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Abstract

Involutions and pseudo-involutions in the Riordan group are interesting because of
their numerous applications. In this paper we study involutions using sequence charac-
terizations of the Riordan arrays. For a given B-sequence we find the unique function
f(z) such that the array (g(z), f(z)) is a pseudo-involution. As a combinatorial ap-
plication, we find the interpretation of each entry in the Bell array (g(z), f(z)) with a
given B-sequence.

1 Introduction

A Riordan array originally introduced by Shapiro et al. [13] is defined in terms of generating
functions of its columns. Let g(2) = go + g12 + g22% + -+, go # 0 and f(2) = fiz + foz? +
f3z3 + -+, fi # 0 be two formal power series. The Riordan array generated by g(z) and
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f(2) is an infinite lower triangular array D whose kth column has the generating function
g(z)(f(z))k for all £ > 0. We denote D by (g(z), f(z)). In other words D = (d,, )n k>0 is
Riordan if and only if there exist two generating functions g(z) and f(z) such that d, j is
the coefficient of 2™ in the expansion of g(z)(f(z))LC

The set R of all Riordan arrays forms a group under the matrix multiplication operation.
In terms of generating functions, the product of two arrays (g(z), f(z)) and (a(z), 3(z)) can

be written as
(9(2), f(2)) - (a(2), B(2)) = (9(2)a(f(2)), B(f(2))).

The usual identity matrix (1, z) serves as the group identity and for any (g(z), f (z)) €ER,
(g(?;(z)),f(z)) is its inverse, where f represents the compositional inverse of f.

Note that the original definitions of Riordan array are based on column construction.
Merlini et al. [11] and Sprugnoli [14] characterized Riordan arrays using two sequences called
the A-sequence and the Z-sequence which enables us to construct the Riordan array hori-
zontally. That is each entry in the Riordan array can be written as a linear combination of
entries in the previous row. More precisely we have

Theorem 1. An array D = (d,, x)n x>0 s Riordan if and only if there exist unique sequences
A= (ag,a1,as,...) and Z = (29, 21, 22, . . .) Such that

o
L. dn—&-l,k-&-l = Zi:() aidn,k;—i-z’ and

00
2. dn+1,0 = Zi:O zidn,i-

The sequences A and Z in this theorem are called the A-sequence and Z-sequence re-
spectively. See also [8]. See [6] for another characterization of Riordan arrays (in terms of
Stieltjes transform matrix). See also [7].

A nontrivial element D = (g(2), f(2)) € R is an involution if and only if D* = I. Let
M = (1,—z), that is M is a diagonal matrix with (1,—1,1,—1,...) along the diagonal.
An element D = (g(2), f(z)) is a pseudo-involution if and only if DM is an involution or
equivalently M D is an involution or D™ = M DM. See [1, 2, 3, 4, 5] for more information.
In this paper we study pseudo-involutions via B-sequences. It is an important fact that the
A-sequence uniquely determines the generating function f. One version is f(z) = zA(f(2))
or equivalently z = f(2)A(z). This could be called the second fundamental theorem of the
Riordan group. A “dot” diagram of this is

ap ay ag as Gy

)

However there are many situations where it is useful to expand to an A-matrix [11]



G20 | 2,1 | G22 | G233

1o | A1,1 | A1,2 | G1,3

X) | @02 | @03

A modest example is given by

&)

This produces the large Schroder numbers.

Recently Merlini and Sprugnoli [10] studied binary words avoiding certain patterns using
A-matrices such as

Here is a picture of the A-matrix that produces the B-sequence.
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See also [12] for several online software tools for exploring Riordan arrays.

This paper is organized as follows. In Section 2 we present some ways of constructing
pseudo-involutions. In Section 3 we discuss those pseudo-involutions via B-sequences, we
present a list of 24 examples, and we also present an explicit formula to compute the A-
sequence of a pseudo-involution with a given B-sequence. Finally in Section 4 we present
combinatorial interpretations for all involutions in the Bell subgroup.

2 (Pseudo)-involutions

Given a formal power series g(z) = 1+ -, g,2", we want to find a generating function f(2)

such that (g(z),f(z))2 =1 =(1,z). For such f(z), we must have g(z)g(f(z)) = 1. That is
9(f(2) = ﬁ. We first study a special case in which g(z) can be expressed as g = 1 + zg*,
for some k € N.

Theorem 2. Let g(z) = 1"‘2@1 gn2" be a power series where g = 1+ zg", for some k € N.
Then (g(z), —z(g(z))%_l)2 =1.

Proof. Since g(z) = 1+ zg*, we can write g as

1
9(2) = T
=(1- zgk_l)_l.
So zg" ' = 2(1 — zg* 1)~V Now set
F=F(z2)=zg"". (1)

Then F = z(1 — F)~*=1, Apply F to this equation to get

z=F(1—z)"*b,



Then

Starting with Eq. 1, we get

This implies

=g=1-

=f=¢""-¢
=f=¢""(1-g)

But 1 — g = —2¢"so f = ¢ }(—2g") = —z¢g* L. O

The following important examples which are some special cases of this theorem go back
at least to 1976 in a paper of Hoggatt and Bicknell in the Fibonacci Quarterly [9]. These
occur again in Section 3 as examples 1, 10, 18, and 20. Here the generating functions C, T

and @ refer to the Catalan, ternary, and quaternary numbers respectively while P = ﬁ
]k “g:1+zgk \f—— 2k71‘(g’_292k71)2:l‘
k=1|P=1+zP = (P,—zP)? =1
k=2|C=1+20%| f= —203 (C,—2C%)? =1
=3 | T=1+2T°| f=—-2T" (T, —2T°)? =1
k=4[Q=1+2Q"[f=—2Q" [(Q,—2Q")=1

Table 1: Some special cases of Theorem 2

Another interesting relationship among these examples will be presented in Section 3
after presenting the notion of B-sequences.

For g(z) = 14+ 3,5, 922" and f(2) = 2+ 3,5, fu2", we know that if (g(z), f(z)) is a
pseudo-involution then (g(z), —f(z)) is an involution so f(—f(—=z)) = z. Then we use [15,
Exercise 168, p. 134] to specify the even indexed coefficients ( fa, f4, .. .) arbitrarily which then
determine the odd indexed coefficients (fs, f5,...) uniquely. So there are many generating



functions f(z) which generate pseudo-involutions. It is easy to show that if f(—f(—z)) = z,
then (f(z)/z, f(2)) is a pseudo-involution. Moreover it has been established [2, Thm. 2.3]
that if (g(z), f(2)) is an involution, then g(z) = % exp(®(z, zf(2))) for some antisymmetric
function ®. However we do not know the answer of the following question.

Question 3. Given f(z) such that f(—f(—z)) = z or f(z) = — f(—=z), what are the possibil-

ities for g(z) so that (g(z), f(z)) is an involution, particularly in combinatorial situations?

Another way to find more involutions and thus pseudo-involutions comes from basic
group theory. If @ and § are two noncommuting involutions then («, ) is a dihedral group
and (af)"f is an involution for all integers n, where af plays the role of a rotation. In
the Riordan group if M; and M, are noncommuting involutions then (M;, M,) is a dihedral

group.
Proposition 4. Let D and Dy be two pseudo-involutions. Then both (D;D;")"Dy and
Dy (D Do)™ are pseudo-involutions for all integers n.

Proof. Let Hy = DM and Hy = DyM. Then H; and H, are involutions and so for all
integer n, (HyHy)"Hs is an involution and

(HyHs)"Hy = (D1 MDyM)" Dy M
= (D1 D3 1" Dy M.

Hence (D;D;")" D, is a pseudo-involution. On the other hand if we let J; = M D; and
Jo = M Ds, then

J1(J1Jo)" = M Dy (M Dy MD5y)"
= MD,(D;'Dy)".
Since J;(J1.Jo)™ is an involution, D;(D; ! Dy)" is also a pseudo-involution. O

The following result was first proved [4] using induction on n but it follows more quickly
from the proposition we just proved.

Corollary 5. Let D = (g(z), f(z)) be a pseudo involution. Then so is D™, for alln € Z.

Proof. Let Dy = D and Dy = (1,2). Then D; and D, are pseudo-involutions and thus
Proposition 4 applies. [l

3 Relationship with B-sequences

Let A(z) be the generating function of the A sequence of a Riordan array (g(z), f (z)) We
can write f(z) in terms of A as follows

) = 2A(1(2).
Replace z by f(z) to get z = f(2)A(z ) So A(z) =

o)
In case of pseudo-involutions, we have f(z) = —f ( z). Thus we also have
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Lemma 6. Let A(z) be the generating function of the A-sequence of the pseudo-involution
Riordan array (g(z), f(z)). Then

The following concept was discussed by Cheon et al. [4]. There the term “A-sequence”
was used instead of B-sequence.

Definition 7. For a Riordan array D = (d,, x)n k>0, & sequence (bg, by, bo, .. .) is said to be a
B-sequence if and only if

dny1k = dpj—1 + Z bj - dn—j ot -

>0

Note that d, ; = 0 for all n < k. So the sum on the right side is finite. In other words,
we must have n — 57 > k+ 7. That is 25 <n — k.

In the following theorem we link the A-sequence with the B-sequence. It also follows
from a notion of A-matrix [11].

Theorem 8. Let B(z) = by + bz + be2® + - =D k>0 biz* be the B-sequence of a pseudo
imvolution D = ( ), f(z ) Then the A-sequence of D 1is given by

A(z) =1+ 2B( = 2f(=2)) = 1+ZB(AZ(2Z)>.

Proof. Since A(z) = s = (ZZ), we have f(z) = —f(—z). We also have f(z) = z +
2f(2)B(2f(2)) = zA(f(2)). So A( z)) = 1+ f(2)B(2f(z)). Therefore A(f(z)) =1+
f(2)[bo + b1zf(2) + byz?(f(2))? +---]. Replace z by f(2). Then
A(z) =1+ szk(z?(z))k
=1+ szk( — zf(—z))'€

—1ee( ).

Corollary 9. If (g(z), f(2)) is in the Bell subgroup, then

2)=1+ Z bz (g(—2))".

k>0



Proof. We have f(z) = zg(z). So f(—z) = —zg(—=z). Therefore

Alz) =1+ ZZbk (229(—2))k =1+ Z by 22! (g(—z))k.

k>0 k>0
[l

In Corollary 5, we showed that any power of a pseudo-involution is a pseudo-involution.
But we do not know how to easily combine the various B-sequences. The question remains
open even in the case of the same pseudo-involution. More precisely,

Question 10. Let D = (g(z), f(z)) be a pseudo-involution with the B-sequence by, by, ba, . . ..
what is the B-sequence for D??

We present a list of some of the examples in the following tables. All these examples are
in the Bell subgroup where f(z) = zg(z). One can apply Theorem 11 to construct many
examples which are not in the Bell subgroup. Six out of these 24 examples can also be found
[4]. We cluster them in families of B-sequences. One can use Theorem 8 to compute the
A-sequence in each case. In these examples m, C, T, and r represent the Motzkin, Catalan,
ternary, and large Schroder generating functions respectively.

Geometric B-sequences: One can compute the unique f(z) such that (g(z), f(2)) is
a pseudo-involution with the B-sequence b, bk, bk?, ... as follows

i) T if k=0;
z) = - —bz+kz*)*—4kz
1—bztkz \/(;kzb +k22)2—4k 2’ it k£ 0.

We include some examples in the following table.

g B-sequence Comments
1)1,1,1,1,1,1,1,1, ... 1,0,0,... Pascal
211,1,1,2,4,8,17,37,82,185, ... 1,1,1,... RNA (A004148)
311,2,4,10,28, 82,248,770, . .. 2,2,2,... A187256
411,4,16,68,304,1412,6752, . .. 4,4.4, ... r?

Table 2: Examples with geometric B-sequences
Linear B-sequences: If the B-sequence is a,b,0,0,0,..., then the unique f(z) is
£2) 1 —az— /(1 —az)? —4b23
z) = .
2b22
Others:


http://oeis.org/A004148
http://oeis.org/A187256

g B-sequence Comments

5 [1,1,1,2,4,7,13,26,52, 104, 212, . .. 1,1,0,... A023431

6 |1,1,1,3,7,13,29,71,... 1,2,0,... A091565

7 | 1,1,1,4, 10,19, 49, 136, 334, 850, . . . 1,3,0,...

8 [1,2,4,9,22, 56, 146, 388, 1043, . .. 2,1,0,... A091561

9 [1,2,4,10,28,80,232, 638, 2080, . .. 2,2,0,...

10 | 1,3,9, 28,90, 297, 1001, 3432, . .. 3,1,0,... C% (A000245)
11| 1,1,1,5,13,25, 73,221, 565, 1553, . . . 1,4,0,...

12| 1,4, 16, 65,268, 1120,4738,20264, ... | 4,1,0,...

Table 3: Examples with linear B-sequences

g B-sequence Comments
13 1,1,1,2,4,9,21,50,122,... | 1,1,2,4,9,21,51,127, ...
14 [ 1,1,1,2,4,9,21,51,127, .. | 1,1,2,5,14,42.132.429. .. | 1+ 2m
15| 1,1,1,2,4,10, 28,85, ... 1,3,9,28,90,297, 1001, ..
16| 1,2,4,9,22,57, 154,429, .. | 2,1, 1,1, 1,1, ... A105633
17 | 1,4, 16,68, 304, 1409, ... 4.4,1,0,0,. ..
18 [ 1,5,25,130,700,3876, ... | 5.5,1,0,0, ... Ternary (A102393)
19 1,2,4,12,40,129,424, ... |2,4,1,0,0...
20 | 1,7,49,357,2695, ... 7,14,7,1,. .. Quaternary(A233658)
21| 1,4, 16,64, 256, 1024, ... 4,00, (B, 2B%)
22 11,0,0,2,0,0.5,0,0,14, ... 10,1,0,0,... (C(P), 200%)
2311,0,0,0,0,3,0,0,0,0,12.... | 0,0,1,0,0,... (T(=%), 2T ("))
24 11,1,1,2,4,9,21,50,122, ... | 1,1,2,4.8,...

Table 4: Examples with other B-sequences

For each generating function ¢(z) and for each B-sequence, there exists a generating
function f(z) such that the Riordan array (g(z), f(2)) is a pseudo-involution. In fact we see
from Eq. 8 that for every B-sequence there exists a unique function f(z) such that (g(2), f(z))
is a pseudo-involution. Furthermore in the Bell subgroup such an array is unique because
g(z) = @ But the function g(z) is far from being unique. The following result shows that
there are infinitely many functions g(z) for given f(z) such that the array (g(z), f(z)) is
pseudo-involution with same B-sequence.

Theorem 11. Let (g(z), f(2)) be a pseudo-involution Riordan array and let B (2) = bo +
biz + byz% + -+ be the generating function of its B-sequence. Then ( ) 15 also a
pseudo-involution with the same B-sequence, for all n € N.


http://oeis.org/A023431
http://oeis.org/A091565
http://oeis.org/A091561
http://oeis.org/A000245
http://oeis.org/A105633
http://oeis.org/A102893
http://oeis.org/A233658

Proof. Let (g(z), f(2)) be a pseudo-involution. Then

((g(2), F(N(, =2)) = (9(2), —f(2))* = (1, 2).
That is (9(2)g(— f(2)), —f(—f(2))) = (1,2), 50 g(z)g(— f(2)) = 1 and — f(—f(2)) = 2. Thus

for any n,

Also if By and B, are the B-sequences of (g(z), f(2)) and ((g(z))", f(2)) respectively, then
f(z) =24 2f(2)Bi(2f(2)) = 2 + 2f(2)B2(2f(2)). Hence By = Bs. O

Now we present a relationship among some of the pseudo-involutions presented in Sec-
tion 1. The matrices (P, zP), (C,zC), (T,2T), and (Q, 2Q) are linked with the g function
for one being the A-sequence for the next. For instance using the Catalan numbers as A-
sequence one can produce the ternary Bell matrix. See [3] for more detail.

If we look at the B-sequences of the pseudo-involutions (P, 2P), (C,zC?), (T, zT°) and
(Q, 2Q") (see Examples 1 in Table 2, 10 in Table 3, and 18 and 20 in Table 4) we obtain the
following matrix

1 0 00
31 00
5 5 10
7T 14 7 1
This is a Riordan array (ua;zég, ﬁ) Each row of this array is the B-sequence of a

pseudo-involution in this family.
We also have the following results of independent interest.

Lemma 12.

1
-3z 1 1+z 1+z
522 —bx 1 . (1+ x)3 = L+a?
723 1422 —Tx 1 (1 + x)5 L+a?
(1+2)7 1+ 2"

9zt —302® 2722 —9z 1
Proof. We apply the Fundamental Theorem of Riordan Arrays which states that if

&%) Bo

(o2.5) o] = |5
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then 5(2) = g(2)a(f(2)), where a(z) = > 2" and S(2) = > 5,2". We have

1—2z
9(2) = Axz2?
f(Z) = m, and
1+x
R T
Therefore
_ l-wz I+
9(z)a(f(2)) = 1+22)?2 1—(1+2)2f(2)
1—xzz I+

(1+z2)? 1— (14250
(1 —2z2)(1+2x)
(1 422)2 = (1+2)2%
1+ — 22 —2%2
1422z 4+ 2222 — 2 — 202 — 2%z
1—a2?z+a2— a2

1+ 2222 — 2z — 222
1—2%24+2—22
T (1—2)(1 —a222)
1 T

:1—z+1—x

2Z’

An analogous result for the even powers of 1 4 x is as follows.

Lemma 13.

1

—2x 1 L 9 L 9

o2 s ) _ (1+ x)4 _ 14+ x4

_92% 022 —6z 1 (L+) I+
(1+x)8 1+ 26

2¢*  —16x3 20x® —8x 1

: l1—zz z 1 _ 1 2z
That is (Hm, (lﬂz)z) 402 — 1-z T 1%

11



4 Applications

In this section we present an interpretation for each entry in the first column of the Bell array
(@, f(z)) with a given B-sequence by, by, bs, . ... For that we define a PI (pseudo-involution)
tree. A PI tree is built from subtrees which if nontrivial, consist of a root and 2n + 1 edges,
n + 1 of which are active and n of which are sterile with no descendants. The weight b; is
assigned to the building block subtree with 2i + 1 edges. We draw these where the sterile
edges are drawn as dotted lines and alternate with the active edges. Some examples are as

follows.
N
% I 1 U/ e
1, boZ, b1z3, b225,

For instance if by = 1, by = 2, and by = 0, k > 2, we have the building blocks in which
the term 222 could represent one red and one green block.

]-7 2, 225

This refers to Example 6 in Table 3. In this case we have the following PI trees with
edges n > 0.

J; ? ? ?
1 1 1
1 1 1
X

Trees
No. of trees 1 1 1 |1+2=3 1+2.-3=7
No. of edges | 0 1 2 3 4

Table 5: PI trees corresponding to the B-sequence 1,2,0,0, ...

For n = 5 edges we get 7 trees with root degree 1 and 6 trees with root degree 3. So the
total number of such trees with 5 edges is 13.

This sequence also counts Dyck paths where all maximal U and D runs are of length 1
or 3 and each U? run has weight 2. We illustrate this with the following table.

In the following theorem we present an interpretation for each entry in the first col-
umn of the pseudo-involution Bell array (@, f(z)) with B-sequence by, by, by, . ... Another

z
interpretation in terms Dyck paths can also be proved in the similar fashion.

12



P

A
AN

/\/\/\/\/V\

Dyck paths x
No. of Dyck paths | 1 1 1 14+42=3|142-3=7
No. of UD’s 0 1 2 3 4

Table 6: Dyck paths corresponding to the B-sequence 1,2,0,0, ...

Theorem 14. Let (@, f(2)) be a pseudo involution Bell array with B-sequence (bo, by, . ..),

where each b; is a nonnegative integer. Then the function @ counts the number of PI trees

with the following building blocks.

Proof. Since (f (2) f (z)) is a pseudo involution with B-sequence by, by, ba, . . ., we can write

f(2) = 2+ 2f(2)B(zf(2)).

That is
f(z)

z

=1+ f(2)B(zf(2)).

Let @ = g(z). Then g(z) = 1 + 2g(2)B(2?g(2)). In expanded form g(z) can be written as

9(2) = 14 2g(2)(bo + b12°g(2) + by2*(g(2))* + - -)
=1+ bozg(2) + b12°(g(2))? + ba2’(g(2))® + - --
If the tree is nontrivial the root degree is 2n 4+ 1 with n + 1 active nodes and the at-

tached weight is b,,. This gives the term b, 22" ! (g(z))n+1 and summing yields the generating
function g(z).



This shows that the generating function g(z) =

! S) counts the PI trees with the given

building blocks. O
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