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Abstract

Let a1, . . . , am be such real numbers that can be expressed as a finite product of
prime powers with rational exponents. Using arithmetic partial derivatives, we define
the arithmetic Jacobian matrix Ja of the vector a = (a1, . . . , am) analogously to the
Jacobian matrix Jf of a vector function f . We introduce the concept of multiplicative
independence of {a1, . . . , am} and show that Ja plays in it a similar role as Jf does
in functional independence. We also present a kind of arithmetic implicit function
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theorem and show that Ja applies to it somewhat analogously as Jf applies to the
ordinary implicit function theorem.

1 Introduction

Let R, Q, Z, N, and P stand for the set of real numbers, rational numbers, integers, nonneg-
ative integers, and primes, respectively.

If a ∈ R, there may be a sequence of rational numbers (νp(a))p∈P with only finitely many
nonzero terms satisfying

a = (sgn a)
∏

p∈P

pνp(a), (1)

where sgn is the sign function. We let R′ and R′

+ denote the set of all such real numbers and
the subset consisting of its positive elements, respectively. Formula (1) is also valid for a = 0,
as we define νp(0) = 0 for all p ∈ P. If νp(a) 6= 0, we say that p divides a and denote p | a.
Otherwise, we denote p ∤ a.

Proposition 1. Let a ∈ R′ and Va = {νp(a) | p ∈ P}. Then

(a) a ∈ Z if and only if Va ⊂ N;

(b) a ∈ Q if and only if Va ⊂ Z.

Proof. Simple and omitted.

Proposition 2. If a ∈ R′, then the sequence (νp(a))p∈P is unique.

Proof. This is well known if a ∈ Q. Otherwise, see [8, Lemma 1].

We define the arithmetic derivative of a ∈ R′ by

a′ = a
∑

p∈P

νp(a)

p
=

∑

p∈P

a′p,

where

a′p =
νp(a)

p
a (2)

is the arithmetic partial derivative of a with respect to p. For the background and history
of these concepts, see, e.g., [1, 8, 4, 3]. These references mainly concern the arithmetic
derivative in N, Z, or Q, but most of the results can be extended to R′ in an obvious way,
see [8, Section 9].

Let f = (f1, . . . , fm) : E → Rm be a continuously differentiable function, where E ⊆ Rn

is a connected open set. Its Jacobian matrix at t = (t1, . . . , tn) ∈ E is defined by

Jf (t) =











(f1)
′

t1
(t) (f1)

′

t2
(t) . . . (f1)

′

tn
(t)

(f2)
′

t1
(t) (f2)

′

t2
(t) . . . (f2)

′

tn
(t)

...
(fm)

′

t1
(t) (fm)

′

t2
(t) . . . (fm)

′

tn
(t)











,

2



where (fi)
′

tj
= ∂fi/∂tj. If m = n, then detJf (x) is the Jacobian determinant (or, more

briefly, the Jacobian) of f .
Let a1, . . . , am ∈ R′

+ (actually, we could study R′ instead of R′

+, which, however, would
not benefit us in any significant way), and denote

P = {p1, . . . , pn} = {p ∈ P | ∃ai : p | ai} (3)

and

αij = νpj(ai), i = 1, . . . ,m, j = 1, . . . , n. (4)

Then

ai =
∏

p∈P

pνp(ai) = pαi1

1 pαi2

2 · · · pαin

n , i = 1, . . . ,m. (5)

Further, let

a =











a1
a2
...
am











, αi =











αi1

αi2
...

αin











, i = 1, . . . ,m, (6)

and

Aa =











α11 α12 . . . α1n

α21 α22 . . . α2n
...

αm1 αm2 . . . αmn











=











αT
1

αT
2
...

αT
m











. (7)

We define the arithmetic Jacobian matrix of a by

Ja =











(a1)
′

p1
(a1)

′

p2
. . . (a1)

′

pn

(a2)
′

p1
(a2)

′

p2
. . . (a2)

′

pn
...

(am)
′

p1
(am)

′

p2
. . . (am)

′

pn











and, if m = n, the arithmetic Jacobian determinant (or, more briefly, the arithmetic Jaco-

bian) of a by

detJa =

∣

∣

∣

∣

∣

∣

∣

∣

∣

(a1)
′

p1
(a1)

′

p2
. . . (a1)

′

pm

(a2)
′

p1
(a2)

′

p2
. . . (a2)

′

pm
...

(am)
′

p1
(am)

′

p2
. . . (am)

′

pm

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Let f be as above. The functions f1, . . . , fm are functionally independent (i.e., there is
no function φ : Rm → R such that ∇φ(f(t)) 6= 0 and φ(f1(t), . . . , fm(t)) = 0 for all t ∈ E)
if and only if m ≤ n and rankJf (t) = m for all t ∈ E. (See, e.g., [5].) In Section 2, we will
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define the concept of multiplicative independence of the numbers a1, . . . , am and study the
role of Ja there.

We outline the implicit function theorem [7, Theorem 9.28]. Assuming m < n, write
t = (x,y), where x ∈ Rm and y ∈ Rn−m. Let a ∈ Rm and b ∈ Rn−m satisfy (a,b) ∈ E.
Define the function φ(x) = f(x,b), where x is “close to” a. If it satisfies detJφ(a,b) 6= 0
and if y is “close to” b, then the equation f(x,y) = 0 is uniquely “solvable” with respect
to x. We will in Section 3 present a theorem where the arithmetic Jacobian matrix and
determinant play a somewhat similar role. Section 4 is devoted to some concluding remarks.

2 Multiplicative independence

Let seqQ be the set of infinite sequences of rational numbers with finitely many nonzero
terms. Consider the mapping

ν : R′

+ → seqQ : ν(a) = (νp(a))p∈P.

Defining in seqQ addition and scalar multiplication in the ordinary way, this set becomes
a vector space over Q. On the other hand, defining in R′

+ addition as the ordinary multi-
plication and scalar multiplication as the ordinary exponentation, also R′

+ becomes a vector
space over Q. Then ν is an isomorphism, and we can identify R′

+ with seqQ. Because linear
independence is a well-defined concept in seqQ, we may so define linear independence in R′

+.
However, we find the term “multiplicative independence” more appropriate. (We quote this
term from Pong [6], who studied this concept in an Abelian group.) So we say that a set

S = {a1, . . . , am} ⊂ R′

+ (8)

is (and the numbers a1, . . . , am are) multiplicatively independent if the set {ν(a1), . . . ,ν(am)}
is linearly independent. Otherwise, S is (and a1, . . . , am are) multiplicatively dependent.

Proposition 3. Let S be as in (8) and α1, . . . ,αm as in (6). The following conditions are

equivalent:

(a) The set S is multiplicatively independent.

(b) The only rational numbers λ1, . . . , λm satisfying aλ1

1 · · · aλm
m = 1 are λ1 = · · · = λm = 0.

(c) The set {α1, . . . ,αm} is linearly independent in the vector space Qn, where n is as

in (3).

Proof. Simple and omitted.

We now present such properties of the arithmetic Jacobian determinant that have rele-
vance to multiplicative independence.

Proposition 4. Let a be as in (6). If n = m in (3), then

detJa =
a1a2 · · · am
p1p2 · · · pm

detAa.
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Proof. By (2),

detJa =

∣

∣

∣

∣

∣

∣

∣

∣

∣

α11

p1
a1

α12

p2
a1 . . . α1m

pm
a1

α21

p1
a2

α22

p2
a2 . . . α2m

pm
a2

...
αm1

p1
am

αm2

p2
am . . . αmm

pm
am

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Take the factor a1 from the first row, a2 from the second one, etc. Further, take the factor
1/p1 from the remaining first column, 1/p2 from the second one, etc. We obtain

detJa = a1a2 · · · am

∣

∣

∣

∣

∣

∣

∣

∣

∣

α11

p1

α12

p2
. . . α1m

pm
α21

p1

α22

p2
. . . α2m

pm
...

αm1

p1

αm2

p2
. . . αmm

pm

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
a1a2 · · · am
p1p2 · · · pm

∣

∣

∣

∣

∣

∣

∣

∣

∣

α11 α12 . . . α1m

α21 α22 . . . α2m
...

αm1 αm2 . . . αmm

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Corollary 5. If a is as in (6), then rankJa = rankAa.

Proof. Given I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n} with equal number of elements, let Ja(I, J)
and Aa(I, J) denote the submatrix of Ja and respectively Aa with row indices in I and
column indices in J . By Proposition 4, these matrices are either both nonsingular or both
singular. Since rank is the largest dimension of a nonsingular square submatrix, the claim
therefore follows.

Theorem 6. Let S, a, and P be as in (8), (6), and (3), respectively. The set S is multi-

plicatively independent if and only if rankJa = m.

Proof. Apply Proposition 3 and Corollary 5. (Note that rankJa = m implies m ≤ n.)

Proposition 7. Let a and P be as in (6) and (3), respectively, let 0 6= x1, . . . , xm ∈ Q, and

denote ax = (ax1

1 , . . . , axm
m ). Then

rankJax = rankJa.

Proof. In general, we have

(ax)′p =
νp(a

x)

p
ax =

xνp(a)

p
ax = xax−1νp(a)

p
a = xax−1a′p

for all a ∈ R′

+, x ∈ Q, p ∈ P. Consequently,

Jax =











(ax1

1 )′p1 (ax1

1 )′p2 . . . (ax1

1 )′pn
(ax2

2 )′p1 (ax2

2 )′p2 . . . (ax2

2 )′pn
...

(axm
m )′p1 (axm

m )′p2 . . . (axm
m )′pn











=











x1a
x1−1
1 (a1)

′

p1
x1a

x1−1
1 (a1)

′

p2
. . . x1a

x1−1
1 (a1)

′

pn

x2a
x2−1
2 (a2)

′

p1
x2a

x2−1
2 (a2)

′

p2
. . . x2a

x2−1
2 (a2)

′

pn
...

xma
xm−1
m (am)

′

p1
xma

xm−1
m (am)

′

p2
. . . xma

xm−1
m (am)

′

pn











= DJa,
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where
D = diag (x1a

x1−1
1 , . . . , xma

xm−1
m ).

Since D is invertible, the claim follows.

3 An arithmetic implicit function theorem

In this section, we establish a kind of arithmetic implicit function theorem where the arith-
metic Jacobian matrix and determinant apply. The problem is that arithmetic differentiation
operates on numbers, not on functions; so, we must include variables in this attempt.

Let a1, . . . , am, b1, . . . , br ∈ R′

+. We consider the equation

ax1

1 · · · axm

m = by11 · · · byrr , (9)

where x1, . . . , xm ∈ Q are variables and y1, . . . , yr ∈ Q \ {0} are constants. Factorizing
b1, . . . , br as in (1), we can reduce (9) to

ax1

1 · · · axm

m = qz11 · · · qzss , (10)

where q1, . . . , qs ∈ P are distinct and z1, . . . , zs ∈ Q \ {0} are constants. We define P and αij

by (3) and (4), respectively; then (5) holds. We also denote

Q = {q1, . . . , qs}.

Theorem 8. If (10) has a solution, then

Q ⊆ P. (11)

If (11) holds and

rankJa = n, (12)

where a is as in (6), then (10) has a solution.

Proof. First, assume that (10) has a solution. Let qi ∈ Q. Since zi 6= 0, qi divides the
left-hand side of (10); so, qi = pj for some j, and (11) follows.

Second, assume that (11) and (12) hold. By reordering the indices of p1, . . . , pn, we can
write Q = {p1, . . . , ps}. Let a and Aa be as in (6) and (7). Then

axi

i =
n
∏

j=1

p
αijxi

j , i = 1, . . . ,m,

and (10) reads
m
∏

i=1

n
∏

j=1

p
αijxi

j =
s
∏

j=1

p
zj
j ,
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i.e.,

n
∏

j=1

p
∑m

i=1
αijxi

j =
s
∏

j=1

p
zj
j . (13)

By Proposition 2, this is equivalent to

m
∑

i=1

αijxi = zj, j = 1, . . . , s,

m
∑

i=1

αijxi = 0, j = s+ 1, . . . , n.

In matrix form, this reads

AT
a
x = z, (14)

where zs+1 = · · · = zn = 0 and

x =











x1

x2
...
xm











, z =











z1
z2
...
zn











.

By Corollary 5 and (12),

rankAT
a
= rankAa = rankJa = n. (15)

Therefore, AT
a
Qm = Qn, which implies that (14) has a solution. (Note that m ≥ n by (15).)

Corollary 9. Assume that m = n in (4). Then (10) has a unique solution if and only if

(11) holds and detJa 6= 0.

Proof. The claim follows from (15).

4 Concluding remarks

We defined the arithmetic Jacobian matrix and multiplicative independence. We saw that
the arithmetic Jacobian matrix relates to multiplicative independence in the same way as
the ordinary Jacobian matrix relates to functional independence. We also noticed that the
arithmetic Jacobian matrix and determinant play a role in establishing a certain kind of
implicit function theorem somewhat similarly as the ordinary Jacobian matrix and determi-
nant do in the ordinary implicit function theorem. For this purpose, we needed to introduce
extra variables.
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Another functional interpretation of arithmetic differentiation may be obtained as follows:
If a ∈ R′

+ and p ∈ P, then there are unique α ∈ Q and ã ∈ R′

+ such that a = ãpα and p ∤ ã;
in fact, α = νp(a). Further, a′p = αãpα−1. So, in studying arithmetic partial derivatives of
first order, the primes behave, in a certain sense, like variables, and the rational numbers
like functions.

Since the isomorphism ν brings the vector space structure to R′

+, we can define all
linear algebra concepts there. In particular, we have already studied the “arithmetic inner
product”, see [2]. (In that paper, we considered only Q+ but every argument applies also
for R′

+.)
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[8] V. Ufnarovski and B. Åhlander, How to differentiate a number, J. Integer Sequences 6

(2003), Article 03.3.4.

2010 Mathematics Subject Classification: Primary 11C20; Secondary 11A25, 15B36.
Keywords: arithmetic derivative, arithmetic partial derivative, Jacobian matrix, Jacobian
determinant, implicit function theorem, multiplicative independence.

(Concerned with sequences A000040 and A003415.)

8

https://cs.uwaterloo.ca/journals/JIS/VOL19/Tossavainen/tossa6.html
https://cs.uwaterloo.ca/journals/JIS/VOL15/Kovic/kovic4.html
http://www.cs.uwaterloo.ca/journals/JIS/VOL6/Ufnarovski/ufnarovski.html
http://oeis.org/A000040
http://oeis.org/A003415


Received January 27 2017; revised versions received July 11 2017; August 1 2017. Published
in Journal of Integer Sequences, September 8 2017.

Return to Journal of Integer Sequences home page.

9

http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	Multiplicative independence
	An arithmetic implicit function theorem
	Concluding remarks
	Acknowledgment

