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Abstract

Involutions and pseudo-involutions in the Riordan group are interesting because of
their numerous applications. In this paper we study involutions using sequence charac-
terizations of the Riordan arrays. For a given B-sequence we find the unique function
f(z) such that the array

(

g(z), f(z)
)

is a pseudo-involution. As a combinatorial ap-
plication, we find the interpretation of each entry in the Bell array

(

g(z), f(z)
)

with a
given B-sequence.

1 Introduction

A Riordan array originally introduced by Shapiro et al. [13] is defined in terms of generating
functions of its columns. Let g(z) = g0 + g1z + g2z

2 + · · · , g0 6= 0 and f(z) = f1z + f2z
2 +

f3z
3 + · · · , f1 6= 0 be two formal power series. The Riordan array generated by g(z) and
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f(z) is an infinite lower triangular array D whose kth column has the generating function

g(z)
(

f(z)
)k

for all k ≥ 0. We denote D by
(

g(z), f(z)
)

. In other words D = (dn,k)n,k≥0 is
Riordan if and only if there exist two generating functions g(z) and f(z) such that dn,k is

the coefficient of zn in the expansion of g(z)
(

f(z)
)k
.

The set R of all Riordan arrays forms a group under the matrix multiplication operation.
In terms of generating functions, the product of two arrays

(

g(z), f(z)
)

and
(

α(z), β(z)
)

can
be written as

(

g(z), f(z)
)

·
(

α(z), β(z)
)

=
(

g(z)α(f(z)), β(f(z))
)

.

The usual identity matrix (1, z) serves as the group identity and for any
(

g(z), f(z)
)

∈ R,
(

1
g(f(z))

, f(z)
)

is its inverse, where f represents the compositional inverse of f .

Note that the original definitions of Riordan array are based on column construction.
Merlini et al. [11] and Sprugnoli [14] characterized Riordan arrays using two sequences called
the A-sequence and the Z-sequence which enables us to construct the Riordan array hori-
zontally. That is each entry in the Riordan array can be written as a linear combination of
entries in the previous row. More precisely we have

Theorem 1. An array D = (dn,k)n,k≥0 is Riordan if and only if there exist unique sequences

A = (a0, a1, a2, . . .) and Z = (z0, z1, z2, . . .) such that

1. dn+1,k+1 =
∑∞

i=0 aidn,k+i and

2. dn+1,0 =
∑∞

i=0 zidn,i.

The sequences A and Z in this theorem are called the A-sequence and Z-sequence re-
spectively. See also [8]. See [6] for another characterization of Riordan arrays (in terms of
Stieltjes transform matrix). See also [7].

A nontrivial element D =
(

g(z), f(z)
)

∈ R is an involution if and only if D2 = I. Let
M = (1,−z), that is M is a diagonal matrix with (1,−1, 1,−1, . . .) along the diagonal.
An element D =

(

g(z), f(z)
)

is a pseudo-involution if and only if DM is an involution or
equivalently MD is an involution or D−1 = MDM . See [1, 2, 3, 4, 5] for more information.
In this paper we study pseudo-involutions via B-sequences. It is an important fact that the
A-sequence uniquely determines the generating function f . One version is f(z) = zA(f(z))
or equivalently z = f(z)A(z). This could be called the second fundamental theorem of the
Riordan group. A “dot” diagram of this is

a0 a1 a2 a3 a4 · · ·

×

However there are many situations where it is useful to expand to an A-matrix [11]
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· · · · · ·

· · ·

· · ·

· · ·× a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

A modest example is given by

×

1 1

1

This produces the large Schröder numbers.
Recently Merlini and Sprugnoli [10] studied binary words avoiding certain patterns using

A-matrices such as

1

c2

c4

cq

−c2

−c4

−c6

−cq−2

1

c2

c4

c6

cq−2

Here is a picture of the A-matrix that produces the B-sequence.
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···

×

b0

b1

1

b2

See also [12] for several online software tools for exploring Riordan arrays.
This paper is organized as follows. In Section 2 we present some ways of constructing

pseudo-involutions. In Section 3 we discuss those pseudo-involutions via B-sequences, we
present a list of 24 examples, and we also present an explicit formula to compute the A-
sequence of a pseudo-involution with a given B-sequence. Finally in Section 4 we present
combinatorial interpretations for all involutions in the Bell subgroup.

2 (Pseudo)-involutions

Given a formal power series g(z) = 1+
∑

n≥1 gnz
n, we want to find a generating function f(z)

such that
(

g(z), f(z)
)2

= I = (1, z). For such f(z), we must have g(z)g(f(z)) = 1. That is
g(f(z)) = 1

g(z)
. We first study a special case in which g(z) can be expressed as g = 1 + zgk,

for some k ∈ N.

Theorem 2. Let g(z) = 1+
∑

n≥1 gnz
n be a power series where g = 1+zgk, for some k ∈ N.

Then
(

g(z),−z(g(z))2k−1
)2

= I.

Proof. Since g(z) = 1 + zgk, we can write g as

g(z) =
1

1− zgk−1

=
(

1− zgk−1
)−1

.

So zgk−1 = z(1− zgk−1)−(k−1). Now set

F = F (z) = zgk−1. (1)

Then F = z(1− F )−(k−1). Apply F to this equation to get

z = F (1− z)−(k−1).
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Then
F = z(1− z)k−1. (2)

Starting with Eq. 1, we get

F
(

f(z)
)

= f(z)g
(

f(z)
)k−1

= f ·
(

g(f)
)k−1

= f
(1

g

)k−1
=

f

gk−1
.

Now apply F to get

f(z) = F
( f

gk−1

)

=
f

gk−1

(

1− f

gk−1

)k−1
.

This implies

gk−1 =
(

1− f

gk−1

)k−1

⇒g = 1− f

gk−1

⇒f = gk−1 − gk

⇒f = gk−1(1− g).

But 1− g = −zgk so f = gk−1(−zgk) = −zg2k−1.

The following important examples which are some special cases of this theorem go back
at least to 1976 in a paper of Hoggatt and Bicknell in the Fibonacci Quarterly [9]. These
occur again in Section 3 as examples 1, 10, 18, and 20. Here the generating functions C, T
and Q refer to the Catalan, ternary, and quaternary numbers respectively while P = 1

1−z
.

k g = 1 + zgk f = −zg2k−1 (g,−zg2k−1)2 = I

k = 1 P = 1 + zP f = −zP (P,−zP )2 = I
k = 2 C = 1 + zC2 f = −zC3 (C,−zC3)2 = I
k = 3 T = 1 + zT 3 f = −zT 5 (T,−zT 5)2 = I
k = 4 Q = 1 + zQ4 f = −zQ7 (Q,−zQ7)2 = I

Table 1: Some special cases of Theorem 2

Another interesting relationship among these examples will be presented in Section 3
after presenting the notion of B-sequences.

For g(z) = 1 +
∑

n≥1 gnz
n and f(z) = z +

∑

n≥2 fnz
n, we know that if

(

g(z), f(z)
)

is a

pseudo-involution then
(

g(z),−f(z)
)

is an involution so f(−f(−z)) = z. Then we use [15,
Exercise 168, p. 134] to specify the even indexed coefficients (f2, f4, . . .) arbitrarily which then
determine the odd indexed coefficients (f3, f5, . . .) uniquely. So there are many generating
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functions f(z) which generate pseudo-involutions. It is easy to show that if f(−f(−z)) = z,
then

(

f(z)/z, f(z)
)

is a pseudo-involution. Moreover it has been established [2, Thm. 2.3]
that if

(

g(z), f(z)
)

is an involution, then g(z) = ± exp(Φ(z, zf(z))) for some antisymmetric
function Φ. However we do not know the answer of the following question.

Question 3. Given f(z) such that f(−f(−z)) = z or f(z) = −f(−z), what are the possibil-

ities for g(z) so that
(

g(z), f(z)
)

is an involution, particularly in combinatorial situations?

Another way to find more involutions and thus pseudo-involutions comes from basic
group theory. If α and β are two noncommuting involutions then 〈α, β〉 is a dihedral group
and (αβ)nβ is an involution for all integers n, where αβ plays the role of a rotation. In
the Riordan group if M1 and M2 are noncommuting involutions then 〈M1,M2〉 is a dihedral
group.

Proposition 4. Let D1 and D2 be two pseudo-involutions. Then both (D1D
−1
2 )nD2 and

D1(D
−1
1 D2)

n are pseudo-involutions for all integers n.

Proof. Let H1 = D1M and H2 = D2M . Then H1 and H2 are involutions and so for all
integer n, (H1H2)

nH2 is an involution and

(H1H2)
nH2 = (D1MD2M)nD2M

= (D1D
−1
2 )nD2M.

Hence (D1D
−1
2 )nD2 is a pseudo-involution. On the other hand if we let J1 = MD1 and

J2 = MD2, then

J1(J1J2)
n = MD1(MD1MD2)

n

= MD1(D
−1
1 D2)

n.

Since J1(J1J2)
n is an involution, D1(D

−1
1 D2)

n is also a pseudo-involution.

The following result was first proved [4] using induction on n but it follows more quickly
from the proposition we just proved.

Corollary 5. Let D =
(

g(z), f(z)
)

be a pseudo involution. Then so is Dn, for all n ∈ Z.

Proof. Let D1 = D and D2 = (1, z). Then D1 and D2 are pseudo-involutions and thus
Proposition 4 applies.

3 Relationship with B-sequences

Let A(z) be the generating function of the A sequence of a Riordan array
(

g(z), f(z)
)

. We
can write f(z) in terms of A as follows

f(z) = zA
(

f(z)
)

.

Replace z by f(z) to get z = f(z)A(z). So A(z) = z

f(z)
.

In case of pseudo-involutions, we have f(z) = −f(−z). Thus we also have
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Lemma 6. Let A(z) be the generating function of the A-sequence of the pseudo-involution

Riordan array
(

g(z), f(z)
)

. Then

A(z) =
−z

f(−z) =
z

−f(−z) .

The following concept was discussed by Cheon et al. [4]. There the term “∆-sequence”
was used instead of B-sequence.

Definition 7. For a Riordan array D = (dn,k)n,k≥0, a sequence (b0, b1, b2, . . .) is said to be a
B-sequence if and only if

dn+1,k = dn,k−1 +
∑

j≥0

bj · dn−j,k+j.

Note that dn,k = 0 for all n < k. So the sum on the right side is finite. In other words,
we must have n− j ≥ k + j. That is 2j ≤ n− k.

In the following theorem we link the A-sequence with the B-sequence. It also follows
from a notion of A-matrix [11].

Theorem 8. Let B(z) = b0 + b1z + b2z
2 + · · · = ∑

k≥0 bkz
k be the B-sequence of a pseudo

involution D =
(

g(z), f(z)
)

. Then the A-sequence of D is given by

A(z) = 1 + zB
(

− zf(−z)
)

= 1 + zB

(

z2

A(z)

)

.

Proof. Since A(z) = −z
f(−z)

= z

f(z)
, we have f(z) = −f(−z). We also have f(z) = z +

zf(z)B
(

zf(z)
)

= zA
(

f(z)
)

. So A
(

f(z)
)

= 1 + f(z)B
(

zf(z)
)

. Therefore A
(

f(z)
)

= 1 +

f(z)[b0 + b1zf(z) + b2z
2(f(z))2 + · · · ]. Replace z by f(z). Then

A(z) = 1 + z
∑

k≥0

bk
(

zf(z)
)k

= 1 + z
∑

k≥0

bk
(

− zf(−z)
)k

= 1 + zB

(

z2

A(z)

)

.

Corollary 9. If
(

g(z), f(z)
)

is in the Bell subgroup, then

A(z) = 1 +
∑

k≥0

bkz
2k+1(g(−z))k.
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Proof. We have f(z) = zg(z). So f(−z) = −zg(−z). Therefore

A(z) = 1 + z
∑

k≥0

bk
(

z2g(−z)
)k

= 1 +
∑

k≥0

bkz
2k+1

(

g(−z)
)k
.

In Corollary 5, we showed that any power of a pseudo-involution is a pseudo-involution.
But we do not know how to easily combine the various B-sequences. The question remains
open even in the case of the same pseudo-involution. More precisely,

Question 10. Let D =
(

g(z), f(z)
)

be a pseudo-involution with the B-sequence b0, b1, b2, . . ..
what is the B-sequence for D2?

We present a list of some of the examples in the following tables. All these examples are
in the Bell subgroup where f(z) = zg(z). One can apply Theorem 11 to construct many
examples which are not in the Bell subgroup. Six out of these 24 examples can also be found
[4]. We cluster them in families of B-sequences. One can use Theorem 8 to compute the
A-sequence in each case. In these examples m, C, T , and r represent the Motzkin, Catalan,
ternary, and large Schröder generating functions respectively.

Geometric B-sequences: One can compute the unique f(z) such that
(

g(z), f(z)
)

is
a pseudo-involution with the B-sequence b, bk, bk2, . . . as follows

f(z) =

{

z
1−bz

, if k = 0;
1−bz+kz2−

√
(1−bz+kz2)2−4kz2

2kz
, if k 6= 0.

We include some examples in the following table.

g B-sequence Comments
1 1, 1, 1, 1, 1, 1, 1, 1, . . . 1, 0, 0, . . . Pascal
2 1, 1, 1, 2, 4, 8, 17, 37, 82, 185, . . . 1, 1, 1, . . . RNA (A004148)
3 1, 2, 4, 10, 28, 82, 248, 770, . . . 2, 2, 2, . . . A187256
4 1, 4, 16, 68, 304, 1412, 6752, . . . 4, 4, 4, . . . r2

Table 2: Examples with geometric B-sequences

Linear B-sequences: If the B-sequence is a, b, 0, 0, 0, . . ., then the unique f(z) is

f(z) =
1− az −

√

(1− az)2 − 4bz3

2bz2
.

Others:
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g B-sequence Comments
5 1, 1, 1, 2, 4, 7, 13, 26, 52, 104, 212, . . . 1, 1, 0, . . . A023431
6 1, 1, 1, 3, 7, 13, 29, 71, . . . 1, 2, 0, . . . A091565
7 1, 1, 1, 4, 10, 19, 49, 136, 334, 850, . . . 1, 3, 0, . . .
8 1, 2, 4, 9, 22, 56, 146, 388, 1048, . . . 2, 1, 0, . . . A091561
9 1, 2, 4, 10, 28, 80, 232, 688, 2080, . . . 2, 2, 0, . . .
10 1, 3, 9, 28, 90, 297, 1001, 3432, . . . 3, 1, 0, . . . C3 (A000245)
11 1, 1, 1, 5, 13, 25, 73, 221, 565, 1553, . . . 1, 4, 0, . . .
12 1, 4, 16, 65, 268, 1120, 4738, 20264, . . . 4, 1, 0, . . .

Table 3: Examples with linear B-sequences

g B-sequence Comments
13 1, 1, 1, 2, 4, 9, 21, 50, 122, . . . 1, 1, 2, 4, 9, 21, 51, 127, . . .
14 1, 1, 1, 2, 4, 9, 21, 51, 127, . . . 1, 1, 2, 5, 14, 42, 132, 429, . . . 1 + zm
15 1, 1, 1, 2, 4, 10, 28, 85, . . . 1, 3, 9, 28, 90, 297, 1001, . . .
16 1, 2, 4, 9, 22, 57, 154, 429, . . . 2, 1, 1, 1, 1, 1, . . . A105633
17 1, 4, 16, 68, 304, 1409, . . . 4, 4, 1, 0, 0, . . .
18 1, 5, 25, 130, 700, 3876, . . . 5, 5, 1, 0, 0, . . . Ternary(A102893)
19 1, 2, 4, 12, 40, 129, 424, . . . 2, 4, 1, 0, 0 . . .
20 1, 7, 49, 357, 2695, . . . 7, 14, 7, 1, . . . Quaternary(A233658)
21 1, 4, 16, 64, 256, 1024, . . . 4, 0, 0, . . . (B, zB2)
22 1, 0, 0, 2, 0, 0, 5, 0, 0, 14, . . . 0, 1, 0, 0, . . . (C(z3), zC(z3))
23 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 12, . . . 0, 0, 1, 0, 0, . . . (T (z5), zT (z5))
24 1, 1, 1, 2, 4, 9, 21, 50, 122, . . . 1, 1, 2, 4, 8, . . .

Table 4: Examples with other B-sequences

For each generating function g(z) and for each B-sequence, there exists a generating
function f(z) such that the Riordan array

(

g(z), f(z)
)

is a pseudo-involution. In fact we see
from Eq. 8 that for every B-sequence there exists a unique function f(z) such that (g(z), f(z))
is a pseudo-involution. Furthermore in the Bell subgroup such an array is unique because
g(z) = f(z)

z
. But the function g(z) is far from being unique. The following result shows that

there are infinitely many functions g(z) for given f(z) such that the array
(

g(z), f(z)
)

is
pseudo-involution with same B-sequence.

Theorem 11. Let (g(z), f(z)) be a pseudo-involution Riordan array and let B(z) = b0 +
b1z + b2z

2 + · · · be the generating function of its B-sequence. Then
(

(g(z))n, f(z)
)

is also a

pseudo-involution with the same B-sequence, for all n ∈ N.
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Proof. Let
(

g(z), f(z)
)

be a pseudo-involution. Then

(

(g(z), f(z))(1,−z)
)2

= (g(z),−f(z))2 = (1, z).

That is
(

g(z)g(−f(z)),−f(−f(z))
)

= (1, z), so g(z)g(−f(z)) = 1 and −f(−f(z)) = z. Thus
for any n,

(

((g(z))n, f(z))(1,−z)
)2

=
(

(g(z))n,−f(z)
)2

=
(

g(z)g(−f(z))n,−f(−f(z))
)

= (1, z).

Also if B1 and B2 are the B-sequences of (g(z), f(z)) and ((g(z))n, f(z)) respectively, then
f(z) = z + zf(z)B1(zf(z)) = z + zf(z)B2(zf(z)). Hence B1 = B2.

Now we present a relationship among some of the pseudo-involutions presented in Sec-
tion 1. The matrices (P, zP ), (C, zC), (T, zT ), and (Q, zQ) are linked with the g function
for one being the A-sequence for the next. For instance using the Catalan numbers as A-
sequence one can produce the ternary Bell matrix. See [3] for more detail.

If we look at the B-sequences of the pseudo-involutions (P, zP ), (C, zC3), (T, zT 5) and
(Q, zQ7) (see Examples 1 in Table 2, 10 in Table 3, and 18 and 20 in Table 4) we obtain the
following matrix















1 0 0 0 · · ·
3 1 0 0 · · ·
5 5 1 0 · · ·
7 14 7 1 · · ·
...

...
...

...
. . .















.

This is a Riordan array
(

1+z
(1−z)2

, z
(1−z)2

)

. Each row of this array is the B-sequence of a

pseudo-involution in this family.
We also have the following results of independent interest.

Lemma 12.












1
−3x 1
5x2 −5x 1
−7x3 14x2 −7x 1
9x4 −30x3 27x2 −9x 1













·









1 + x
(1 + x)3

(1 + x)5

(1 + x)7









=









1 + x
1 + x3

1 + x5

1 + x7









Proof. We apply the Fundamental Theorem of Riordan Arrays which states that if

(

g(z), f(z)
)











α0

α1

α2
...











=











β0

β1

β2
...











10



then β(z) = g(z)α(f(z)), where α(z) =
∑

αnz
n and β(z) =

∑

βnz
n. We have

g(z) =
1− xz

(1 + xz)2
,

f(z) =
z

(1 + xz)2
, and

α(z) =
1 + x

1− (1 + x)2z
.

Therefore

g(z)α(f(z)) =
1− xz

(1 + xz)2
· 1 + x

1− (1 + x)2f(z)

=
1− xz

(1 + xz)2
· 1 + x

1− (1 + x)2 z
(1+xz)2

=
(1− xz)(1 + x)

(1 + xz)2 − (1 + x)2z

=
1 + x− xz − x2z

1 + 2xz + x2z2 − z − 2xz − x2z

=
1− x2z + x− xz

1 + x2z2 − z − x2z

=
1− x2z + x− xz

(1− z)(1− x2z)

=
1

1− z
+

x

1− x2z
.

An analogous result for the even powers of 1 + x is as follows.

Lemma 13.












1
−2x 1
2x2 −4x 1
−2x3 9x2 −6x 1
2x4 −16x3 20x2 −8x 1













·









1
(1 + x)2

(1 + x)4

(1 + x)6









=









1
1 + x2

1 + x4

1 + x6









That is
(

1−xz
1+xz

, z
(1+xz)2

)

· 1
1−(1+x)2z

= 1
1−z

+ x2z
1−x2z

.
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4 Applications

In this section we present an interpretation for each entry in the first column of the Bell array
(

f(z)
z
, f(z)

)

with a given B-sequence b0, b1, b2, . . .. For that we define a PI (pseudo-involution)
tree. A PI tree is built from subtrees which if nontrivial, consist of a root and 2n+ 1 edges,
n + 1 of which are active and n of which are sterile with no descendants. The weight bi is
assigned to the building block subtree with 2i + 1 edges. We draw these where the sterile
edges are drawn as dotted lines and alternate with the active edges. Some examples are as
follows.











×
1,
·
◦

b0z,
·

◦◦ •

b1z
3,

·
b2z

5,

◦ • ◦ • ◦

· · ·










For instance if b0 = 1, b1 = 2, and bk = 0, k ≥ 2, we have the building blocks in which
the term 2z3 could represent one red and one green block.











×
1, ·

◦

z,
·

◦◦ •

2z3











This refers to Example 6 in Table 3. In this case we have the following PI trees with
edges n ≥ 0.

Trees × ×

◦

×

·
◦

×

·
·
◦

×

•◦ ◦

×

·
·
·
◦

×

•· ◦

◦

×

• ·◦

◦

×

·
◦◦ •

No. of trees 1 1 1 1 + 2 = 3 1 + 2 · 3 = 7
No. of edges 0 1 2 3 4

Table 5: PI trees corresponding to the B-sequence 1, 2, 0, 0, . . .

For n = 5 edges we get 7 trees with root degree 1 and 6 trees with root degree 3. So the
total number of such trees with 5 edges is 13.

This sequence also counts Dyck paths where all maximal U and D runs are of length 1
or 3 and each U3 run has weight 2. We illustrate this with the following table.

In the following theorem we present an interpretation for each entry in the first col-
umn of the pseudo-involution Bell array

(

f(z)
z
, f(z)

)

with B-sequence b0, b1, b2, . . .. Another
interpretation in terms Dyck paths can also be proved in the similar fashion.
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Dyck paths × · · · · · · · ·

· · · · · · ·

··
·····

· · · · · · · · ·
···
···· ··
···
······
···
······

No. of Dyck paths 1 1 1 1 + 2 = 3 1 + 2 · 3 = 7
No. of UD’s 0 1 2 3 4

Table 6: Dyck paths corresponding to the B-sequence 1, 2, 0, 0, . . .

Theorem 14. Let
(

f(z)
z
, f(z)

)

be a pseudo involution Bell array with B-sequence (b0, b1, . . .),

where each bi is a nonnegative integer. Then the function
f(z)
z

counts the number of PI trees

with the following building blocks.















×
1,
·
◦

b0z,
·

◦◦ •

b1z
3, b2z

5,

◦

·
• ◦ • ◦

· · ·















Proof. Since
(

f(z)
z
, f(z)

)

is a pseudo involution with B-sequence b0, b1, b2, . . ., we can write

f(z) = z + zf(z)B(zf(z)).

That is
f(z)

z
= 1 + f(z)B(zf(z)).

Let f(z)
z

= g(z). Then g(z) = 1 + zg(z)B(z2g(z)). In expanded form g(z) can be written as

g(z) = 1 + zg(z)(b0 + b1z
2g(z) + b2z

4(g(z))2 + · · · )
= 1 + b0zg(z) + b1z

3(g(z))2 + b2z
5(g(z))3 + · · ·

If the tree is nontrivial the root degree is 2n + 1 with n + 1 active nodes and the at-

tached weight is bn. This gives the term bnz
2n+1

(

g(z)
)n+1

and summing yields the generating
function g(z).

×g

←→
×
1,

·
·g

b0zg(z),
·

g··g

b1z
3(g(z))2, b2z

5(g(z))3,

g·
·

g· g·
· · ·

13



This shows that the generating function g(z) = f(z)
z

counts the PI trees with the given
building blocks.
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