G\ Journal of Integer Sequences, Vol. 20 (2017),

OIS Article17.4.3
92 a0

Congruences Modulo Small Powers of 2 and 3 for
Partitions into Odd Designated Summands

B. Hemanthkumar
Department of Mathematics
M. S. Ramaiah University of Applied Sciences
Bengaluru-560 058
India

hemanthkumarb.30@gmail . com

H. S. Sumanth Bharadwaj and M. S. Mahadeva Naika'
Department of Mathematics
Central College Campus
Bangalore University
Bengaluru-560 001
India
sumanthbharadwaj@gmail.com
msmnaika@rediffmail.com

Abstract

Andrews, Lewis and Lovejoy introduced a new class of partitions, partitions with
designated summands. Let PD(n) denote the number of partitions of n with desig-
nated summands and PDO(n) denote the number of partitions of n with designated
summands in which all parts are odd. Andrews et al. established many congruences
modulo 3 for PDO(n) by using the theory of modular forms. Baruah and Ojah ob-
tained numerous congruences modulo 3, 4, 8 and 16 for PDO(n) by using theta function
identities. In this paper, we prove several infinite families of congruences modulo 9, 16
and 32 for PDO(n).
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1 Introduction

A partition of a positive integer n is a non increasing sequence of positive integers A1, Ao, ..., Ay
such that n = Ay + Ag + -+ + A\, where the \;’s (i = 1,2,...,m) are called parts of the
partition. For example, the partitions of 4 are

4, 3+1, 242, 241+1, 1+1+1+1.

Let p(n) denote the number of partitions of n. Thus p(4) = 5.

Andrews, Lewis and Lovejoy [1] studied partitions with designated summands, which are
constructed by taking ordinary partitions and tagging exactly one of each part size. Thus
the partitions of 4 with designated summands are given by

4 3F+1, 274+2, 242, 224+1+1, 2+1+71,
+1+1+1, 14+1+1+1, 1+14+1+1, 14+1+1+1"

Let PD(n) denote the number of partitions of n with designated summands and PDO(n)
denote the number of partitions of n with designated summands in which all parts are odd.
Thus PD(4) = 10 and PDO(4) = 5.

Recently, Chen et al. [5] obtained the generating functions for PD(3n), PD(3n + 1) and
PD(3n+ 2) and gave a combinatorial interpretation of the congruence PD(3n+2) = 0 (mod
3). Xia [11] proved infinite families of congruences modulo 9 and 27 for PD(n). For example,
foralln >0and k >1

PD(2"81(12n 4+ 1)) =0 (mod 27).

Throughout this paper, we use the notation

fe = (¢"¢" e (E=1,2,3,...), where (a;q)s := H(l —aq™).

m=0

The generating function for PDO(n) satisfies

- n Juf§
2_PPO(" = £

Using the theory of g-series and modular forms Andrews et al. [1] derived

o0 2 r4
3" PDO(3R)" = jff ©)
n=0

S n o f3fr

;PDO(SnJrl)q =i (3)



and

f3 fo frz
fifs

> PDO(3n +2)¢" =2
n=0

They also established, for all n > 0
PDO9n+6) =0 (mod 3)

and
PDO(12n +6) =0 (mod 3).

Baruah and Ojah [3] proved several congruences modulo 3, 4, 8 and 16 for PDO(n). For
instance,

PDO(8n+7) =0 (mod 8)

and
PDO(12n+9) =0 (mod 16).

The aim of this paper is to prove several new infinite families of congruences modulo 9,
16 and 32 for PDO(n). In particular, we prove the following

Theorem 1. For all nonnegative integers o, 3 and n, we have
PDO(2°"23%(72n + 66)) =0 (mod 144) (5)

and
PDO(2°723%(144n + 138)) =0 (mod 288). (6)

In Section 2, we list some preliminary results. We prove several infinite families of
congruences modulo 9 for PDO(n) in Section 3, and Theorem 1 and many infinite families
of congruences modulo 16 and 32 for PDO(n) in Section 4.

2 Definitions and preliminaries

We will make use of the following definitions, notation and results.
Let f(a,b) be Ramanujan’s general theta function [2, p. 34] given by

flab):= 37 ™5 0"

n=—oo

Jacobi’s triple product identity can be stated in Ramanujan’s notation as follows:

fla,b) = (—a;ab) oo (—b; ab) oo (ab; ab) .



In particular,

0(q) : k_zooq f1 o(—q) == f(—q,—q) = 7
2
_ (k+1)/2 _
U(q) = fla,¢*) Zq f1
and .
o) = flea—a) = 3 (~Dbgo02 = f,
k=—0c0

(9)

For any positive integer k, let k(k + 1)/2 be the k™ triangular number and k(3k & 1)/2 be

a generalized pentagonal number.

Lemma 2. The following 2-dissections hold:

=

1

7=
A=

and
1

7o

fofs f2f16
M
2R
(AT
g B
I
Wi
frigE A

(10)

(11)

(12)

(13)

Proof. Lemma 2 is an immediate consequence of dissection formulas of Ramanujan, collected

in Berndt’s book [2, Entry 25, p. 40].

Lemma 3. The following 2-dissections hold:

fi
fs

5

fi

fa

f
and

S
£3
3

_ f_j’_ f2f12
fi2 f4f
A
[ fie T f4
R fifofh
T T
_ BB B
Ie fie

]



Proof. Hirschhorn et al. [6] established (14) and (15). Replacing ¢ by —¢ in (14) and (15),
and using the relation
_ B

A
we obtain (16) and (17). O

(=4 =)o

Lemma 4. The following 2-dissections hold:

CRRES SR
hhs="p 2 ~ g

hfs ~ BRATR R R
" B fifefh |y Sif2hsh
BBk Fe 20
Proof. Baruah and Ojah [4] derived the above identities. O
Lemma 5. The following 3-dissections hold:
p(—a) = p(—d") — 2¢f(—¢°, —¢") (21)
and
¥(q) = f(¢*,¢°) + av(d”). (22)
Proof. See Berndt’s book [2, p. 49] for a proof of (21) and (22). O
Lemma 6. The following 3-dissection holds:
fifa = %—Qfgfls—QQQJ;z%- (23)
Proof. Hirschhorn and Sellers [8] have proved the above identity. ]

Let t be a positive integer. A partition of n is called a t-core partition of n if none of the
hook numbers of its associated Ferrers-Young diagram are multiples of ¢. Let a,(n) denote
the number of ¢-core partitions of n. Then the generating function of a,(n) satisfies

t

Zat(n)q" = % (24)

Many mathematicians have studied arithmetic properties of as(n). See for example, Keith
9], and Lin and Wang [10]. Hirschhorn and Sellers [7] obtained an explicit formula for az(n)
by using elementary methods and proved



k m
Lemma 7. Let 3n +1 = [[pi" ][] qu, where p; = 1 (mod 3) and ¢; = 2 (mod 3) with
=1  j=1

a;, Bj > 0 be the prime factorization of 3n + 1. Then

(a; + 1), if all B;are even;
1

, otherwise.

k

as (n) = i

e}

3 Congruences modulo 9

In this section, we prove the following infinite families of congruences modulo 9 for PDO(n).

Theorem 8. For all nonnegative integers a, 3 and n, we have

PDO(4%(24n + 16)) = PDO(24n + 16)  (mod 9), (25)
PDO(2°37(24n + 24)) = (—1)*PDO(24n + 24)  (mod 9), (26)
PDO(4%(48n +40)) =0 (mod 9) (27)
and
PDO(2*37(144n 4 120)) =0 (mod 9). (28)

k m

Theorem 9. For any nonnegative integer n, let 3n+1 = [ pi* [] qu, where p; =1 (mod 3)
=1 =1

and q; = 2 (mod 3) are primes with o, ; > 0. Then,

k

1 d9). ifall B; :
PDO(48n + 16) = 6};[1(04 +1) (mod9), ifallB; are even (29)

0 (mod 9), otherwise.

and

(mod 9), if all B; are even;

PDO(72n + 24) = e+ d) (30)
0

1
(mod 9), otherwise.
Corollary 10. Let p = 2 (mod 3) be a prime. Then for all nonnegative integers o and n

with p{n, we have
PDO(48p** 'n + 16p**™?) =0 (mod 9) (31)

and
PDO(72p** " 'n + 24p**™?) =0  (mod 9). (32)

Theorem 11. If n cannot be represented as the sum of a triangular number and three times
a triangular number, then

PDO(48n +24) =0 (mod 9).



Corollary 12. For any positive integer k, let p; > 5, 1 < j < k be primes. If (—3/p;) = —1
for every j, then for all nonnegative integers n with py { n we have

PDO(48p7p3 - - - i _ypan + 24pip3 -+ pi) =0 (mod 9). (33)

By the binomial theorem, it is easy to see that for any positive integer m,

3 = fan (mod 3) (34)
and
fn = fsm  (mod 9). (35)
Proof of Theorem 8. From (35), it follows that
55— it pod 9) (36)
5 =N :

In view of (36), we rewrite (3) as

S w_ fif3 e
> PDOBn+1)¢" = N

n=0

(mod 9). (37)

Substituting (12) in (37) and extracting the terms containing odd powers of ¢, we get

fr1ifs
1313

> PDO(6n +4)¢" = —4

n=0

(mod 9). (38)

Employing (14) in (38) and extracting the terms containing even powers of ¢, we derive

£ fs
F28

io: PDO(12n +4)¢" = —4 (mod 9). (39)

Substituting (16) in (39) and extracting the terms containing odd powers of ¢, we get

W

> PDO(24n + 16)¢" = — (mod 9).
n=0 f3
From (34),
RER _
=22 =22 (mod 3).
oo medd
In view of the above two identities,
S n_ oo
> PDO(24n + 16)q" = T (mod 9), (40)
2

n=0



which implies that
PDO(48n +40) =0 (mod 9) (41)

for all n > 0 and
7
1

Invoking (15) in (42) and extracting the terms containing odd powers of ¢,

i PDO(48n + 16)¢" = 622 (mod 9). (42)

n=0

i PDO(96n + 64)¢" = fc—g (mod 9). (43)
n=>0 2
By (40) and (43),
PDO(96n + 64) = PDO(24n + 16)  (mod 9). (44)

Congruence (25) follows from (44) and mathematical induction. Congruence (27) follows
from (41) and (25).
Employing (13) in (2),

0 14 r4 2 rd r4
5" PO = A+ g TR,
=0 2 Jg /12 2J12
which yields
o 14f4
PDO(6n)¢" = 22 (45)
2 TR
and - _—
PDO(6n + 3 q”:4f2f3f4. 46
8 2
— Ti 16
Applying (16) and (45),
N (R Rt
PDO(6n)q" = =2 ( =3+ 3¢ 12) :
2 FIANGT A
which implies that
o0 20 £10
> PDO(12n)q" = ;22;8 (mod 9).
n=0 176
From (35),
R _BE od)
26 A '
In view of the above two identities,
- f5 13
> PDO(12n)q" = fif?; (mod 9). (47)
n=0 176

0]



Substituting (15) and (16) in (47), and extracting the terms containing even powers of ¢, we

have

S W I3 foff
PDO(24 =
2 PRORAN" = s + 30

Using (34) and (35) in (48), we get

(mod 9).

> PDO(24n + 24)¢" = 3f1§§f65 (mod 9).
n=0

Substituting (17) in (49) and using (34), we have

ZPDO 24n + 24)¢" f2f4f12—3qf%flﬁj
n=0 fﬁ f4f6
f4f12 _ f2f4f12
Tk g et

which yields
Z PDO(48n + 24)¢™ = 31¥(q)v(¢*) (mod 9)
n=0

and

i PDO(48n + 48)¢" = 3t 1§zf S (mod 9).
n=0

By (49) and (51),
PDO(2(24n +24)) = — PDO(24n + 24) (mod 9).

Employing (23) in (49) and using (34),

iPDO(24n+Q4)q”53f§f§ —3q 16 fofis —6q 2 fofis

2 fir i 253
_ f_93 f18 2 fafofts
=, O T

which implies that

ZPDO (72n + 24)¢" = fj” (mod 9),
n=0 1

ZPDO (72n + 48)¢" = ff (mod 9)
n=0

(mod 9)

(48)

(49)

(50)

(51)

(53)

(54)



and

Z PDO(72n 4 72)¢" 57 1}‘2f S (mod 9). (55)
n=0 3
From (54),
PDO(144n +120) =0 (mod 9). (56)
By (49) and (55),
PDO(3(24n + 24)) = PDO(24n + 24)  (mod 9). (57)

Congruence (26) follows from (52), (57), and mathematical induction. Congruence (28)
follows from (56) and (26). O

Proof of Theorem 9. From (24), (42) and (53), it is clear that for all n > 0
PDO(48n + 16) = 6az(n) (mod 9), (58)

and
PDO(72n + 24) = 3az(n) (mod 9). (59)

Congruence (29) follows from Lemma 7 and (58). Congruence (30) follows from Lemma 7
and (59). O

For any prime p and any positive integer N, let v,(/N) denote the exponent of the highest
power of p dividing N.

Proof of Corollary 10. Suppose > 0, p =2 (mod 3) and p { n, then it is clear that

Pt _q
Up (3 (p2a+1n _|_ T) + 1) — Up (3p2a+1n +p2a+2) — 20{ + 1 (60)
Congruences (31) and (32) follow from (29), (30) and (60). O

Proof of Theorem 11. From (8) and (50), we have

Z PDO(48n + 24)¢" = 3 Z Z gPEED/243mmA /2 (16 9), (61)
n=0 k=0 m=0
Theorem 11 follows from (61). O

Proof of Corollary 12. By (61),

Z PDO(48TL 4 24)q48n+24 = 3 Z Z q6(2k+1)2+2(6m+3)2 (mOd 9)7

n=0 k=0 m=0

10



which implies that if 48n+24 is not of the form 6(2k+1)*42(6m+3)?, then PDO(48n+24) =
0 (mod 9). Let k£ > 1 be an integer and let p; > 5, 1 < i < k be primes with (;—3) =—1. If

N is of the form 2z? + 6y?, then v,,(N) is even since (5° 3) = —1. Let

2 2
pips - piopp — 1
N:48(pfp§-~p§1pkn+ 172 511@ )+24

= 48p1p2 pk 1PE1 24p1p2 'piflpi'

If py. ¥ n, then v, (N) is an odd number and hence N is not of the form 2% 4 6y*. Therefore
(33) holds. O

4 Congruences modulo 2* and 2°

In this section, we establish the following infinite families of congruences modulo 16 and 32
for PDO(n).

Theorem 13. For all nonnegative integers o and n, we have

PDO(4%(12n + 8)) = PDO(12n +8)  (mod 2%), (62)
PDO(4%(24n +23)) =0 (mod 2%), (63)
PDO(4*(48n + 14)) =0 (mod 2*) (64)
and
PDO(24n +17) =0 (mod 2%). (65)
Theorem 14. For all nonnegative integers o and n, we have
PDO(2%(12n)) = PDO(12n) (mod 2%), (66)
PDO(2*(72n +42)) =0 (mod 2*%) (67)
and
PDO(2%(72n +66)) =0 (mod 2%). (68)
Theorem 15. For all nonnegative integers o and n, we have
PDO(4%(24n) = PDO(24n) (mod 2°), (69)
PDO(9%(6n + 3)) = PDO(Gn +3)  (mod 2°), (70)
PDO(24n +9) =0 (mod 2°), (71)
PDO(9%(216n + 117)) =0 (mod 2°), (72)
PDO(2%(72n +69)) =0 (mod 2°), (73)
PDO(3%(72n +69)) =0 (mod 2°) (74)
and
PDO(2%(144n 4+ 42)) =0 (mod 2°). (75)

11



Theorem 16. If n cannot be represented as the sum of two triangular numbers, then for all
nonnegative integers o and r € {1,6} we have

PDO(2*r(12n+3)) =0 (mod 2%).

Corollary 17. If p is a prime, p =3 (mod 4)), 1 < j <p—1 andr € {1,6}, then for all
nonnegative integers o, B and n, we have

PDO(2°p*"1r(12pn + 125 +3p)) =0 (mod 2%). (76)

For example, taking p = 3, we deduce that for all o, 5,n > 0,
(

PDO(23°(216n 4 126)) =0 (mod 2%) (77)
and
PDO(2*3°(216n 4 198)) =0 (mod 2%). (78)
Combining (77) and (67),
PDO(23°(72n +42)) =0 (mod 2%). (79)
Combining (78) and (68),
PDO(2°3°(72n + 66)) =0 (mod 2%). (80)

Theorem 18. If n cannot be represented as the sum of a triangular number and four times
a triangular number, then for all nonnegative integers o and r € {1,3} we have

PDO(2%7(48n +30)) =0 (mod 2°).

Corollary 19. If p is any prime with p =3 (mod 4)), 1 < j <p—1 and r € {1,3}, then
for all nonnegative integers o, B and n, we have

PDO(2*p* 11 (48pn + 485 4+ 30p)) =0 (mod 2°). (81)
For example, taking p = 3 we find that for all ,n > 0 and § > 1,
PDO(2*3°(144n 4+ 42)) =0 (mod 2°) (82)

and
PDO(2°3%(144n 4 138)) =0 (mod 2°). (83)

Combining (82) and (75), for all o, 5,n > 0,

PDO(2°3%(144n 4+ 42)) =0 (mod 2°) (84)
and combining (83), (73) and (74), for all , 5,n > 0,

PDO(2°3°(72n + 69)) =0 (mod 2°). (85)

12



Theorem 20. If n cannot be represented as the sum of twice a pentagonal number and three
times a triangular number, then for any nonnegative integer o we have

PDO(4%(24n +11)) =0 (mod 2%).

Corollary 21. For any positive integer k, let p; > 5, 1 < j < k be primes. If (—2/p;) = —1
for every j, then for all nonnegative integers o and n with py t n we have

PDO(6 - 4*t pips - - pi_pen + 11-4%p3p5---p2) =0 (mod 2%).

Theorem 22. If n cannot be represented as the sum of a pentagonal number and sixz times
a triangular number, then for any nonnegative integer o we have

PDO(4%(48n +38)) =0 (mod 2%).

Corollary 23. For any positive integer k, let p; > 5, 1 < j <k be primes. If (=2/p;) = —1
for every j, then for all nonnegative integers n with py f n we have

PDO(3 - 4°"2pips - pi_yprn + 38 - 4%pips---pi) =0 (mod 2%).

Theorem 24. If n cannot be represented as the sum of a pentagonal number and four times
a pentagonal number, then we have

PDO(24n +5) =0 (mod 2°).

Corollary 25. For any positive integer k, let p; > 5, 1 < j < k be primes. If (—1/p;) = —1
for every j, then for all nonnegative integers n with py { n we have

PDO(24p3p2 - - - p2_pen + 5p2p2 - -p2) =0 (mod 2°).

Theorem 26. If n cannot be represented as the sum of a pentagonal number and sixteen
times a pentagonal number, then we have

PDO(24n +17) =0 (mod 2°).

Corollary 27. For any positive integer k, let p; > 5, 1 < j < k be primes. If (—1/p;) = —1
for every j, then for all nonnegative integers n with py { n we have

PDO(24pip; - - - pr_ypkn + 17pip5 -+ -pp) =0 (mod 2°).
By the binomial theorem, it is easy to see that for all positive integers k and m,

2k—1

fgf =f2"  (mod 2"). (86)

13



Proof of Theorem 13. Using (13), we can rewrite (4) as

13
S PDOGEN + 2)q" = 29 deiz | g JufoSih
n=0 fg f2
which yields
> 13
> PDO(6n +2)¢" = s Jole
= Ji T4

and

iPDO(6n+5) fo;f4f6.
- 1

From (86) with £ = 3 and k = 2, we have

e Bfsfifs _ Fafifs :
T R M)
Thus,
iPDO(6n+2) = fz;’:ffﬁ (mod 24)
and
i PDO(6n + 5)¢" g/ ;{ ‘}f S (mod 2°).

n=0
Substituting (16) in the above two congruences and extracting the terms containing even
and odd powers of ¢, we get

i PDO(12n + 2)q" ;j }CZ = 2%{3 (mod 2%), (87)
n=0
; PDO(12n + 8)¢" f2 :’;j s (mod 2%), (88)
Z PDO(12n +5)¢" = 8;?12;% = ;—jz (mod 2°) (89)
n=0
and
ZPDO (12n + 11)¢" = 24f2 §3f6 = 24f4f2 (mod 2%). (90)
n=0

14



It follows from (90) that

i PDO(24n + 11)¢" = 8fof; = 8f, ff (mod 2% (91)
and
PDO(24n +23) =0 (mod 2%). (92)

Employing (12) in (87) and extracting the terms containing odd powers of ¢,

> PDO(24n + 14)q" = fl fiz _
n=0 f6

which implies that

SQfofQ (mOd 24)a

i PDO(48n + 38)¢" = 8f1fo =8 flj;}Q (mod 2*) (93)
and
PDO(48n + 14) =0 (mod 2%). (94)

Substituting (13) and (20) in (88), and extracting the terms containing even and odd powers
of ¢, we have

LA _ J3f5 18 1
PDO(24n + 8 = mod 2 95
nzo = e = hnie 1Y) 55)
and
S B he o BER
PDO(24n + 20)q¢" = 12 + 24
2 PDO@An +20)q" = 1275 oo 4+ 27
7 33
= 12f2f63f12 PPYRL ) (mod 2%). (96)
fi fi
Substituting (15) in (95) and (96), and extracting even and odd powers of ¢, we have
S 15
> PDO(48n + 8)¢" = 6=25%  (mod 2*), (97)
n=0 f6
Z PDO(48n + 32)¢" 6/L151e (mod 2%) (98)
gt f3
and .
> PDO(48n + 44)q" = 8f; f3 = s f11o (mod 2%). (99)

n=0 f

15



Again employing (12) in (97) and extracting the terms containing odd powers of ¢,

Z PDO(96n + 56)¢" f lff 2 — 8qfaf?, (mod 2%). (100)
n=0 6
By (99) and (100),
PDO(96n +92) =0 (mod 2%) (101)
and
PDO(192n +56) =0 (mod 2%). (102)
From (86), (88) and (98),
PDO(48n + 32) = PDO(12n +8) (mod 2%). (103)

Congruence (62) follows from (103) and mathematical induction. Congruence (63) follows
from (92), (101), and (62). Similarly, congruence (64) follows from (94), (102), and (62).
By invoking (11) in (89) and extracting the terms containing even and odd powers of g,

f1f4

Z PDO(24n + 5)¢" =8f1fs (mod 2°) (104)
= fs
and
ZPDO (24n 4 17)¢" f”;?f8 =16f1f1 (mod 2°). (105)
n=0
Congruence (65) follows from (105). O
Proofs of Theorem 14 and Theorem 15. From (86),
fifsfi _ f5fi 3
= mod 27). 106
n Sar ) o)
Using (106), we rewrite (46) as
= f3 fi 5
> PDO(6n + 3)q" (mod 2°). (107)
2 T
In view of (7) and (8),
Y PDO(6n + 3)¢" = 4°(¢*)¢*(—¢*) (mod 2°). (108)
n=0
Substituting (22) in (108) and extracting the terms involving ¢*"*!, we get
> PDO(18n + 9)¢" = 4¢¢*(¢°)¢*(—q) (mod 2°). (109)

n=0

16



Using (21) in (109) and extracting the terms involving ¢*"*!,

Z PDO(54n + 27)¢" = 40*(¢*)$*(—¢®) (mod 2°). (110)

n=0
Congruence (70) follows from (108), (110), and mathematical induction.
Applying (12) in (107) and using (86),
fifi3 fifos
J3 16 F2 317

_ yfife | 60 FiTis 5
_4f22fé+16q TsJon (mod 2°)

> PDO(6n +3)¢" =4

n=0

— 16¢°

which implies that

o 4 42
Y PDO(12n + 3)¢" = 4f’;f§ (mod 2°) (111)
2 f2
and .
n _ flff224 5
> " PDO(12n +9)¢" = 16¢=-2  (mod 2°). (112)
— fafi2
Congruence (71) follows from (112).
From (112) and (8),
> " PDO(24n + 21)q" = 161)(q)¢(q°)  (mod 2°). (113)
n=0
Invoking (22) in (113) and extracting the terms containing ¢*"*2 and ¢*" !,
PDO(72n +69) =0 (mod 2°) (114)
for all n > 0 and
> PDO(72n + 45)" = 16¢:(¢°)1b(¢*)  (mod 2°). (115)
n=0
Using (22) in (115) and extracting the terms containing ¢+,
PDO(216n +117) =0 (mod 2°). (116)

Congruence (72) follows from (70) and (116).

17



Substituting (11) and (13) in (111), and extracting the terms containing odd powers of
q, we get

- 31518 f2 18 1
PDO(24n + 15)¢" = 8——-—1 + 16¢q
2 PO =S e T g
= 80(q)¥(q") + 16qv(q)v(¢™)  (mod 2°). (117)
Employing (22) in (117) and extracting the terms involving ¢*"2, we get
> PDO(72n +63)¢" = 16¢(¢°)1b(q") + 8q(¢*)¥(¢")  (mod 2°). (118)
n=0
Again, extracting the terms involving ¢***2 in (118), we get
PDO(216n +207) =0 (mod 2°). (119)

Congruence (74) follows from (114), (119), and (70).
Substituting (12) and (13) in (45), and extracting the terms containing even powers of
q, we find

38 £10 4 £6 4
2 J6 — Jifafi
PRI fE

Using (12) and (13) in (120), and extracting the terms containing even powers of ¢, we have

(mod 2%). (120)

Z PDO(12n)¢" =

> 4 r6 £18 4 16 r4
> PDO(24n)q" = J;;OJ;%J% = J;%J;%% (mod 2%). (121)
n=0

From (120) and (121),
PDO(2(12n)) = PDO(12n) (mod 2%). (122)

Congruence (66) follows from (122) and mathematical induction.
Substituting (20) and (13) in (45), and using (86), we get

2f12 2f4f8f12 6f6f24
PDO 6 16¢q 4
; 6m)a" = i g T100 7™ T e
FRfRf0 s it g, IS
64 4J4J6J8 24 32 2J4 8 4 12
oM T o T
o R 4qf39f6f12 + oag TS

57 TESS iz
f2 6f12 2 r2 r2 4 fofgfszfz%l

= Tpgg, TI0CK N AT g
+8qfif2 +4qfafafofrz  (mod 2°),
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which yields

Y PDO(12n)q" = flSifgleé +16qf7 f3 + 4q_f§f%f%f32 (mod 2°) (123)
et Ja i ' fs
and .
> PDO(12n + 6)¢" = 8f3 7 +4f1 fofsfs  (mod 2°). (124)
n=0

Substituting (18) in (124) and extracting the terms containing even and odd powers of ¢, we
get

= TS | qppe 5
> PDO(24n + 6)q" = 4=L256 4 8f7 £ (mod 2°) (125)
=0 f3 i
and .
w2 fifh 5
> PDO(24n + 18)¢" = —4=2212  (mod 2°). (126)
— filfs
By (86) and (8),
38 _ a0 s 2
= mod 2
2 v(q”) ( )
and Ty
A=5 st + 811 f = 4% (q)  (mod 2).
f2 f12
In view of above identities,
> PDO(24n + 6)¢" = —4¢*(g) (mod 2*) (127)
n=0
and .
> PDO(24n + 18)¢" = —4¢*(¢°) (mod 2°). (128)
n=0
It follows from (128) that
PDO(72n 4+ 42) =0 (mod 2%) (129)
and
PDO(72n 4+ 66) = 0 (mod 2%) (130)
for all n > 0 and
Y PDO(72n + 18)¢" = —4¥*(q) (mod 2*). (131)
n=0
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Employing (10) in (125) and (126) and extracting the terms containing odd powers of ¢, we
get

> “PDO(48n + 30)¢" = — ffils | \6lil _g,

— TR I, ()¢(q") (mod 2°) (132)

and

= 8q(¢°)(¢"*) (mod 2°). (133)

- L1 13
PDO(48n + 42)¢" = 8
2 PO =8

In view of (133), we have

PDO(144n 4+ 42) =0 (mod 2°) (134)
and
PDO(144n +138) =0 (mod 2°) (135)
for all n > 0 and
> PDO(144n + 90)¢" = 8¢(q)v(g*) (mod 2°). (136)

n=0
Substituting (12), (13), and (20) in (123), and extracting the terms containing even and odd
powers of ¢, we get

e 12 £10 £4 20 £4 £8 17
4 r8
EfQJ;SfJ;‘*F +16qf5 + 16 f”;;*f” +8qfofifofiz  (mod 2°) (137)
1 J2J6
and
iPDO(%n +12)¢" = - Ufi g S0l 165 [
o 218 T fsfife ?
= fjjj{iﬁfuwfgff (mod 2°). (138)

Employing (19) in (138) and extracting the terms involving even and odd powers of ¢, we
get

> PDO(48n + 12)¢" = fgﬁf +8f2f7 (mod 2°) (139)
n=0
and -
> PDO(48n + 36)q" 4t Z‘ff Sff 12 (mod 2°). (140)
n=>0
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In view of (125), (126), (139), and (140), we have
PDO(2(24n + 6)) = PDO(24n + 6)  (mod 2°) (141)
and
PDO(2(24n + 18)) = — PDO(24n + 18)  (mod 2°). (142)
Congruence (67) follows from (129), (142), and (66). Congruence (68) follows from (130),
(142), and (66).
Substituting (13), (14), and (20) in (137), and extracting even and odd powers of ¢, we
get

- w_ [ fs [0 f3 fy fifsfs
PDO(4 = 2296 4 ggi2 03712y
2_PROUS" = Firisy + 40 iy — 4807
8 r4 2 £2 £2 £2
- f%fjfg;%g+4qf2];?l6];%fm“6”2f4fﬁfu (mod 2°)  (143)
and
o0 69 60 r4
> PDO(48n + 24)¢" = J 271f 31";6 +16 6";2 1{6 5+ 8f1fafafs
0 T Ui
= 12f1fofsfs + 16f3f7 (mod 2°). (144)

Substituting (18) in (144) and extracting the terms containing even and odd powers of ¢, we
get
fL12fs

> PDO(%6n + 24)¢" = —4=3255 + 16/7 /3 (mod 2°) (145)
— f3 11
and .
n— oo fifh 5
> PDO(%6n + 72)q" = —122222  (mod 2°). (146)
=0 fils
From (126) and (146), we have
PDO(2%(24n + 18)) = 3PDO(24n + 18)  (mod 2°). (147)

Employing (10) in (145) and extracting the terms containing odd powers of ¢, we get

S n_ I3 ls 18
> PDO(192n + 120)¢" = 8 L

Substituting (13) and (20) in (143), and extracting the terms containing even and odd power
of ¢, we have

= 8¢(q)¥(¢") (mod 2°). (148)

n=0

= S35 BEE BRI s
PDO(96n)q¢" = + 16 + 16 + 8
HZ:O (96m)" = oo o 1607 g + 160735 g B0 e
fif fififio

+ 16qf) + 164 + 8¢ fofifefiz  (mod 2°) (149)

fP13 18 fs
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and

20
;PDO (96n + 48)¢" = ;316 2t fffﬁg J{:f T 16f1f2f3 6
=8fifi + 4f1;§£6f12 + 16f1fofsfs (mod 2°). (150)
By (149) and (137)
PDO(4(24n)) = PDO(24n) (mod 2°). (151)

Congruence (69) follows from (151) and mathematical induction.
By substituting (19) and (18) in (150), and extracting the terms containing even and
odd powers of g,

- R
> PDO(192n + 48)¢" = 87 f3 + 205255 (mod 2°) (152)
0 f3 i
and
f2 f3 f12 5
ZPDO (192n + 144)¢" (mod 2°). (153)
— fif5
From (125) and (152),
PDO(2%(24n + 6)) = —3PDO(24n + 6) (mod 2°). (154)
In view of (126) and (153),
PDO(2%(24n + 18)) = 3PDO(24n 4 18)  (mod 2°). (155)

Congruence (73) follows from (114), (135), (142), (147), (155), and (69). Congruence (75)
follows from (134), (142), (147), (155), and (69).

O
Proof of Theorem 16. Using (86) and (8) in (111),
i PDO(12n + 3)¢" = 4¢*(q) (mod 2*). (156)
From (156), (127), (141)7;;1 (66),
iPDO(2a(24n +6))¢" = —4¢*(q) (mod 2*) (157)
From (131), (141) andn(:(?6),
; PDO(2%(72n + 18))q" = {;ﬁ; Z()Q) (Ii:l;;??)’ i Z ; 8 (158)
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Combining (156), (157), and (158),

(_1)r+14 i qk(k+1)/2+m(m+l)/2 (mod 24)’ if @ = 0;

> PDO(2r(12n + 3))¢" = "0
=0 (_1)r4 Z qk(k+1)/2+m(m+l)/2 (mod 24)7
k,m=0

Theorem 16 follows from (159).
Proof of Theorem 18. From (132), (141), (148), (154) and (69), we have

> PDO(2"(48n + 30))¢" = 8¢ (q)¥(¢*) (mod 2°).

n=0

From (136), (142), (147), (155) and (69), we have

> PDO(2*(144n + 90))q" =

n=0

Theorem 18 follows from (160) and (161).
Proofs of Theorems 20, 22, 24 and 26. From (99),

fé

> “PDO(%6n + 44)q" = 8, i
3

n=0

(mod 2%).

Replacing n by 8n + 3 in (62), we see that for all a,n > 0,
PDO(4%(96n + 44)) = PDO(96n + 44)  (mod 2%).
In view of (8), (91), (162) and (163),

i PDO(4%(24n + 11)¢" = 8f2¢(¢*)  (mod 2%).

n=0

Theorem 20 follows from (164). From (100),

> 2
> PDO(192n + 152)¢" = 8f1% (mod 2%).
6

n=0

Replacing n by 16n 4 12 in (62), we see that for all a,n > 0,

PDO(4%(192n + 152)) = PDO(192n + 152)  (mod 2%).

23

8¢(q)¥(¢*) (mod 2°), ifa=0;
—8(q)(q") (mod 2°), if a # 0.

if a # 0.

(159)
O

(160)

(161)

(162)

(163)

(164)

(165)

(166)



In view of (8), (93), (165) and (166),

i PDO(4*(48n + 38)¢" = 8f1¢(¢°) (mod 2%). (167)

n=0

Theorem 22 follows from (167). Theorem 24 follows from (9) and (104). Theorem 26 follows
from (9) and (105). O

The proofs of Corollaries 17, 19, 21, 23, 25 and 27 are similar to the proof of Corollary
12; hence we omit the details.

Proof of Theorem 1. Replacing n by 2n + 1 in (28),
PDO(2°"23%(72n + 66)) =0 (mod 9). (168)
Congruence (5) follows readily from (80) and (168). Replacing n by 4n + 3 in (28),
PDO(2°%%37(144n + 138)) =0 (mod 9). (169)

Congruence (6) follows readily from (83) and (169). O
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