following proof we will consider the set of left-to-right minima, which we call the
boundary of the permutation. In later sections we will consider other types of boundaries that
use left-to-right minima, right-to-left minima or right-to-left maxima and perhaps unions of
these. It should be clear from context which type of boundary it is.

Proof. Consider the minimum point, 1, of a permutation in Avn(p, r). From the pattern p
we see that the points to the right of 1 form a decreasing sequence. Moreover, the points
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vertically between any two adjacent points on the boundary must form a decreasing sequence,
giving the structure in Figure 2a, where the permutation we have drawn has five left-to-right
minima.

Now, consider the leftmost point, say ℓ, of a permutation in Avn(p, r). From the pattern
r we see that the points greater than ℓ must form an increasing sequence. Moreover, consid-
ering the points horizontally between any two adjacent points on the boundary we get the
structure in Figure 2b, where, again, the permutation has five left-to-right minima. When
we overlay the given conditions above we get the structure in Figure 2c, where each of the
squares in the diagram must be both increasing and decreasing. Therefore each square must
be empty or contain a single point. Also, the structure of the rows and columns will be
determined as increasing and decreasing, respectively, no matter which squares have points.
Therefore, placing any number of points into the squares (at most one in each) will create a
unique permutation (see Figure 3). Create a permutation π ∈ Avn(p, r) with k left-to-right

Figure 3: The permutation 673841952 ∈ Av9(p, r) from Proposition 13

minima. We need to know how to place the remaining n − k points. There will be
(

k+1

2

)

squares available to choose from, and placing the n−k points into any subset of those squares
will create a unique permutation. Thus, summing over the number of left-to-right minima,
we get

|Avn(p, r)| =
n

∑

k=0

(
(

k+1

2

)

n− k

)

.

We note from the above proof and the formula that a permutation with k left-to-right
minima will be of length at most k +

(

k+1

2

)

. Also, a length n avoider will have at least
⌈

−3+
√
9+8n

2

⌉

left-to-right minima.

6 Barred patterns (A098569)

After considering symmetries there are two pairs (p, r) ∈ P ×R enumerated by the formula
in the following proposition.

Proposition 14. Let p = and r = . The number of permutations in

Avn(p, r) is
n

∑

k=0

(
(

k+1

2

)

+ n− k − 1

n− k

)

.
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Proof. Consider the left-to-right minima of a permutation π ∈ Avn(p, r) as we did in Propo-
sition 13. The points vertically between any two adjacent left-to-right minima must form
a decreasing sequence and the points horizontally between any two adjacent left-to-right
minima must also form a decreasing sequence. If we overlay these two conditions we get
a structure like that in Figure 2c, where, in this case, each of the squares in the diagram
must be decreasing. Also, the structure of the rows and columns will be determined as
decreasing no matter which squares have points. Therefore, placing any number of points
into the squares will create a unique permutation, and so the ordinary generating function
for |Avn(p, r)| is

∑

k≥0

xk

(

1

1− x

)(k+1

2 )
.

The coefficient of xj in 1/(1− x)m is
(

m+j−1

j

)

which concludes the proof.

It is possible to show that avoiding the two patterns p and r, above, is equivalent to
avoiding a single barred pattern first introduced by West [20]. For a more detailed account
of barred patterns see Pudwell [15]. The following is the definition which can be found in
that reference.

Definition 15. (Pudwell [15, p. 1]) Let p be a barred pattern. Let r be the pattern with
the bars removed and let p′ be the permutation order isomorphic to the pattern in which
the barred numbers are removed. We say that a permutation contains p if every occurrence
of p′ can be extended to an occurrence of r.

For example, a permutation contains 4̄251̄3 if every occurrence of 132 is contained as
253 in a 42513 pattern. Barred patterns can often be thought of as mesh patterns (see
Ulfarsson [19, p. 5]). For instance,

Avn(4̄231̄5) = Avn

(

,

)

= Avn

(

,

)

and

Avn(4̄251̄3) = Avn

(

,

)

= Avn

(

,

)

,

where the second equalities in both equations follow from Lemma 4

Corollary 16. The number of permutations in Avn (4̄231̄5) is

n
∑

k=0

(
(

k+1

2

)

+ n− k − 1

n− k

)

.
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This confirms the conjecture from Pudwell [15, page 8] that 4̄251̄3 and 4̄231̄5 are Wilf-
equivalent, i.e., that the number of permutations avoiding either one is the same. If we were
to apply the same method as in the proof of Proposition 14 to

Avn

(

,

)

= Avn(4̄251̄3)

then we would have a similar structure with the left-to-right minima, where, however, we
get increasing sequences in the squares and along the rows and columns.

7 Motzkin numbers (A001006)

The Motzkin numbers, Mn, form a well known sequence which can be defined by a functional
equation their ordinary generating function satisfies:

M = 1 + xM + x2M2 where M =
∑

n≥0

Mnx
n.

For more information on Motzkin numbers see e.g., OEIS [8]. After considering symmetries
and Lemma 4 we have two cases such that |Avn(p, r)| = Mn and (p, r) ∈ P ×R. For a full
list see Table 2 of the Appendix.

Proposition 17 (Elizalde and Mansour [9]). Let p = and r = . The number of

permations in
Avn(p, r) is Mn.

The proof given by Elizalde and Mansour [9] provides a bijection between Avn(p, r) and
Motzkin paths. We show that the structure of the permutations implies they are enumerated
by the Motzkin numbers.

Proof. Consider a permutation π in A = Av(p, r). Further, consider the rightmost point of
π. For π to avoid p the structure of π must be like Figure 4a. With regard to σ, let us

A

σ

(a)

A

(b)

A

A

(c)

Figure 4: The structure of Av(p, r) from Proposition 17

consider two cases. Either σ is empty or it has at least one point. If σ is empty the structure
looks like Figure 4b. If σ is non-empty then consider the maximum point, m, of σ. If there
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was a point to the left of m in σ then this point together with m and the rightmost point
of π would create an occurrence of r. Therefore there must be no points to the left of m
in σ. Thus we can place any possibly empty smaller permutation in A to the right of the
maximum of σ without creating an occurrence of p or r, and so we have the structure in
Figure 4c.

In conclusion, any non-empty permutation in A either has a structure described by
Figure 4b or a structure described by Figure 4c. Letting A denote the ordinary generating
function for A we thus have A = 1 + xA+ x2A2, from which the claim follows.

We now go on to the second case. We will consider the structure of the avoiders in terms
of the left-to-right minima, as in Proposition 13.

Proposition 18. Let p = and r = . The number of permutations in

Avn(p, r) is Mn.

Proof. Let π ∈ Avn(p, r) and consider the boundary of (the diagram of) π given by the
left-to-right minima. As in Proposition 13, any cell in the diagram must be both increasing
and decreasing and so the cell is empty or contains exactly one point. Because the rows are
increasing and π avoids 123 there can be at most one point in each row. Moreover, if there
is a point in a cell then we cannot place a point in a cell further to the right and above.

Pick the leftmost point in the leading diagonal of this grid. The points above this cell
will then form a subword of π which is of shorter length and also avoids both patterns. The
points below this cell will similarly form a subword which avoids both patterns; see Figure 5.
Notice that this process is reversible: we can take a pair of avoiders of lengths k and n−k−2,

A B C

D E

F

·
G H

I

7→

A B C

D E

F

+
G H

I

Figure 5: Decomposing a permutation in Avn(p, r) from Proposition 18

respectively, and glue them together by adding the leftmost point on the leading diagonal
and the corresponding left-to-right minimum in this way.

There is also the case when there are no points on the leading diagonal directly to the
right of a left-to-right minima. In this case we remove the minimum point and tuck the
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A B C D

E F G

H I

J

7→

A B C D

E F G

H I

J

Figure 6: “Shortening” a permutation in Avn(p, r) from Proposition 18

points in the same way we did for the top half of the previous case, producing an avoider
which is shorter in length; see Figure 6. Again this is reversible, so we can take any length
n− 1 avoider and append a new minimum to create a length n avoider. Thus, letting A be
the ordinary generating function for A we get that A = 1 + xA+ x2A2.

We will use a similar method to give a new proof of the enumeration of Avn(123) in
Section 11.

8 Lattice paths and their area (A249560)

Up to symmetries there is a single pair (p, r) in P × R with the enumeration given in
Proposition 20, namely

An = Avn

(

,

)

.

To find the enumeration of this set we consider a different boundary than those seen in
previous sections. Our boundary here will be left-to-right minima and right-to-left minima.
We will first find a bijection between lattice paths and the boundaries of permutations in
An. Then we extend this bijection by considering the area under these paths.

For our purposes a lattice path of length n is a path that starts at (0, 0) and has n steps,
each of which is

N : (x, y) 7→ (x, y + 1) or

E : (x, y) 7→ (x+ 1, y).

Clearly there are 2n paths of length n. The following result is due to Simion and Schmidt [17],
but we give a proof that is different from theirs.

Proposition 19 (Simion and Schmidt [17]). There is a bijection between the length n − 1
lattice paths and the permutations in Avn(231, 132).
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Proof. For π ∈ Avn(231, 132) define the path w = xnxn−1 · · · x2 by

xk =

{

N if π−1(k) < π−1(1) i.e., k appears to the left of 1,

E otherwise.

To see that π 7→ w is invertible note that the points to the left of the minimum of π
form a decreasing sequence, and, similarly, the points to the right of the minimum form an
increasing sequence. Thus, any permutation π ∈ Avn(231, 132) is uniquely specified by the
set {i : π−1(i) < π−1(1)} which coincides with the set {i : xi = N}.

For example,

π = 975431268 = 7→ NENENNNE =

y

x

Every lattice path defines an area enclosed by the path and the x-axis. We use q-binomials
to record this, see e.g., Azose [2] for more details. In terms of q-binomial coefficients the
number of length n paths, with m E-steps, is given by

[

n

m

]

q
where the coefficient of qk is the

number of paths with area k. Let

Ln(q) =
n

∑

m=0

[

n

m

]

q

,

which is the distribution of area over all length n paths. We will now link this to pattern
avoidance.

Proposition 20. Let p = and r = . The ordinary generating function for

Avn(p, r) is 1 +
∑

n≥0

xn+1Ln(1 + x).

Proof. Taking the left-to-right minima and right-to-left minima boundary of any permutation
produces a permutation in the set Avn(231, 132). Consider a particular boundary of right-
to-left minima and left-to-right minima of a permutation avoiding p and r. To avoid p the
points to the left of the minimum form a decreasing sequence and hence there are no other
points in this region; also, the columns in between the right-to-left minima are forced to be
increasing. To avoid r, the rows in between the right-to-left minima must be decreasing,
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and the rows directly above a left-to-right minimum must be empty. As an example, for the
boundary given by π = 975431268 we get the following restrictions.

In each of the unshaded squares we can place either a single point or leave it empty, and
each such choice will create a unique permutation. The number of unshaded squares is given
by the area under the lattice path corresponding to the boundary as in Proposition 19. For
example, in π = 975431268 the three unshaded boxes in the top row correspond to the three
squares in the bottom row of the area under its corresponding lattice path. This is because
there are three left-to-right minima (excluding 1), which ensures three E steps in the lattice
path, and 9 appears at the beginning of π ensuring a N step at the start of the path.

Hence, to count permutations in Av(p, r) we first fix the size of boundary, say n + 1,
giving the factor xn+1. Then we substitute q = 1+ x into Ln(q), since this is the generating
function for all length n+1 boundaries with q marking the squares that we can place a point
in or leave empty.

9 Partitions into distinct parts (A249561)

Up to symmetries there is a single pair (p, r) in P × R with the enumeration given in
Proposition 25, namely

A = Av(p, r) = Av

(

,

)

.

To find the enumeration of this set we consider the boundary of a permutation π ∈ A given by
its right-to-left maxima and right-to-left minima. Taking this boundary of any permutation
will result in a permutation that avoids 231 and 213. Since avoiding 231 implies avoiding r
by Remark 2 it is clear that any such boundary for a permutation in A is in the set

A′ = Av

(

, ,

)

.

If we take π′ ∈ A′ and consider the restrictions implied by p and r, we see that the number
of right-to-left maxima between the two rightmost right-to-left minima does not change the
number of unshaded squares (see Figure 7).
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Figure 7: The boundaries given by 15423 and 1762543

We therefore start by considering π′ ∈ A′, where π′(n − 1) = π′(n) − 1, i.e. with a
single right-to-left maximum after the rightmost left-to-right minimum. In terms of pattern
avoidance these boundaries are given by the set

Bn = Avn

(

, , ,

)

⊆ A′
n.

Here the last pattern ensures that the condition π′(n− 1) = π′(n)− 1 is enforced.
We will now show that the permutations in Bn are in bijection with a subset of lattice

paths.

Definition 21. Let w = x1x2 · · · xn be a lattice path. We say w is a restricted lattice path if

(i) x1 = N ,

(ii) xn = E and

(iii) for all i ∈ {1, . . . , n− 1} we have xixi+1 6= EE.

We define Rn to be the set of all restricted lattice paths of length n.

Remark 22. A restricted lattice path, w, represents a unique integer partition since w starts
with an N step and ends with an E step. As there are no two consecutive E steps in w
we can never have two columns of the same height, so it corresponds to an integer partition
with distinct parts.

Proposition 23. There is a bijection between the restricted lattice paths in Rn and the
permutations in Bn.

Proof. Let π ∈ Bn. Define the path w = Nx1x2 · · · xn−1 by

xk =

{

N if π−1(k) > π−1(n),

E if π−1(k) < π−1(n).

By definition the path w starts with an N step. Also, π ends with an ascent, and so xn−1 = E.
That w does not contain EE can be seen by contraposition: Assume that xixi+1 = EE, then
π−1(i) < π−1(n) and π−1(i+1) < π−1(n) which means that π either contains the subsequence
(i, i+1, n) or it contains the subsequence (i+1, i, n). In the latter case we have an occurrence
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of 213 and we are done, so assume the former. If i and i+ 1 are adjacent in π then we have
an occurrence of p. If not, then there must be a point in one of the lower three squares of the
shading of p. But each of these three options leads to an occurrence of p or 213. This shows
that the range of the mapping π 7→ w is contained in Rn. To see that π 7→ w is invertible
we can reason in a way that is similar to the proof of Proposition 19.

Remark 24. Let λ be the integer partition obtained from applying the above bijection to the
permutation π. By Remark 22 it is clear that λ has distinct parts. The number of points
greater than π(n) is one less than the maximum part of λ and the number of points less than
π(n) is the number of parts of λ. See Figure 8 for an example.

↔

y

x

↔ 2 + 3 + 6

Figure 8: The boundary given by the permutation 918276534 with the corresponding lattice
path and integer partition with distinct parts

Partitions are well studied objects (see e.g., Andrews [1]) and it can be shown that if q
keeps track of the sum of the parts then the number of partitions with maximum part n into
k distinct parts is given by

Ln,k(q) = qn+(
k

2)
[

n− 1

k − 1

]

q

.

Proposition 25. Let p = and r = . The ordinary generating function for

A = Av(p, r) is 1 +
x

1− x

∑

n≥0

n+1
∑

k=0

xi+kLn+1,k

(

1

1− x

)

.

Proof. Let π ∈ A. Consider the boundary given by right-to-left maxima and right-to-left
minima. As before we assume that π(n − 1) = π(n) − 1 and thus the boundary is in
Bn. To avoid r the points above π(n) must form a decreasing sequence. There must also
be no points between a right-to-left minimum and right-to-left minimum in order to avoid
p. In the remaining unshaded regions, columns are decreasing (to avoid p) and rows are
decreasing (to avoid r). Thus, an unshaded square can contain a decreasing sequence of any
length. The bijection in Proposition 23 gives a bijection that defines the available squares,
and, considering Remark 24, it follows that the ordinary generating function for A is as
claimed.
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10 Recurrence relations (A249562 & A249563)

We enumerate the two remaining pairs (p, r) ∈ P ×R with recurrence relations.

10.1 A recurrence for A249563

The set we are enumerating is

Avn(p, r) = Avn

(

,

)

.

Let π ∈ Avn(p, r). Write π = m1T1m2T2 · · ·mkTk where m1, m2, . . . , mk are the left-to-right
minima of π, and T1, T2, . . . , Tk are the remaining points in between the minima. To avoid
p each Ti must be increasing. We call miTi the ith block of π.

Assume that π has an occurrence of the pattern . Because π avoids r there cannot be
any points above and to the right of this occurrence. This motivates the following definition.

Definition 26. For a permutation π ∈ Avn(r), if there exists i and j such that j > i and
π(i) = π(j)− 1 then we call π(j) a ceiling point.

Going back to analyzing the structure of π ∈ Avn(p, r), notice that if we remove the
maximum, n, from π then the resulting permutation will be in Avn−1(p, r). This gives us
ground for a recursion. Consider inserting n into a permutation in Avn−1(p, r). Where we
can place n depends on several factors. Let an,k,i,ℓ be the number of avoiders where n is the
length of the permutation; k is the number of blocks; i is the block that the maximum is in
and ℓ is the block containing the leftmost ceiling point; if there is no ceiling point then we
let ℓ = 0.

It is clear that we can have at most n blocks and that n cannot occur after the leftmost
ceiling point. Therefore if n < k or i > ℓ (while ℓ > 0) then an,k,i,ℓ = 0. There is a unique
length n permutation with n blocks, namely the decreasing one. The maximum is in the
first block (except when n = 0, in which case there is no maximum so we let i = 0), hence
we have

an,n,1,0 = 1 = a0,0,0,0.

We have three cases to consider. The new maximum, n, is inserted to become a ceiling point
(this is when i = ℓ); n is inserted to create a new block (when i = 1) or n is inserted into an
existing block but is not a ceiling point.

We first consider inserting n into a length n−1 permutation so as to ensure n is a ceiling
point. It must be placed after the current maximum but before the leftmost ceiling point.
If the smaller permutation has no ceiling point then we can freely insert n. Hence

an,k,ℓ,ℓ = an−1,k,1,0 +
i

∑

j=1

k
∑

m=i+1

an−1,k,j,m.
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Now we consider inserting n so it is not a ceiling point. We may either create a new block
(when i = 1) or place it into an already existing block. Consider inserting it into an existing
block, then it cannot be placed after the current maximum or else it will become a ceiling
point. The leftmost ceiling point will carry over to the larger permutation. Therefore, if
i < ℓ,

an,k,i,ℓ =
k

∑

j=i+1

an−1,k,i,ℓ.

To create a new block we can add n to any length n− 1 avoider but there will of course
be a shift of indices. If i = 1 we get

an,k,i,ℓ =
k

∑

j=i+1

an−1,k,j,ℓ +
k−1
∑

j=0

an−1,k−1,j,ℓ−1.

This, with the initial conditions, gives a recursion for an,k,i,ℓ.

Proposition 27. Let p = and r = . The number of permutations in Avn(p, r)

is given by
{

n
∑

k=0

k
∑

i=0

k
∑

ℓ=0

an,k,i,ℓ

}

n≥0

= {1, 1, 2, 4, 9, 22, 57, 156, 447, 1335, 4140, . . .}.

This sequence was added to the OEIS by the authors [18, A249563].

10.2 A recurrence for A249562

Here we enumerate the set

Avn(p, r) = Avn

(

,

)

.

Let π ∈ Avn(p, r). Write π = m1T1m2T2 · · ·mkTk where m1, m2, . . . , mk are the left-to-right
minima of π, and T1, T2, . . . , Tk are the remaining points in between the minima. To avoid
p each Ti must be decreasing. We call miTi the ith block of π. Notice that removing n from
π will result in a permutation in Avn−1(p, r). Therefore we will build these permutations
recursively by adding in a new maximum.

We set up as follows: let n be the length of the permutation; let k be the number of
blocks; let i be the position of the maximum; and let ℓ be the position of the leftmost ceiling
point (if there are no ceiling points we set ℓ = 0). Let ân,k,i,ℓ be the number of avoiders where
the maximum is a ceiling point; let ān,k,i,ℓ be the number of avoiders where the maximum
is a left-to-right minimum; and let ǎn,k,i,ℓ be the number of avoiders where the maximum is
neither a ceiling point nor a left-to-right minimum. Then we are interested in

an,k,i,ℓ = ân,k,i,ℓ + ān,k,i,ℓ + ǎn,k,i,ℓ.
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First consider adding the maximum as a ceiling point. If we want to add n to the
first block then we must have m1 = n − 1 and the leftmost ceiling point can be anywhere.
Therefore,

ân,k,1,ℓ =
k

∑

m=0

ān−1,k,1,m.

Otherwise we want to add n to any of the other blocks. We can do this to a permutation
starting with a maximum as long as it is before the leftmost ceiling point. If the previous
maximum is not a ceiling point then we must add it after the maximum but before the
leftmost ceiling point. We cannot create a new maximum ceiling point if the previous one is
already a ceiling point. Hence, if i > 1,

ân,k,i,ℓ =
k

∑

m=ℓ

ān−1,k,1,m +
i−1
∑

j=1

k
∑

m=i

ǎn−1,k,j,m.

We can add a maximum to the far left of any length n − 1 avoider to create a length n
avoider, so we get

ān,k,i,ℓ =
k−1
∑

j=1

an−1,k−1,j,ℓ−1.

We can add a new maximum to an existing block so that it is not a ceiling point as long as
it comes before the current maximum, so

ǎn,k,i,ℓ =
k

∑

j=i

ân−1,k,j,ℓ + ǎn−1,k,j,ℓ.

This together with ān,n,1,0 = 1, ân,n−1,i,ℓ = 1, and the conditions that n > k > i and i < ℓ is
enough to enumerate these permutations recursively.

Proposition 28. Let p = and r = The number of permutations in Avn(p, r)

is given by

{

n
∑

k=0

k
∑

j=0

k
∑

ℓ=0

an,k,i,ℓ

}

n≥0

= {1, 1, 2, 5, 14, 43, 143, 509, 1921, 7631, 31725, . . .}.

This sequence was added to the OEIS by the authors [18, A249562].

11 Avoiding 123

It is well known that |Avn(123)| = Cn =
(

2n

n

)

/(n+ 1), the nth Catalan number. Inspired by
Sections 6 and 7 we shall derive this fact in a alternative way.
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Proposition 29 (Hammersley [11], Rogers [16]). |Avn(123)| = Cn.

Proof. Given a permutation avoiding 123 we can use its left-to-right minima to partition
the remaining points into cells. Each cell must be decreasing and the same is true for each
row and each column, as noted by Claesson and Kitaev [6]. Therefore the permutation is
uniquely determined by the number of points in each cell. If a cell is non-empty then all
the cells strictly above and strictly to the right of it will be empty. See e.g., Figure 9 where
we have five left-to-right minima and are assuming that A 6= ǫ. This property allows us to

A

Figure 9: An avoider of 123 with five left-to-right minima where A 6= ǫ

construct a larger avoider from two smaller ones. See Figure 10 where F ′ has one more point

A B C

D E

F

+

G H I

J K

L

7→

A B C

D E

F ′ G H I

J K

L

Figure 10: The sum of two 123-avoiding permutations

than F . If we are adding the empty permutation, on the left, we instead add a left-to-right
minimum. See Figure 11. This construction is reversible. Therefore, if we let A be the
generating function then it is clear that it will satisfy A = 1 + x(A− 1)A + xA = 1 + xA2,
which is the defining functional equation for the ordinary generating function of the Catalan
numbers.

We would like to thank the referee for his detailed comments and suggestions.
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ǫ +

G H I

J K

L

7→

G H I

J K

L

Figure 11: The sum of the empty permutation and a 123-avoiding permutation

Appendix

In the tables below the column titled “Method” indicates the argument to confirm the enu-
meration. In some cases these links are to a proposition or lemma with the patterns, and in
others to a similar case where the same or a similar argument is used.

Method p r |Avn(p, r)|

Prop. 6 (123, ∅, ∅) (123, ∅, {1}) Cn

(132, ∅, ∅) (132, ∅, {1})

(132, ∅, ∅) (132, ∅, {2})

Prop. 7 (132, {1}, ∅) (132, ∅, {1}) Cn

(132, {1}, ∅) (132, ∅, {2})

Prop. 6 (123, ∅, ∅) (231, ∅, {1})
(

n

2

)

+ 1

Prop. 9 (132, ∅, ∅) (321, ∅, {1})
(

n

2

)

+ 1

Lemma 4 and Prop. 9 (123, {2}, ∅) (231, ∅, {1})
(

n

2

)

+ 1

Prop. 6 (123, ∅, ∅) (132, ∅, {1}) 2n−1

(132, ∅, ∅) (213, ∅, {2})

(132, ∅, ∅) (231, ∅, {1})

(132, ∅, ∅) (312, ∅, {2})

Prop. 7 (132, {1}, ∅) (213, ∅, {2}) 2n−1

(132, {1}, ∅) (231, ∅, {1})

Prop. 9 (132, ∅, ∅) (123, ∅, {1}) 2n−1

(132, ∅, ∅) (213, ∅, {1})

(132, ∅, ∅) (231, ∅, {2})
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(132, ∅, ∅) (312, ∅, {1})

Lemma 4 and Prop. 9 (123, {1}, ∅) (132, ∅, {1}) 2n−1

(132, {1}, ∅) (213, ∅, {1})

(132, {1}, ∅) (231, ∅, {2})

(132, {1}, ∅) (312, ∅, {1})

Prop. 11 (123, {2}, ∅) (312, ∅, {2}) 2n−1

(132, ∅, ∅) (321, ∅, {2})

(132, {2}, ∅) (213, ∅, {1})

Prop. 12 (123, ∅, ∅) (231, ∅, {2}) 2n−1

(123, {1}, ∅) (312, ∅, {1})

Prop. 13 (123, {2}, ∅) (132, ∅, {2}) A121690

§ 6 (123, {1}, ∅) (123, ∅, {1}) A098569

(132, {2}, ∅) (132, ∅, {2})

Prop. 17 (132, ∅, ∅) (123, ∅, {2}) Mn

Lemma 4 and Prop. 17 (123, {1}, ∅) (213, ∅, {2}) Mn

Prop. 18 (123, ∅, ∅) (132, ∅, {2}) Mn

Prop. 20 (132, {2}, ∅) (231, ∅, {2}) A249563

Prop. 25 (123, {1}, ∅) (231, ∅, {2}) A249561

§ 27 (123, {1}, ∅) (132, ∅, {2}) A249560

§ 28 (123, {1}, ∅) (123, ∅, {2}) A249562

(123, ∅, ∅) (321, ∅, {1}) finite

(123, {1}, ∅) (321, ∅, {1})

(123, {1}, ∅) (321, ∅, {2})

Table 2: Enumeration of Avn(p, r)
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