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Abstract

We deduce asymptotic formulas for the alternating sums
∑

n≤x(−1)n−1f(n) and∑
n≤x(−1)n−1 1

f(n) , where f is one of the following classical multiplicative arithmetic
functions: Euler’s totient function, the Dedekind function, the sum-of-divisors function,
the divisor function, the gcd-sum function. We also consider analogs of these functions,
which are associated to unitary and exponential divisors, and other special functions.
Some of our results improve the error terms obtained by Bordellès and Cloitre. We
formulate certain open problems.

1 Introduction

Alternating sums and series appear in various topics of mathematics and number theory, in
particular. For example, it is well-known that for s ∈ C with ℜs > 1,

η(s) :=
∞∑

n=1

(−1)n−1 1

ns
=

(
1− 1

2s−1

)
ζ(s), (1)

1The present scientific contribution is dedicated to the 650th anniversary of the foundation of the Uni-
versity of Pécs, Hungary.
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representing the alternating zeta function or Dirichlet’s eta function. Here the left-hand side
is convergent for ℜs > 0, and this can be used for analytic continuation of the Riemann zeta
function for ℜs > 0. See, e.g., Tenenbaum [35, Sect. II.3.2].

Bordellès and Cloitre [4] established asymptotic formulas with error terms for alternating
sums ∑

n≤x

(−1)n−1f(n), (2)

where f(n) = 1/g(n) and g belongs to a class of multiplicative arithmetic functions, including
Euler’s totient function ϕ, the sum-of-divisors function σ and the Dedekind function ψ. It
seems that there are no other results in the literature for alternating sums of type (2).

Using a different approach, also based on the convolution method, we show that for
many classical multiplicative arithmetic functions f , estimates with sharp error terms for
the alternating sum (2) can easily be deduced by using known results for

∑

n≤x

f(n). (3)

For other given multiplicative functions f , a difficulty arises, namely to estimate the
coefficients of the reciprocal of a formal power series, more exactly the reciprocal of the
Bell series of f for p = 2. If the coefficients of the original power series are positive and
log-convex, then a result of Kaluza [16] can be used. The obtained error terms for (2) are
usually the same, or slightly larger than for (3).

In this way we improve some of the error terms obtained in [4]. We also deduce estimates
for other classical multiplicative functions f . As a tool, we use formulas for alternating
Dirichlet series

Daltern(f, s) :=
∞∑

n=1

(−1)n−1f(n)

ns
, (4)

generalizing (1).
In the case of some other functions f , a version of Kendall’s renewal theorem (from

probability theory) can be applied. Berenhaut, Allen, and Fraser obtained [3] an explicit
form of Kendall’s theorem (also see [2]), but this cannot be used for the functions we deal
with. We prove a new explicit Kendall-type inequality, which can be applied in some cases.
As far as we know, there are no other similar applicable results to obtain better error terms
in the literature. We formulate several open problems concerning the error terms of the
presented asymptotic formulas.

Finally, a generalization of the alternating Dirichlet series (4) and the alternating sum
(2) is discussed.
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2 General results

2.1 Alternating Dirichlet series

Let

D(f, s) :=
∞∑

n=1

f(n)

ns
(5)

denote the Dirichlet series of the function f . If f is multiplicative, then it can be expanded
into the Euler product

D(f, s) =
∏

p∈P

∞∑

ν=0

f(pν)

pνs
. (6)

If f is completely multiplicative, then

∞∑

ν=0

f(pν)

pνs
=

(
1− f(p)

ps

)−1

(7)

and

D(f, s) =
∏

p∈P

(
1− f(p)

ps

)−1

. (8)

Proposition 1. If f is a multiplicative function, then

∞∑

n=1

(−1)n−1f(n)

ns
= D(f, s)


2

(
∞∑

ν=0

f(2ν)

2νs

)−1

− 1


 , (9)

and if f is completely multiplicative, then

∞∑

n=1

(−1)n−1f(n)

ns
=

(
1− f(2)

2s−1

)∏

p∈P

(
1− f(p)

ps

)−1

,

formally or in case of convergence.

Proof. We have by using (6),

∞∑

n=1

(−1)n−1f(n)

ns
= −

∞∑

n=1

f(n)

ns
+ 2

∞∑

n=1
n odd

f(n)

ns
= −D(f, s) + 2

∏

p∈P
p>2

∞∑

ν=0

f(pν)

pνs

= −D(f, s) + 2D(f, s)

(
∞∑

ν=0

f(2ν)

2νs

)−1

= D(f, s)


2

(
∞∑

ν=0

f(2ν)

2νs

)−1

− 1


 .

If f is completely multiplicative, then use identities (7) and (8).
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For special choices of f we obtain formulas for the alternating Dirichlet series (4). For
example, let f = ϕ be Euler’s totient function. For every prime p,

∞∑

ν=0

ϕ(pν)

pνs
=

(
1− 1

ps

)(
1− 1

ps−1

)−1

. (10)

Here the left-hand side of (10) can be computed directly. However, it is more convenient
to use the well-known representation of the Dirichlet series of ϕ (similar considerations are
valid for other classical multiplicative function, as well). Namely,

∞∑

n=1

ϕ(n)

ns
=
ζ(s− 1)

ζ(s)
=
∏

p∈P

(
1− 1

ps

)(
1− 1

ps−1

)−1

, (11)

and using the Euler product,

∞∑

n=1

ϕ(n)

ns
=
∏

p∈P

∞∑

ν=0

ϕ(pν)

pνs
. (12)

Now a quick look at (11) and (12) gives (10). We deduce from Proposition 1 that

Daltern(ϕ, s) =
ζ(s− 1)

ζ(s)

(
2

(
1− 1

2s

)−1(
1− 1

2s−1

)
− 1

)
, (13)

which can be written as (31).
Note that the function n 7→ (−1)n−1 is multiplicative. Therefore, it is possible to give a

direct proof of (13) (and of similar formulas, where ϕ is replaced by another multiplicative
function) using Euler products:

∞∑

n=1

(−1)n−1ϕ(n)

ns
=

(
1−

∞∑

ν=1

ϕ(2ν)

2νs

)
∏

p∈P
p>2

(
1 +

∞∑

ν=1

ϕ(pν)

pνs

)
,

but computations are simpler by the previous approach.

2.2 Mean values and alternating sums

Let f be a complex-valued arithmetic function. The (asymptotic) mean value of f is

M(f) := lim
x→∞

1

x

∑

n≤x

f(n),

provided that this limit exists. Let

Maltern(f) := lim
x→∞

1

x

∑

n≤x

(−1)n−1f(n)

denote the mean value of the function n 7→ (−1)n−1f(n) (if it exists).
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Proposition 2. Assume that f is a multiplicative function and

∑

p∈P

|f(p)− 1|
p

<∞,
∑

p∈P

∞∑

ν=2

|f(pν)|
pν

<∞. (14)

Then there exists

M(f) =
∏

p∈P

(
1− 1

p

) ∞∑

ν=0

f(pν)

pν
.

Furthermore, if
∑∞

ν=0
f(2ν)
2ν

6= 0, then there exists

Maltern(f) =M(f)


2

(
∞∑

ν=0

f(2ν)

2ν

)−1

− 1


 , (15)

and if
∑∞

ν=0
f(2ν)
2ν

= 0, then M(f) = 0 and there exists

Maltern(f) =
∏

p∈P
p>2

(
1− 1

p

) ∞∑

ν=0

f(pν)

pν
. (16)

Proof. The result for M(f) is a version of Wintner’s theorem for multiplicative functions.
See Schwarz and Spilker [24, Cor. 2.3]. It easy to check that assuming (14) for f , the same
conditions hold for the multiplicative function n 7→ (−1)n−1f(n). We deduce that Maltern(f)
exists and it is

Maltern(f) =

(
1− 1

2

)(
1−

∞∑

ν=1

f(2ν)

2ν

)
∏

p∈P
p>2

(
1− 1

p

) ∞∑

ν=0

f(pν)

pν
. (17)

Now if t :=
∑∞

ν=1
f(2ν)
2ν

6= −1, then

Maltern(f) =
1− t

1 + t

∏

p∈P

(
1− 1

p

) ∞∑

ν=0

f(pν)

pν
,

which is (15). If t = −1, then (17) gives (16).

Application 3. Let f be multiplicative such that f(p) = 1, f(p2) = −6, f(pν) = 0 for every

p ∈ P and every ν ≥ 3. Here
∑∞

ν=0
f(2ν)
2ν

= 1 + 1
2
− 6

4
= 0. Using Proposition 2 we deduce

that M(f) = 0 and there exists

lim
x→∞

1

x

∑

n≤x

(−1)n−1f(n) =
∏

p∈P
p>2

(
1− 1

p

)(
1 +

1

p
− 6

p2

)
=
∏

p∈P
p>2

(
1− 7

p2
+

6

p3

)
6= 0.
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The following result is similar. Let

L(f) := lim
x→∞

1

log x

∑

n≤x

f(n)

n

denote the logarithmic mean value of f and, assuming that f is non-vanishing, let

L(f) := lim
x→∞

1

log x

∑

n≤x

1

f(n)
,

Laltern(f) := lim
x→∞

1

log x

∑

n≤x

(−1)n−1 1

f(n)
,

provided that the limits exist.

Proposition 4. Assume that f is a non-vanishing multiplicative function and

∑

p∈P

∣∣∣∣
1

f(p)
− 1

p

∣∣∣∣ <∞,
∑

p∈P

∞∑

ν=2

1

|f(pν)| <∞. (18)

Then there exists

L(f) =
∏

p∈P

(
1− 1

p

) ∞∑

ν=0

1

f(pν)
.

Furthermore, if
∑∞

ν=0
1

f(2ν)
6= 0, then there exists

Laltern(f) = L(f)


2

(
∞∑

ν=0

1

f(2ν)

)−1

− 1


 ,

and if
∑∞

ν=0
1

f(2ν)
= 0, then L(f) = 0 and there exists

Laltern(f) =
∏

p∈P
p>2

(
1− 1

p

) ∞∑

ν=0

1

f(pν)
.

Proof. Apply Proposition 2 for f(n) := n
f(n)

and use the following property: If the mean

value M(f) exists, then the logarithmic mean value L(f) exists as well, and is equal to
M(f). See Hildebrand [14, Thm. 2.13].

Application 5. It follows from Proposition 4 that

L(ϕ) = lim
x→∞

1

log x

∑

n≤x

1

ϕ(n)
=
∏

p∈P

(
1− 1

p

) ∞∑

ν=0

1

ϕ(pν)
=
ζ(2)ζ(3)

ζ(6)
,
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which is well-known, and

lim
x→∞

1

log x

∑

n≤x

(−1)n−1 1

ϕ(n)
= L(ϕ)


2

(
∞∑

ν=0

1

ϕ(2ν)

)−1

− 1


 = −ζ(2)ζ(3)

3ζ(6)
,

obtained by Bordellès and Cloitre [4]. Conditions (18) were refined in [4] to deduce asymp-
totic formulas with error terms for alternating sums of reciprocals of a class of multiplicative
arithmetic functions, including Euler’s totient function.

2.3 Method to obtain asymptotic formulas

Assume that f is a nonzero complex-valued multiplicative function. Consider the formal
power series

Sf (x) :=
∞∑

ν=0

aνx
ν ,

where aν = f(2ν) (ν ≥ 0), a0 = f(1) = 1. Note that Sf (x) is the Bell series of the function
f for the prime p = 2. See, e.g., Apostol [1, Ch. 2]. Let

Sf (x) :=
∞∑

ν=0

bνx
ν

be its formal reciprocal power series. Here the coefficients bν are given by b0 = 1 and∑ν
j=0 ajbν−j = 0 (ν ≥ 1). If both series Sf (x) and Sf (x) converge for an x ∈ C, then

Sf (x)Sf (x) = 1. In particular, if rf and rf are the radii of convergence of Sf (x), respectively
Sf (x), then Sf (x)Sf (x) = 1 for every x ∈ C such that |x| < min(rf , rf ).

It follows from (9) that the convolution identity

(−1)n−1f(n) =
∑

dj=n

hf (d)f(j) (n ≥ 1) (19)

holds, where the function hf is multiplicative, hf (p
ν) = 0 if p > 2, ν ≥ 1 and hf (2

ν) = 2bν
(ν ≥ 1), hf (1) = 2b0 − 1 = 1.

Therefore, by the convolution method,

∑

n≤x

(−1)n−1f(n) =
∑

d≤x

hf (d)
∑

j≤x/d

f(j), (20)

which leads to a good estimate for (2) if an asymptotic formula for
∑

n≤x f(n) is known and
if the coefficients bν of above can be well estimated. Note that, according to (19) and (9),

∞∑

n=1

hf (n)

ns
=

2

Sf (1/2s)
− 1, (21)
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provided that both Sf (1/2
s) and Sf (1/2

s) converge. By differentiating,

∞∑

n=1

hf (n) log n

ns
= − log 2

2s−1
·
S ′
f (1/2

s)

Sf (1/2s)2
, (22)

assuming that |1/2s| < min(rf , rf ). Identities (21) and (22) will be used in applications.

2.4 Two general asymptotic formulas

We prove two general results that will be applied for several special functions in Section 4.

Proposition 6. Let f be a multiplicative function. Assume that
(i) there exists a constant Cf such that

∑

n≤x

f(n) = Cfx
2 +O (xRf (x)) ,

where 1 ≪ Rf (x) = o(x) as x→ ∞, and Rf (x) is nondecreasing;
(ii) Sf (1/4) converges;
(iii) the sequence (bν)ν≥0 of coefficients of the reciprocal power series Sf (x) is bounded.
Then ∑

n≤x

(−1)n−1f(n) = Cf

(
2

Sf (1/4)
− 1

)
x2 +O (xRf (x)) .

Proof. According to (20),

∑

n≤x

(−1)n−1f(n) =
∑

d≤x

hf (d)

(
Cf
x2

d2
+O

(x
d
Rf (x/d)

))

= Cfx
2
∑

d≤x

hf (d)

d2
+O

(
xRf (x)

∑

d≤x

|hf (d)|
d

)
.

Since the sequence (bν)ν≥0 is bounded, the function hf is bounded. Moreover, the sum

∑

d≤x

|hf (d)|
d

=
∑

d=2ν≤x

|hf (2ν)|
2ν

≪
∑

2ν≤x

|bν |
2ν

is bounded, as well. Note that Sf (1/4) and Sf (1/4) both converge by conditions (ii) and
(iii). We deduce, by using (21) for s = 2, that

∑

n≤x

(−1)n−1f(n) = Cfx
2

∞∑

d=1

hf (d)

d2
+O

(
x2
∑

d>x

1

d2

)
+O (xRf (x))

= Cfx
2

(
2

Sf (1/4)
− 1

)
+O (xRf (x)) .

8



Proposition 7. Let f be a nonvanishing multiplicative function. Assume that
(i) there exist constants Df and Ef such that

∑

n≤x

1

f(n)
= Df (log x+ Ef ) +O

(
x−1R1/f (x)

)
, (23)

where 1 ≪ R1/f (x) = o(x) as x→ ∞, and R1/f (x) is nondecreasing;
(ii) the radius of convergence of the series S1/f (x) is r1/f > 1;
(iii) the coefficients bν of the reciprocal power series S1/f (x) satisfy bν ≪M ν as ν → ∞,

where 0 < M < 1 is a real number.
Then

∑

n≤x

(−1)n−1 1

f(n)
= Df

((
2

S1/f (1)
− 1

)
(log x+ Ef ) + 2(log 2)

S ′
1/f (1)

S1/f (1)2

)
+O

(
T1/f (x)

)
,

(24)
where

T1/f (x) =





x−1R1/f (x), if 0 < M < 1
2
;

x−1R1/f (x) log x, if M = 1
2
;

xlogM/ log 2 max(log x,R1/f (x)), if 1
2
< M < 1.

(25)

Proof. According to (20) we deduce that

∑

n≤x

(−1)n−1 1

f(n)
=
∑

d≤x

h1/f (d)
∑

j≤x/d

1

f(j)

=
∑

d≤x

h1/f (d)
(
Df

(
log

x

d
+ Ef

)
+O

(
(x/d)−1R1/f (x/d)

))

= Df (log x+ Ef )
∑

d≤x

h1/f (d)−Df

∑

d≤x

h1/f (d) log d

+O

(
x−1R1/f (x)

∑

d≤x

d|h1/f (d)|
)
.

That is,

∑

n≤x

(−1)n−1 1

f(n)
= Df (log x+ Ef )

∞∑

d=1

h1/f (d) +O

(
log x

∑

d>x

|h1/f (d)|
)

−Df

∞∑

d=1

h1/f (d) log d+O

(
∑

d>x

|h1/f (d)| log d
)

+O

(
x−1R1/f (x)

∑

d≤x

d|h1/f (d)|
)
. (26)
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Note that min(r1/f , r1/f ) > 1 by conditions (ii) and (iii). By using (21) and (22) for
s = 0,

∞∑

d=1

h1/f (d) =
2

S1/f (1)
− 1,

∞∑

d=1

h1/f (d) log d = −2(log 2)
S ′
1/f (1)

S1/f (1)2
.

Furthermore,
∑

d>x

|h1/f (d)| =
∑

d=2ν>x

|h1/f (2ν)| ≪
∑

2ν>x

|bν | ≪
∑

2ν>x

M ν ≪ xlogM/ log 2,

∑

d>x

|h1/f (d)| log d≪
∑

2ν>x

ν|bν | ≪
∑

2ν>x

νM ν ≪ xlogM/ log 2 log x,

∑

d≤x

d|h1/f (d)| =
∑

2ν≤x

2ν |bν | ≪
∑

ν≤log x/ log 2

(2M)ν ,

where the latter sum is bounded if 0 < M < 1/2, it is ≪ log x if M = 1/2, and is
≪ x1+logM/ log 2 if 1/2 < M < 1.

Inserting these into (26), the proof is complete.

3 Estimates on coefficients of reciprocal power series

As mentioned in Section 2.3, in order to deduce sharp error terms for alternating sums (2)
we need good estimates for the coefficients bν of the power series Sf (x).

3.1 Theorem of Kaluza

In many (nontrivial) cases the next result can be used.

Lemma 8. Let
∑∞

ν=0 aνx
ν be a power series such that aν > 0 (ν ≥ 0) and the sequence

(aν)ν≥0 is log-convex, that is a2ν ≤ aν−1aν+1 (ν ≥ 1). Then for the coefficients bν of the
(formal) reciprocal power series

∑∞
ν=0 bνx

ν one has b0 = 1/a0 > 0 and

− 1

a20
aν ≤ bν ≤ 0 for all ν ≥ 1.

Proof. The property that bν ≤ 0 for all ν ≥ 1 is the theorem of Kaluza [16, Satz 3]. See [6]
for a short direct proof of it. Furthermore, we have

bν = − 1

a20
aν −

1

a0

ν−1∑

j=1

ajbν−j ≥ − 1

a20
aν (ν ≥ 1).
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For example, consider the sum-of-divisors function σ, where σ(2ν) = 2ν+1 − 1 for every
ν ≥ 0. The sequence

(
1

2ν+1−1

)
ν≥0

is log-convex. This property allows us to apply Lemma 8

to obtain the estimate of Theorem 23 for the alternating sum
∑

n≤x(−1)n−1 1
σ(n)

.

3.2 Kendall’s renewal theorem

Another related result is Kendall’s renewal theorem. Disregarding the probabilistic context,
it can be stated as follows. See Berenhaut, Allen, and Fraser [3, Thm. 1.1].

Lemma 9. Let
∑∞

ν=0 aνx
ν be a power series such that (aν)ν≥0 is nonincreasing, a0 = 1,

aν ≥ 0 (ν ≥ 1) and aν ≪ qν as ν → ∞, where 0 < q < 1 is a real number. Then there
exists 0 < s < 1, s real, such that for the coefficients bν of the reciprocal power series one
has bν ≪ sν as ν → ∞.

We deduce the next result:

Corollary 10. Let f be a positive multiplicative function. Assume that
(i) asymptotic formula (23) is valid with 1 ≪ R1/f (x) ≪ xε as x→ ∞, for every ε > 0;
(ii) the sequence (1/f(2ν))ν≥0 is nonincreasing and 1/f(2ν) ≪ qν as ν → ∞, where

0 < q < 1 is a real number.
Then the asymptotic formula (24) holds for

∑
n≤x(−1)n−1 1

f(n)
, with error term

T1/f (x) = x−umax(log x,R1/f (x)) ≪ x−u1

for some u, u1 > 0.

Proof. This is a direct consequence of Proposition 7 and Lemma 9, applied for aν = 1
f(2ν)

.

Note that the radius of convergence of the series S1/f (x) is > 1 by condition (ii).

In the case of the sum-of-unitary-divisors function σ∗ we have aν = σ∗(2ν) = 2ν + 1 for

every ν ≥ 1 and a0 = σ∗(1) = 1. The sequence
(

1
aν

)
ν≥0

is not log-convex. Lemma 8 cannot

be used to estimate the alternating sum
∑

n≤x(−1)n−1 1
σ∗(n)

. At the same time, Corollary 10,
with t = 2 furnishes an asymptotic formula. See Section 4.9.

An explicit form of Lemma 9 (Kendall’s theorem) was proved in [3, Thm. 1.2]. However,
it is restricted to the values 0 < q < 0.32, and cannot be applied for the above special case,
where q = 1/2. To find the optimal value of s for pairs (A, q) such that aν ≤ Aqν (ν ≥ 1),
not satisfying assumptions of [3, Thm. 1.2] was formulated by Berenhaut, Abernathy, Fan,
and Foley [2, Open question 5.4].

We prove a new explicit Kendall-type inequality, based on the following lemma.

Lemma 11. Let
∑∞

ν=0 aνx
ν be a power series such that a0 = 1. Then for the coefficients bν

of the reciprocal power series
∑∞

ν=0 bνx
ν one has b0 = 1 and

bν =
ν∑

k=1

(−1)k
∑

j1,...,jk≥1
j1+···+jk=ν

aj1 · · · ajk (27)
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=
∑

t1,...,tν≥0
t1+2t2+···+νtν=ν

(−1)t1+···+tν

(
t1 + · · ·+ tν
t1, . . . , tν

)
at11 · · · atνν (28)

for every ν ≥ 1, where
(
t1+···+tν
t1,...,tν

)
are the multinomial coefficients.

Here formula (28) is well known, and it has been recovered several times. See, e.g., [19,
Lemma 4]. However, we were not able to find its equivalent version (27) in the literature.
For the sake of completeness we present their proofs.

Proof. Using the geometric series formula (1 + x)−1 =
∑∞

n=0(−1)nxn and the multinomial
theorem, we immediately have

(
1 +

∞∑

ν=1

aνx
ν

)−1

=
∞∑

t=0

(−1)t

(
∞∑

ν=1

aνx
ν

)t

=
∞∑

ν=0

xν
∑

t1,...,tν≥0
t1+2t2+···+νtν=ν

(−1)t1+···+tν

(
t1 + · · ·+ tν
t1, . . . , tν

)
at11 · · · atνν ,

giving (28). Furthermore, fix ν ≥ 1. By grouping the terms in (28) according to the values
k = t1 + · · ·+ tν , where 1 ≤ k ≤ ν, we have

bν =
ν∑

k=1

(−1)k
∑

t1,...,tν≥0
t1+2t2+···+νtν=ν

t1+···+tν=k

(
t1 + · · ·+ tν
t1, . . . , tν

)
at11 · · · atνν .

Now, identity (27) follows if we show that

∑

j1,...,jk≥1
j1+···+jk=ν

aj1 · · · ajk =
∑

t1,...,tν≥0
t1+2t2+···+νtν=ν

t1+···+tν=k

(
t1 + · · ·+ tν
t1, . . . , tν

)
at11 · · · atνν . (29)

But (29) is immediate by starting with its left-hand side and denoting by t1, . . . , tν the
number of values j1, . . . , jk which are equal to 1, . . . , ν, respectively.

Proposition 12. Assume that
∑∞

ν=0 aνx
ν is a power series such that a0 = 1 and |aν | ≤ Aqν

(ν ≥ 1) for some absolute constants A, q > 0. Then for the coefficients bν of the reciprocal
power series one has

|bν | ≤ Aqν(A+ 1)ν−1 (ν ≥ 1). (30)
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Proof. By identity (27) and the assumption |aν | ≤ Aqν (ν ≥ 1) we immediately have

|bν | ≤
ν∑

k=1

Ak
∑

j1,...,jk≥1
j1+...+jk=ν

qj1+···+jk = qν
ν∑

k=1

Ak
∑

j1,...,jk≥1
j1+...+jk=ν

1

= qν
ν∑

k=1

Ak
(
ν − 1

k − 1

)
= Aqν(A+ 1)ν−1,

as asserted.

Note that (30) is an explicit Kendall-type inequality provided that q(A + 1) < 1, in
particular if q ≤ 1/2 and A < 1.

Corollary 13. Let f be a positive multiplicative function such that
(i) asymptotic formula (23) is valid with 1 ≪ R1/f (x) = o(x) as x→ ∞;
(ii) 1/f(2ν) ≤ Aqν (ν ≥ 1), where A, q > 0 are fixed real constants satisfying M :=

q(A+ 1) < 1.
Then the asymptotic formula (24) holds for

∑
n≤x(−1)n−1 1

f(n)
, with error term (25).

Proof. This follows from Propositions 7 and 12. Note that the radius of convergence of the
series S1/f (x) is > 1 by condition (ii).

We will apply Corollary 13 for the sum-of-bi-unitary-divisors function σ∗∗. See Section
4.13.

4 Results for classical functions

In this section, we investigate alternating sums for classical multiplicative functions. We
refer to Apostol [1], Hildebrand [14], and McCarthy [18] for the basic properties of these
functions. See Gould and Shonhiwa [12] for a list of Dirichlet series of special arithmetic
functions.

4.1 Euler’s totient function

First consider Euler’s ϕ function, where ϕ(n) = n
∏

p|n

(
1− 1

p

)
(n ≥ 1).

Proposition 14.

∞∑

n=1

(−1)n−1ϕ(n)

ns
=

2s − 3

2s − 1
· ζ(s− 1)

ζ(s)
(ℜs > 2). (31)

Proof. This was explained in Section 2.1, formula (31) follows at once from (13).
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Theorem 15.

∑

n≤x

(−1)n−1ϕ(n) =
1

π2
x2 +O

(
x(log x)2/3(log log x)4/3

)
. (32)

Proof. Apply Proposition 6 for f = ϕ. It is known that

∑

n≤x

ϕ(n) =
3

π2
x2 +O

(
x(log x)2/3(log log x)4/3

)
,

which is the best error term known to date, due to Walfisz [39, Satz 1, p. 144]. Furthermore,

Sϕ(x) =
∞∑

ν=0

ϕ(2ν)xν = 1 +
∞∑

ν=1

2ν−1xν =
1− x

1− 2x

(
|x| < 1

2

)

(also see (10)). We obtain that the reciprocal power series is

Sϕ(x) =
1− 2x

1− x
= 1−

∞∑

ν=1

xν (|x| < 1),

for which the coefficients are b0 = 1, bν = −1 (ν ≥ 1), forming a bounded sequence. The
coefficient of the main term in (32) is

Cϕ

(
2

Sϕ(1/4)
− 1

)
=

3

π2
· 1
3
=

1

π2
.

Remark 16. To find the corresponding constant to be multiplied by Cϕ = 3/π2 observe that
by (19), (21) and (31),

2

Sϕ(1/4)
− 1 =

[
2s − 3

2s − 1

]

s=2

=
1

3
,

and similarly for other classical multiplicative functions, if we have the representation of
their alternating Dirichlet series.

Theorem 17.

∑

n≤x

(−1)n−1 1

ϕ(n)
= −A

3

(
log x+ γ −B − 8

3
log 2

)
+O

(
x−1(log x)5/3

)
, (33)

where γ is Euler’s constant and

A =
ζ(2)ζ(3)

ζ(6)
=

315ζ(3)

2π4
, B =

∑

p∈P

log p

p2 − p+ 1
. (34)
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The result (33) improves the error term O (x−1(log x)3) obtained by Bordellès and Cloitre
[4, Cor. 4, (i)].

Proof. Apply Proposition 7 for f = ϕ. The asymptotic formula

∑

n≤x

1

ϕ(n)
= A (log x+ γ −B) +O

(
x−1(log x)2/3

)

with constants A and B defined by (34) and with the weaker error term O (x−1 log x) goes
back to the work of Landau. See [9, Thm. 1.1]. The error term above was obtained by
Sitaramachandrarao [25].

Now

S1/ϕ(x) =
∞∑

ν=0

xν

ϕ(2ν)
= 1 +

∞∑

ν=1

xν

2ν−1
=

2 + x

2− x
(|x| < 2),

S1/ϕ(x) =
1− x/2

1 + x/2
= 1 +

∞∑

ν=1

(−1)ν
xν

2ν−1
(|x| < 2);

hence bν ≪ 2−ν and choose M = 1/2. Using that S1/ϕ(1) = 3 and S ′
1/ϕ(1) = 4, the proof is

complete.

4.2 Dedekind function

The Dedekind function ψ is given by ψ(n) = n
∏

p|n

(
1 + 1

p

)
(n ≥ 1).

Proposition 18.

∞∑

n=1

(−1)n−1ψ(n)

ns
=

2s − 5

2s + 1
· ζ(s)ζ(s− 1)

ζ(2s)
(ℜs > 2), (35)

Proof. It is well-known that

∞∑

n=1

ψ(n)

ns
=
ζ(s)ζ(s− 1)

ζ(2s)
(ℜs > 2),

and (35) follows like (31), by using Proposition 1.

Theorem 19. ∑

n≤x

(−1)n−1ψ(n) = − 3

2π2
x2 +O

(
x(log x)2/3

)
, (36)
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Proof. Apply Proposition 6 for f = ψ. It is known that

∑

n≤x

ψ(n) =
15

2π2
x2 +O

(
x(log x)2/3

)
,

the best estimate up to now. See Walfisz [39, Satz 2, p. 100]. Here

Sψ(x) =
∞∑

ν=0

ψ(2ν)xν = 1 + 3
∞∑

ν=1

2ν−1xn =
1 + x

1− 2x

(
|x| < 1

2

)
.

We obtain that the reciprocal power series is

Sψ(x) =
1− 2x

1 + x
= 1 + 3

∞∑

ν=1

(−1)νxν (|x| < 1),

for which the coefficients are b0 = 1, bν = 3(−1)ν (ν ≥ 1), forming a bounded sequence. The
coefficient of the main term in (36) is

Cψ

(
2

Sψ(1/4)
− 1

)
=

15

2π2
· (−1

5
) = − 3

2π2
.

Theorem 20.

∑

n≤x

(−1)n−1 1

ψ(n)
=
C

5

(
log x+ γ +D +

24

5
log 2

)
+O

(
x−1(log x)2/3(log log x)4/3

)
, (37)

where γ is Euler’s constant and

C =
∏

p∈P

(
1− 1

p(p+ 1)

)
, D =

∑

p∈P

log p

p2 + p− 1
. (38)

The result (37) improves the error term O (x−1(log x)2) obtained by Bordellès and Cloitre
[4, Cor. 4, (iii)]. The constant C

.
= 0.704442 is sometimes called the carefree constant, and

its digits form the sequence A065463 in Sloane’s Online Encyclopedia of Integer Sequences
(OEIS) [31]. Also see Finch [11, Sect. 2.5.1].

Proof. Apply Proposition 7 for f = ψ. The asymptotic formula

∑

n≤x

1

ψ(n)
= C (log x+ γ +D) +O

(
x−1(log x)2/3(log log x)4/3

)
,

where C and D are the constants given by (38), is due to Sita Ramaiah and Suryanarayana
[29, Cor. 4.2].

16

http://oeis.org/A065463


Furthermore,

S1/ψ(x) =
∞∑

ν=0

xν

ψ(2ν)
= 1 +

2

3

∞∑

ν=1

xν

2ν
=

6− x

3(2− x)
(|x| < 2),

S1/ψ(x) =
1− x/2

1− x/6
= 1− 2

∞∑

ν=1

xν

6ν
(|x| < 6),

which shows that

bν = − 2

6ν
(ν ≥ 1).

Hence bν ≪ 6−ν and choose M = 1/6. Using that S1/ψ(1) = 5
3
and S ′

1/ψ(1) = 4
3
, we

deduce (37).

4.3 Sum-of-divisors function

Consider the function σ(n) =
∑

d|n d (n ≥ 1).

Proposition 21.

∞∑

n=1

(−1)n−1σ(n)

ns
=

(
1− 6

2s
+

4

22s

)
ζ(s)ζ(s− 1) (ℜs > 2). (39)

Note that (−1)n−1σ(n) is sequence A143348 in the OEIS [31], where identity (39) is given.

Proof. Use the familiar formula

∞∑

n=1

σ(n)

ns
= ζ(s)ζ(s− 1) (ℜs > 2)

and Proposition 1.

Theorem 22. ∑

n≤x

(−1)n−1σ(n) = −π
2

48
x2 +O

(
x(log x)2/3

)
. (40)

Proof. Apply Proposition 6 for f = σ. It is known that

∑

n≤x

σ(n) =
π2

12
x2 +O

(
x(log x)2/3

)
,

the best up to now. See Walfisz [39, Satz 4, p. 99]. Here

Sσ(x) =
∞∑

ν=0

σ(2ν)xν =
∞∑

ν=0

(2ν+1 − 1)xn =
1

(1− x)(1− 2x)

(
|x| < 1

2

)
.

17

http://oeis.org/A143348


Hence
Sσ(x) = (1− x)(1− 2x) = 1− 3x+ 2x2,

for which the coefficients are b0 = 1, b1 = −3, b2 = 2, bν = 0 (ν ≥ 3). The coefficient of the
main term in (40) is from (39),

π2

12

[
1− 6

2s
+

4

22s

]

s=2

= −π
2

48
.

The following asymptotic formula is due to Sita Ramaiah and Suryanarayana [29, Cor.
4.1]: ∑

n≤x

1

σ(n)
= E (log x+ γ + F ) +O

(
x−1(log x)2/3(log log x)4/3

)
, (41)

where γ is Euler’s constant,

E =
∏

p∈P

α(p), F =
∑

p∈P

(p− 1)2β(p) log p

pα(p)
,

α(p) =

(
1− 1

p

) ∞∑

ν=0

1

σ(pν)
= 1− (p− 1)2

p

∞∑

j=1

1

(pj − 1)(pj+1 − 1)
,

β(p) =
∞∑

j=1

j

(pj − 1)(pj+1 − 1)
.

We prove the next result:

Theorem 23.

∑

n≤x

(−1)n−1 1

σ(n)
= E

((
2

K
− 1

)
(log x+ γ + F ) + 2(log 2)

K ′

K2

)
(42)

+O
(
x−1(log x)5/3(log log x)4/3

)
,

where

K =
∞∑

j=0

1

2j+1 − 1
, K ′ =

∞∑

j=1

j

2j+1 − 1
. (43)

The result (42) improves the error term O (x−1(log x)4) obtained by Bordellès and Cloitre
[4, Cor. 4, (v)]. Here K

.
= 1.606695 is the Erdős-Borwein constant, known to be irrational.

See sequence A065442 in the OEIS [31].
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Proof. Apply Proposition 7 for f = σ, using formula (41). Now

S1/σ(x) =
∞∑

ν=0

xν

σ(2ν)
=

∞∑

ν=0

xν

2ν+1 − 1

and S1/σ(1) = K. Note that S ′
1/ψ(1) = K ′, given above.

The coefficients bν of the reciprocal power series are b0 = 1, b1 = −1
3
, b2 = − 2

63
, b3 = − 8

945
,

etc. Observe that the sequence
(

1
2ν+1−1

)
ν≥0

is log-convex. Therefore, according to Lemma 8,

− 1

2ν+1 − 1
≤ bν ≤ 0 (ν ≥ 1),

which shows that bν ≪ 2−ν and we can choose M = 1/2.

4.4 Divisor function

Now consider another classical function, the divisor function τ(n) =
∑

d|n 1 (n ≥ 1). Using
the familiar formula

∞∑

n=1

τ(n)

ns
= ζ2(s) (ℜs > 1),

and Proposition 1 we deduce

Proposition 24.

∞∑

n=1

(−1)n−1 τ(n)

ns
=

(
1− 4

2s
+

2

22s

)
ζ2(s) (ℜs > 1).

By similar considerations we also have

Proposition 25.

∞∑

n=1

(−1)n−1 1

τ(n)ns
=

(
1

2s−1

(
log

(
1− 1

2s

))−1

+ 1

)
∏

p∈P

ps log

(
1− 1

ps

)
(ℜs > 1).

Theorem 26.

∑

n≤x

(−1)n−1τ(n) = −1

2
x log x+

(
1

2
− γ + log 2

)
x+O

(
xθ+ε

)
,

where θ is the best exponent in Dirichlet’s divisor problem.

Proof. Proposition 6 cannot be applied. Using that
∑

n≤x

τ(n) = x log x+ (2γ − 1)x+O
(
xθ+ε

)

the result follows by similar arguments.
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Note that the actual best result for θ is θ = 131/416
.
= 0.314903, due to Huxley [15].

Now we consider the following result, which goes back to the work of Ramanujan [21,
Eq. (7)]. See Wilson [40, Sect. 3] for its proof:

∑

n≤x

1

τ(n)
= x

N∑

j=1

Aj
(log x)j−1/2

+O

(
x

(log x)N+1/2

)
,

valid for every real x ≥ 2 and every fixed integer N ≥ 1 where Aj (1 ≤ j ≤ N) are
computable constants,

A1 =
1√
π

∏

p∈P

(√
p2 − p log

(
p

p− 1

))
.

We prove

Theorem 27.

∑

n≤x

(−1)n−1 1

τ(n)
= x

N∑

t=1

Bt

(log x)t−1/2
+O

(
x

(log x)N+1/2

)
,

valid for every real x ≥ 2 and every fixed integer N ≥ 1 where Bt (1 ≤ t ≤ N) are computable
constants. In particular,

B1 = A1

(
1

log 2
− 1

)
.

Proof. Now

S1/τ (x) =
∞∑

ν=0

1

τ(2ν)
xν =

∞∑

ν=0

1

ν + 1
xν = − log(1− x)

x
(|x| < 1)

and the reciprocal power series is

S1/τ (x) = − x

log(1− x)
=

∞∑

ν=0

bνx
ν ,

where b0 = 1, b1 = −1/2, b2 = −1/12, b3 = −1/24, etc. Note that the sequence
(

1
ν+1

)
ν≥0

is

log-convex. According to Lemma 8 (this example was considered by Kaluza [16]),

− 1

ν + 1
≤ bν ≤ 0 (ν ≥ 1).

This shows, using (20), that

(−1)n−1 1

τ(n)
=
∑

dj=n

h1/τ (d)
1

τ(j)
(n ≥ 1),
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where the function h1/τ is multiplicative, h1/τ (2
ν) ≪ 1

ν
as ν → ∞ and h1/τ (p

ν) = 0 for every
prime p > 2 and ν ≥ 1.

Hence

T (x) :=
∑

n≤x

(−1)n−1 1

τ(n)
=
∑

d≤x/2

h1/τ (d)
∑

j≤x/d

1

τ(j)
+

∑

x/2<d≤x

h1/τ (d)

=
∑

d≤x/2

h1/τ (d)

(
x

d

N∑

j=1

Aj
(log(x/d))j−1/2

+O

(
x/d

(log(x/d))N+1/2

))
+

∑

x/2<d≤x

h1/τ (d)

= x
N∑

j=1

Aj
(log x)j−1/2

∑

d≤x/2

h1/τ (d)

d(1− log d
log x

)j−1/2
+O


 x

(log x)N+1/2

∑

d≤x/2

|h1/τ (d)|
d(1− log d

log x
)N+1/2




+
∑

x/2<d≤x

h1/τ (d).

Here the last term is small:

∑

x/2<d≤x

h1/τ (d) ≪
∑

d=2ν≤x

|h1/τ (2ν)| ≪
∑

ν≤log x/ log 2

1

ν
≪ log log x.

Using the power series expansion

(1 + x)t =
∞∑

j=0

(
t

j

)
xj (x, t ∈ R, |x| < 1),

we deduce

∑

d≤x/2

|h1/τ (d)|
d(1− log d

log x
)N+1/2

=
∑

d≤x/2

|h1/τ (d)|
d

(
1 +O

(
log d

log x

))

=
∑

d=2ν≤x/2

|h1/τ (2ν)|
2ν

+O


 1

log x

∑

d=2ν≤x/2

|h1/τ (2ν)|
2ν

log 2ν




≪
∑

2ν≤x/2

1

ν2ν
+

1

log x

∑

2ν≤x/2

1

2ν
≪ 1.

Therefore, the remainder term of above is

O

(
x

(log x)N+1/2

)
.
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Furthermore,

∑

d≤x/2

h1/τ (d)

d(1− log d
log x

)j−1/2
=
∑

d≤x/2

h1/τ (d)

d

∞∑

ℓ=0

(−1)ℓ
(−j + 1/2

ℓ

)(
log d

log x

)ℓ

=
∞∑

ℓ=0

(−1)ℓ
(−j + 1/2

ℓ

)
1

(log x)ℓ

∑

d≤x/2

h1/τ (d)

d
(log d)ℓ

=
∞∑

ℓ=0

(−1)ℓ
(−j + 1/2

ℓ

)
1

(log x)ℓ

(
Kℓ +O

(
(log x)ℓ−1

x

))
,

where for every ℓ ≥ 0 the series

Kℓ :=
∞∑

d=1

h1/τ (d)

d
(log d)ℓ =

∑

d=2ν
ν≥0

h1/τ (2
ν)

2ν
(log 2ν)ℓ

is absolutely convergent, since |h1/τ (2ν)| ≪ 1
ν
, and

∑

d>x/2

|h1/τ (d)|
d

(log d)ℓ =
∑

d=2ν>x/2

|h1/τ (2ν)|
2ν

(log 2ν)ℓ ≪
∑

ν>log x/ log 2

νℓ−1

2ν
≪ (log x)ℓ−1

x
.

We deduce that

T (x) = x
N∑

j=1

Aj
(log x)j−1/2

∞∑

ℓ=0

(−1)ℓ
(−j + 1/2

ℓ

)
1

(log x)ℓ

(
Kℓ +O

(
(log x)ℓ−1

x

))

+O

(
x

(log x)N+1/2

)

= x

N∑

t=1

1

(log x)t−1/2

N∑

j=1

(−1)t−j
(−j + 1/2

t− j

)
AjKt−j +O

(
x

(log x)N+1/2

)
.

The proof is complete by denoting

Bt =
N∑

j=1

(−1)t−j
(−j + 1/2

t− j

)
AjKt−j,

where B1 = A1K0 = A1(
1

log 2
− 1) by (21) (applied for s = 1).

Note that a similar asymptotic formula can be deduced for the alternating sum

∑

n≤x

(−1)n−1 1

τk(n)
,

where τk(n) is the Piltz divisor function, based on the result for
∑

n≤x
1

τk(n)
, due to De Kon-

inck and Ivić [9, Thm. 1.2].
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4.5 Gcd-sum function

Let P (n) =
∑n

k=1 gcd(k, n) be the gcd-sum function. Known results include the following:
P is multiplicative, P (pν) = pν−1(p(ν + 1)− ν) (ν ≥ 1),

∞∑

n=1

P (n)

ns
=
ζ2(s− 1)

ζ(s)
(ℜs > 2),

∑

n≤x

P (n) =
3

π2
x2
(
log x+ 2γ − 1

2
− ζ ′(2)

ζ(2)

)
+O

(
x1+θ+ε

)
,

where θ is the best exponent in Dirichlet’s divisor problem. See the survey of the author
[37]. We have

Proposition 28.

∞∑

n=1

(−1)n−1P (n)

ns
=

(
2

(
1− 1

2s−1

)2(
1− 1

2s

)−1

− 1

)
ζ2(s− 1)

ζ(s)
(ℜs > 2).

Theorem 29.

∑

n≤x

(−1)n−1P (n) = − 1

π2
x2
(
log x+ 2γ − 1

2
− ζ ′(2)

ζ(2)
− 10

3
log 2

)
+O

(
x1+θ+ε

)
,

where θ is the best exponent in Dirichlet’s divisor problem.

Proof. Similar to the proofs of above. Here hP (2) = −6, hP (2
ν) = 2 (ν ≥ 2).

The next formula was proved by Chen and Zhai [7, Thm. 4], sharpening a result of the
author [37, Thm. 6]:

∑

n≤x

1

P (n)
=

N∑

j=0

Kj

(log x)j−1/2
+O

(
1

(log x)N+1/2

)
,

valid for every real x ≥ 2 and every fixed integer N ≥ 1 where Kj (1 ≤ j ≤ N) are
computable constants,

K0 =
2√
π

∏

p∈P

(
1− 1

p

)1/2 ∞∑

ν=0

1

P (pν)
.

We have

Theorem 30.

∑

n≤x

(−1)n−1 1

P (n)
=

N∑

t=0

Dt

(log x)t−1/2
+O

(
1

(log x)N+1/2

)
,
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valid for every real x ≥ 2 and every fixed integer N ≥ 1 where Dt (0 ≤ t ≤ N) are computable
constants. In particular,

D0 = K0

(
1

2(log 2− 1)
− 1

)
.

Proof. Similar to the proof of Theorem 27. Here P (2ν) = (ν + 2)2ν−1 (ν ≥ 1). The crucial

fact is that the sequence
(

1
(ν+2)2ν−1

)
ν≥0

is log-convex, and therefore Lemma 8 can be used

to deduce that h1/P (2
ν) ≪ 1

ν2ν
.

4.6 Squarefree kernel

Now we move to the function κ(n) =
∏

p|n p (n ≥ 1), the squarefree kernel of n (radical of

n). It is known that

∞∑

n=1

κ(n)

ns
= ζ(s)

∏

p∈P

(
1 +

p− 1

ps

)
(ℜs > 2)

and for x ≥ 3, ∑

n≤x

κ(n) =
C

2
x2 +O (Rκ(x)) ,

where C is the constant defined by (38), Rκ(x) = x3/2δ(x) unconditionally and Rκ(x) =
x7/5ω(x) assuming the Riemann hypothesis (RH), with

δ(x) = exp
(
−c1(log x)3/5(log log x)−1/5

)
, (44)

ω(x) = exp
(
c2(log x)(log log x)

−1
)
, (45)

c1, c2 being positive constants. These estimates are due (for a more general function) to
Suryanarayana and Subrahmanyam [34, Cor. 4.3.5 and 4.4.5].

We have

Proposition 31.

∞∑

n=1

(−1)n−1κ(n)

ns
=

2s − 3

2s + 1
ζ(s)

∏

p∈P

(
1 +

p− 1

ps

)
(ℜs > 2).

Theorem 32. ∑

n≤x

(−1)n−1κ(n) =
C

10
x2 +O (Rκ(x)) ,

where C is given by (38) and Rκ(x) is defined above.
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Proof. Here, to deduce the unconditional result, Proposition 6 cannot be applied, since the
function δ(x) is not increasing. However, xεδ(x) is increasing for any ε > 0 and we obtain
by (20),

∑

n≤x

(−1)n−1κ(n) =
∑

d≤x

hκ(d)

(
C

2

(x
d

)2
+O

((x
d

)3/2
δ(x/d)

))

=
Cx2

2

∑

d≤x

hκ(d)

d2
+O

(
xεδ(x)x3/2−ε

∑

d≤x

|hκ(d)|
d3/2−ε

)
.

Note that hκ(2
ν) = 4(−1)ν (ν ≥ 1). Hence the function hκ is bounded and the result is

obtained by the usual arguments.
Assuming RH, Proposition 6 can directly be applied, since ω(x) is increasing.

It is known that

K(x) :=
∑

n≤x

1

κ(n)
= exp

(
(1 + o(1))

(
8 log x

log log x

)1/2
)

(x→ ∞),

due to de Bruijn [5], confirming a conjecture of Erdős. In fact,

K(x) ∼ 1

2
eγF (log x)(log log x) (x→ ∞),

where γ is Euler’s constant and

F (t) :=
6

π2

∞∑

m=1

min(1, et/m)∏
p|m(p+ 1)

(t ≥ 0),

which follows from a more precise asymptotic formula with error term, recently established
by Robert and Tenenbaum [23, Thm. 4.3]. We point out that according to [23, Eq. (2.12)],
there exists a sequence of polynomials (Qj)j≥1 with degQj ≤ j (j ≥ 1) such that for any
N ≥ 1,

F (t) = exp

((
8t

log t

)1/2
(
1 +

N∑

j=1

Qj(log log t)

(log t)j
+O

((
log log t

log t

)N+1
)))

(t ≥ 3).

Note that

S1/κ(x) =
∞∑

ν=0

1

κ(2ν)
xν =

2− x

2(1− x)
(|x| < 1),

S1/κ(x) =
2(1− x)

2− x
= 1−

∞∑

ν=1

xν

2ν
(|x| < 2),
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therefore h1/κ(2
ν) = − 1

2ν−1 (ν ≥ 1) and
∑∞

n=1 h1/κ(n) = −1. It follows that

Kaltern(x) :=
∑

n≤x

(−1)n−1 1

κ(n)
= K(x)− 2

∑

2≤2ν≤x

1

2ν
K
( x
2ν

)
. (46)

Identity (46) and the deep analytic results of Robert and Tenenbaum [23] lead to the
following:

Theorem 33. (Tenenbaum [36]) One has

Kaltern(x) ∼ −K(x) (x→ ∞) (47)

and a genuine asymptotic formula with effective remainder term may be derived for Kaltern(x).

4.7 Squarefree numbers

Now consider the squarefree numbers for which the characteristic function is µ2, where µ is
the Möbius function. It is well-known that

∞∑

n=1

µ2(n)

ns
=

ζ(s)

ζ(2s)
(ℜs > 1)

and ∑

n≤x

µ2(n) =
6

π2
x+O (Rµ2(x)) ,

where Rµ2(x) = x1/2δ(x), with δ(x) defined by (44), unconditionally, due to Walfisz [39, Satz
1, p. 192], and Rµ2(x) = x11/35+ε (ε > 0) assuming RH, due very recently to Liu [17].

Proposition 34.
∞∑

n=1

(−1)n−1µ
2(n)

ns
=

2s − 1

2s + 1
· ζ(s)
ζ(2s)

(ℜs > 1).

Theorem 35. ∑

n≤x

(−1)n−1µ2(n) =
2

π2
x+O (Rµ2(x)) .

Proof. Similar to the proof of Theorem 32. Note that here hµ2(2
ν) = 2(−1)ν (ν ≥ 1). Hence

the function hκ is bounded.
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4.8 Number of abelian groups of a given order

Let a(n) denote, as usual, the number of abelian groups of order n. This is another classical
multiplicative function, investigated by several authors. It is known that

∞∑

n=1

a(n)

ns
=

∞∏

k=1

ζ(ks) (ℜs > 1),

∑

n≤x

a(n) = C1x+ C2x
1/2 + C3x

1/3 +O
(
x1/4+ε

)
, (48)

where

Cj =
∞∏

k=1
k 6=j

ζ(k/j) (j = 1, 2, 3),

this best error term to date due to Robert and Sargos [22].
We have

Proposition 36.

∞∑

n=1

(−1)n−1a(n)

ns
=

(
2

∞∏

k=1

(
1− 1

2ks

)
− 1

)
∞∏

k=1

ζ(ks) (ℜs > 1).

Theorem 37.
∑

n≤x

(−1)n−1a(n) = C1K1x+ C2K2x
1/2 + C3K3x

1/3 +O
(
x1/4+ε

)
,

where

Kj = 2
∞∏

k=1

(
1− 1

2k/j

)
− 1 (j = 1, 2, 3).

Note that K1
.
= −0.422423, where the digits of

∏∞
k=1

(
1− 1

2k

) .
= 0.288788 form the

sequence A048651 in the OEIS [31].

Proof. We use the method described in Section 2.3. According to (20),
∑

n≤x

(−1)n−1a(n) =
∑

d≤x

ha(d)
∑

j≤x/d

a(j).

Remark that by Euler’s pentagonal number theorem,

∞∏

k=1

(
1− 1

2ks

)
= 1 +

∞∑

j=1

(−1)j
(

1

2(3j−1)js/2
+

1

2(3j+1)js/2

)
(|2s| > 1),

which shows that ha(2
ν) ∈ {−2, 0, 2} for every ν ≥ 1 and ha(p

ν) = 0 for every prime p > 2
and every ν ≥ 1. Hence the function ha is bounded. Now using (48), the proof can be carried
out by the usual arguments.
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It is known that ∑

n≤x

1

a(n)
= Dx+O

(
x1/2(log x)−1/2

)
,

where

D =
∏

p∈P

(
1 +

∞∑

k=2

(
1

P (k)
− 1

P (k − 1)

)
1

pk

)
.
= 0.752015

(sequence A084911 in the OEIS [31]), due to De Koninck and Ivić [9, Thm. 1.3]. Here P (k)
denotes the number of unrestricted partitions of k (not to be confused with the gcd-sum
function from Section 4.5, denoted also by P ). See Nowak [20] for a more precise asymptotic
formula.

It follows by (15) that the limit

lim
x→∞

1

x

∑

n≤x

(−1)n−1 1

a(n)
= D


2

(
1 +

∞∑

ν=1

1

P (ν)2ν

)−1

− 1




exists.
To establish an asymptotic formula for

∑

n≤x

(−1)n−1 1

a(n)
(49)

we need to estimate the coefficients of the reciprocal of the power series S1/a(x) = 1 +∑∞
ν=1

1
P (ν)

xν . Here Lemma 8 cannot be used, since the sequence (aν)ν≥0 with a0 = 1 and

aν = 1
P (ν)

(ν ≥ 1) is not log-convex. However, observe that DeSalvo and Pak [10, Thm.

1.1] recently proved that the sequence (P (n)) is log-concave for n > 25, that is, (1/P (n)) is
log-convex for n > 25.

Open Problem 38. Estimate the alternating sum (49).

4.9 Sum-of-unitary-divisors function

Recall that d is said to be a unitary divisor of n if d | n and gcd(d, n/d) = 1. Let σ∗(n)
denote, as usual, the sum of unitary divisors of n. The function σ∗ is multiplicative and
σ∗(pν) = pν + 1 (ν ≥ 1). One has

∞∑

n=1

σ∗(n)

ns
=
ζ(s)ζ(s− 1)

ζ(2s− 1)
(ℜs > 2).

Furthermore,
∑

n≤x

σ∗(n) =
π2

12ζ(3)
x2 +O

(
x(log x)5/3

)
,

established by Sitaramachandrarao and Suryanarayana [27, Eq. (1.4)].
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Proposition 39.

∞∑

n=1

(−1)n−1σ
∗(n)

ns
=

(
1− 6

2s
+

6

22s

)(
1− 2

22s

)−1
ζ(s)ζ(s− 1)

ζ(2s− 1)
(ℜs > 2). (50)

Theorem 40. ∑

n≤x

(−1)n−1σ∗(n) = − π2

84ζ(3)
x2 +O

(
x(log x)5/3

)
.

Proof. Apply Proposition 6. The Dirichlet series representation (50) can be used, the func-
tion hσ∗ is bounded.

It is known that
∑

n≤x

1

σ∗(n)
= B∗ log x+D∗ +O

(
x−1(log x)5/3(log log x)4/3

)
,

obtained by Sita Ramaiah and Suryanarayana [30, p. 1352], where B∗ and D∗ are explicit
constants. Here, according to Proposition 4,

B∗ =
∏

p∈P

(
1− 1

p

)(
1 +

∞∑

ν=1

1

pν + 1

)
.

It follows from the same Proposition 4 that the limit

E∗ := lim
x→∞

1

log x

∑

n≤x

(−1)n−1 1

σ∗(n)
= B∗


2

(
1 +

∞∑

ν=1

1

2ν + 1

)−1

− 1




exists.
Moreover, by Corollary 10 we deduce that

∑

n≤x

(−1)n−1 1

σ∗(n)
= E∗ log x+ F ∗ +O

(
x−u(log x)5/3(log log x)4/3

)
, (51)

with an explicit constant F ∗ and some u > 0. Bordellès and Cloitre [4, Cor. 4, (vi)] estab-
lished that the error term of (51) is O (x−1(log x)4).

To use our method, we need a better estimate for the coefficients bν of the reciprocal of
the power series

S1/σ∗(x) = 1 +
∞∑

ν=1

xν

2ν + 1
.

Here b0 = 1, b1 = −1
3
, b2 = − 4

45
, b3 = − 2

135
, b4 =

32
34425

, etc.

Open Problem 41. We conjecture that bν ≪ 1/2ν as ν → ∞. If this is true, then it follows
from Proposition 7 that the error term in (51) can be improved intoO

(
x−1(log x)8/3(log log x)4/3

)
.

We pose as an open problem to prove this.
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4.10 Unitary Euler function

Let ϕ∗ be the unitary analog of Euler’s ϕ function. The function ϕ∗ is multiplicative and
ϕ(pν) = pν − 1 for every prime power pν (ν ≥ 1). One has

∞∑

n=1

ϕ∗(n)

ns
= ζ(s)ζ(s− 1)

∏

p

(
1− 2

ps
+

1

p2s−1

)
(ℜs > 2).

Furthermore, ∑

n≤x

ϕ∗(n) =
C

2
x2 +O

(
x(log x)5/3(log log x)4/3

)
,

where C is defined by (38). See Sitaramachandrarao and Suryanarayana [27, Eq. (1.5)].

Proposition 42.

∞∑

n=1

(−1)n−1ϕ
∗(n)

ns
=

(
1− 1

2s−2
+

1

22s−1

)(
1− 1

2s−1
+

1

22s−1

)−1 ∞∑

n=1

ϕ∗(n)

ns
(ℜs > 2),

(52)

Theorem 43.

∑

n≤x

(−1)n−1ϕ∗(n) =
C

10
x2 +O

(
x(log x)5/3(log log x)4/3

)
,

where C is defined by (38).

Proof. Apply Proposition 6. The Dirichlet series representation (52) can be used. The
function hϕ∗ is bounded.

It is known that

∑

n≤x

1

ϕ∗(n)
= L∗ log x+M∗ +O

(
x−1(log x)5/3

)
,

due to Sita Ramaiah and Subbarao [28, Thm. 3.1], improving the error term of Sita Ramaiah
and Suryanarayana [30, Thm. 3.2], where L∗ and M∗ are explicit constants. Here, according
to Proposition 4,

L∗ =
∏

p∈P

(
1− 1

p

)(
1 +

∞∑

ν=1

1

pν − 1

)
.

It follows from the same Proposition 4 that the limit

T ∗ := lim
x→∞

1

log x

∑

n≤x

(−1)n−1 1

ϕ∗(n)
= L∗

(
2

1 +K
− 1

)
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exists, where K is the Erdős-Borwein constant defined by (43). Moreover, by Corollary 10
(take q = 1/2) we deduce that

∑

n≤x

(−1)n−1 1

ϕ∗(n)
= T ∗ log x+ U∗ +O

(
x−u(log x)5/3

)
. (53)

with an explicit constant U∗ and some u > 0.
Note that this example was not considered by Bordellès and Cloitre [4]. To use our

method one needs to consider the power series

S1/ϕ∗(x) = 1 +
∞∑

ν=1

xν

2ν − 1
,

where the sequence a0 = 1, aν =
1

2ν−1
is log-convex but only for ν ≥ 1, that is a2ν ≤ aν−1aν+1

holds for ν ≥ 2 and is false for ν = 1. Hence Lemma 8 cannot be used. In fact, the
coefficients bν of the reciprocal power series are b0 = 1, b1 = −1, b2 =

2
3
, b3 = −10

21
, b4 =

104
315

,
etc. (not all of b1, b2, . . . are negative).

Open Problem 44. We conjecture that bν ≪ 1/2ν as ν → ∞. If this is true, then it follows
from Proposition 7 that the error term in (53) can be improved into O

(
x−1(log x)8/3

)
.

We pose as an open problem to prove this.

4.11 Unitary squarefree kernel

Let κ∗(n) denote the greatest squarefree unitary divisor of n. The function κ∗ is multiplica-
tive, κ∗(p) = p and κ∗(pν) = 1 for every prime p and ν ≥ 2. One has

∑

n≤x

κ∗(n) =
1

2
C̃x2 +O(Rκ∗(x)), (54)

where

C̃ =
∏

p∈P

(
1− p2 + p− 1

p3(p+ 1)

)
, (55)

Rκ∗(x) = x3/2δ(x), with δ(x) defined by (44), unconditionally, and Rκ∗(x) = x7/5ω(x), with
ω(x) defined by (45), assuming RH, due to Sita Ramaiah and Suryanarayana [26, Thm. 5.7,
5.8].

Theorem 45. With the notation above,

∑

n≤x

(−1)n−1κ∗(n) =
5

38
C̃x2 +O(Rκ∗(x)). (56)
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Proof. We have

Sκ∗(x) =
x2 − x− 1

x− 1
(|x| < 1)

and the proof is quite similar to the proof of Theorem 32.

An asymptotic formula for the reciprocal of κ∗(n) is simpler to obtain than for the recip-
rocal of the squarefree kernel κ(n), discussed in Section 4.6. It is a result of Suryanarayana
and Subrahmanyam [33, Cor. 3.4.1] that

∑

n≤x

1

κ∗(n)
=
Aζ(3/2)

ζ(3)
x1/2 +

Bζ(2/3)

ζ(2)
x1/3 +O(x1/5), (57)

where

A =
∏

p∈P

(
1 +

√
p− 1

p(p−√
p+ 1)

)
, B =

∏

p∈P

(
1 +

p1/3 − 1

p(p2/3 − p1/3 + 1)

)
,

We deduce the next result.

Theorem 46.

∑

n≤x

(−1)n−1 1

κ∗(n)
=
A∗ζ(3/2)

ζ(3)
x1/2 +

B∗ζ(2/3)

ζ(2)
x1/3 +O(x1/5), (58)

where

A∗ =
A(9− 12

√
2)

23
, B∗ =

B(25/3 − 3 · 21/3 − 1)

25/3 − 21/3 + 1
. (59)

Proof. We have

S1/κ∗(x) =
x2 − x+ 2

2(1− x)
(|x| < 1),

hence

S1/κ∗(x) =
2(1− x)

x2 − x+ 2
=

∞∑

ν=0

bνx
ν (|x| <

√
2),

where

bν =
1

4ν+1
√
7
Re
(
(
√
7 + i)(1− i

√
7)ν+1 + (

√
7− i)(1 + i

√
7)ν+1

)
(ν ≥ 0).

Therefore,

|bν | ≤
4√
7
· 1

2ν/2
(ν ≥ 1)

and using our method this implies (58).
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4.12 Powerful part of a number

It is possible to deduce similar formulas for many other special multiplicative functions. We
consider the following further example. Every positive integer n can be uniquely written as
n = ab, where gcd(a, b) = 1, a is squarefree and b is squareful. Here b is called the powerful
part of n and is denoted by pow(n). See Cloutier, De Koninck, Doyon [8]. Note that

pow(n) =
n

κ∗(n)
(n ≥ 1), (60)

where κ∗(n) is the unitary squarefree kernel of n, discussed in Section 4.11.
By partial summation we deduce from (57) that

∑

n≤x

pow(n) =
1

3
c1x

3/2 +
1

4
c2x

4/3 +O(x6/5), (61)

where

c1 =
∏

p∈P

(
1 +

2

p3/2
− 1

p5/2

)
,

c2 =
∏

p∈P

(
1 +

1

p2/3
+

2

p4/3
− 1

p7/3

)
.

We remark that (61) is better than [8, Eq. (1)], where the error term is O(x4/3).

Theorem 47.
∑

n≤x

(−1)n−1 pow(n) =
A∗ζ(3/2)

3ζ(3)
x3/2 +

B∗ζ(4/3)

4ζ(2)
x4/3 +O(x6/5),

where the constants A∗ and B∗ are defined by (59).

Proof. Use formulas (60), (58) and partial summation. Alternatively, formula (61) and the
method of the present paper can be applied.

By partial summation again, we deduce from (60) and (54) that
∑

n≤x

1

pow(n)
= C̃x+O(R1/ pow(x)) (62)

where C̃ is defined by (55), R1/ pow(x) = x1/2δ(x), with δ(x) defined by (44), unconditionally,
and R1/ pow(x) = x2/5ω(x), with ω(x) defined by (45), assuming RH. Note that this error
term is better than O(x1/2), indicated in [8, Eq. (3)].

Theorem 48. ∑

n≤x

(−1)n−1 1

pow(n)
=

5

19
C̃x+O(R1/ pow(x)),

with the notation above.

Proof. Apply formulas (60), (56) and partial summation. Alternatively, formula (62) and
the method of the present paper can be used.
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4.13 Sum-of-bi-unitary-divisors function

Let σ∗∗(n) denote, as usual, the sum of bi-unitary divisors of n. Recall that a divisor d of n
is a bi-unitary divisor if the greatest common unitary divisor of d and n/d is 1. The function
σ∗∗ is multiplicative and for any prime power pν (ν ≥ 1),

σ∗∗(pν) =

{
σ(pν), if ν is odd;

σ(pν)− pν/2, if ν is even.

It is the result of Suryanarayana and Subbarao [32, Cor. 3.4.3] that

∑

n≤x

σ∗∗(n) =
1

2
C∗∗x2 +O(x(log x)3),

where

C∗∗ = ζ(2)ζ(3)
∏

p∈P

(
1− 2

p3
+

1

p4
+

1

p5
− 1

p6

)
.

Theorem 49. We have
∑

n≤x

(−1)n−1σ∗∗(n) = − 11

106
C∗∗x2 +O(x(log x)3).

Proof. Similar to the proof of (40), by applying Proposition 6 for f = σ∗∗.

Sitaramaiah and Subbarao [28, Thm. 3.2] established that

∑

n≤x

1

σ∗∗(n)
= A∗∗ log x+ B∗∗ +O(x−1(log x)14/3(log log x)4/3),

where A∗∗, B∗∗ are certain explicit constants.

Theorem 50. We have
∑

n≤x

(−1)n−1 1

σ∗∗(n)
= A∗∗

1 log x+ B∗∗
1 +O(xc(log x)14/3(log log x)4/3), (63)

where A∗∗
1 , B

∗∗
1 are explicit constants and c = (log 9/10)/(log 2)

.
= −0.152003.

Proof. Now Lemma 8 (theorem of Kaluza) cannot be used, since the sequence
(

1
σ∗∗(2ν)

)
ν≥0

is not log-convex. But it is easy to check that

1

σ∗∗(2ν)
≤ 4

5
· 1

2ν
(ν ≥ 1),

hence Corollary 13 can be applied with A = 4/5, q = 1/2, where M = q(A + 1) = 9/10 <
1.

Open Problem 51. Improve the error term of (63).
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4.14 Alternating sum-of-divisors function

Consider the function β(n) =
∑

d|n d λ(n/d) (n ≥ 1), where λ is the Liouville function. The

function β is multiplicative and β(pν) = pν−pν−1+pν−2−· · ·+(−1)ν for every prime power
pν (ν ≥ 1). See the survey paper of the author [38].

Proposition 52.

∞∑

n=1

(−1)n−1β(n)

ns
=

(
1− 2

2s
− 4

22s

)
ζ(s− 1)ζ(2s)

ζ(s)
(ℜs > 2). (64)

Proof. Use Proposition 1 and the representation

∞∑

n=1

β(n)

ns
=
ζ(s− 1)ζ(2s)

ζ(s)
(ℜs > 2).

Theorem 53.

∑

n≤x

(−1)n−1β(n) =
π2

120
x2 +O

(
x(log x)2/3(log log x)4/3

)
. (65)

Proof. Apply Proposition 6 for f = β. It is known that

∑

n≤x

β(n) =
π2

30
x2 +O

(
x(log x)2/3(log log x)4/3

)
,

see [38, Eq. (15)], which is a consequence of the result of Walfisz [39, Satz 4, p. 144] for
Euler’s ϕ function. The coefficient of the main term in (65) is from (64),

π2

30

[
1− 2

2s
− 4

22s

]

s=2

=
π2

120
.

It is known ([38, Eq. (17)]) that for every ε > 0,

∑

n≤x

1

β(n)
= K1 log x+K2 +O(x−1+ε), (66)

where K1 and K2 are constants. Since (β(2
ν))ν≥0 is nondecreasing and β(2ν) ≥ 2ν−1 (ν ≥ 1),

Corollary 10 can be applied (take q = 1/2). We deduce that

∑

n≤x

(−1)n−1 1

β(n)
= K3 log x+K4 +O(x−u) (67)

with some constants K3, K4 and some u > 0.

Open Problem 54. Improve the error terms of (66) and (67).
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4.15 Exponential divisor function

The exponential divisor function τ (e) is multiplicative and τ (e)(pν) = τ(ν) for every prime
power pν (ν ≥ 1), where τ is the classical divisor function. There are constants A1 and A2

such that ∑

n≤x

τ (e)(n) = A1x+ A2x
1/2 +O(Rτ (e)(x)),

where

A1 =
∏

p∈P

(
1 +

∞∑

ν=2

τ(ν)− τ(ν − 1)

pν

)

is the mean value of τ (e) and Rτ (e)(x) = x2/9 log x, as shown by Wu [41, Thm. 1]. This error
term is strongly related to estimates on the divisor function d(1, 2;n) =

∑
ab2=n 1. It can be

sharpened into O(x1057/4785+ε) by using [13, Thm. 1]. Also see [41, Remark, p. 135].
It follows from Proposition 2 that the limit

lim
x→∞

1

x

∑

n≤x

(−1)n−1τ (e)(n) = A1

(
2

1 +K
− 1

)

exists, where K =
∑∞

ν=1
τ(ν)
2ν

=
∑∞

ν=1
1

2ν−1
is the Erdős-Borwein constant, already quoted

above.

Open Problem 55. Investigate the alternating sums

∑

n≤x

(−1)n−1τ (e)(n),
∑

n≤x

(−1)n−1 1

τ (e)(n)
.

5 Generalized alternating sums

It is possible to investigate the following generalization of the alternating sums discussed
above. Let Q be an arbitrary subset of the set of primes P, let

tQ(n) :=

{
1, if q ∤ n for every q ∈ Q;

−1, otherwise,

and

DQ(f, s) :=
∞∑

n=1

tQ(n)
f(n)

ns
. (68)

If Q = {2}, then t{2}(n) = (−1)n−1 and (68) reduces to the alternating Dirichlet series
(4). If Q = {2, 3}, just to illustrate another special case, then we have

D{2,3}(f, s) =
f(1)

1s
− f(2)

2s
− f(3)

3s
− f(4)

4s
+
f(5)

5s
− f(6)

6s
+
f(7)

7s
+ · · · ,
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while the choice Q = ∅ gives the classical Dirichlet series (5).
Note that the function n 7→ tQ(n) is multiplicative if and only if Q = {q} having one

element. Proof: If Q = {q}, then the function t{q}(n) is multiplicative. On the other hand, if
there are distinct q1, q2 ∈ Q, then tQ(q1q2) = −1 6= 1 = (−1)(−1) = tQ(q1)tQ(q2). However,
the function

cQ(n) :=

{
1, if q ∤ n for every q ∈ Q;

0, otherwise;

is multiplicative for every Q ⊆ P.

Proposition 56. Let Q be an arbitrary subset of P. If f is a multiplicative function, then

DQ(f, s) = D(f, s)


2
∏

q∈Q

(
∞∑

ν=0

f(qν)

qνs

)−1

− 1


 ,

and if f is completely multiplicative, then

DQ(f, s) =
∏

p∈P

(
1− f(p)

ps

)−1
(
2
∏

q∈Q

(
1− f(q)

qs

)
− 1

)
,

formally or in case of convergence.

Proof. We have

DQ(f, s) = −
∞∑

n=1

f(n)

ns
+ 2

∞∑

n=1

cQ(n)
f(n)

ns
= −D(f, s) + 2

∏

p/∈Q

∞∑

ν=0

f(pν)

pνs

= −D(f, s) + 2D(f, s)
∏

q∈Q

(
∞∑

ν=0

f(qν)

qνs

)−1

= D(f, s)


2
∏

q∈Q

(
∞∑

ν=0

f(qν)

qνs

)−1

− 1


 .

If Q = {2}, then Proposition 56 reduces to Proposition 1.
Some of the discussed asymptotic formulas can also be generalized to certain subsets

Q ⊆ P. For example, we have the next result.

Theorem 57. Let Q be an arbitrary finite subset of P. Then

∑

n≤x

tQ(n)σ(n) =
π2

12

(
2
∏

p∈Q

(
1− 1

p

)(
1− 1

p2

)
− 1

)
x2 +O

(
x(log x)2/3

)
. (69)
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Proof. We have ∑

n≤x

tQ(n)σ(n) = −
∑

n≤x

σ(n) + 2
∑

n≤x

cQ(n)σ(n),

where cQ(n)σ(n) is multiplicative and

∞∑

n=1

cQ(n)σ(n)

ns
= ζ(s)ζ(s− 1)

∏

p∈Q

(
1− p+ 1

ps
+

p

p2s

)
.

It turns out that ∑

n≤x

cQ(n)σ(n) =
∑

d≤x

hQ(d)
∑

j≤x/d

σ(j),

where the function hQ is multiplicative and for every prime power pν (ν ≥ 1),

hQ(p
ν) =





−(p+ 1), if p ∈ Q, ν = 1;

p, if p ∈ Q, ν = 2;

0, otherwise.

Now the proof runs similar to the proof of (40).

In the case Q = {2} formula (69) reduces to (40).

Open Problem 58. Deduce asymptotic formulas for
∑

n≤x

tQ(n)σ(n)

and for similar sums if Q is an arbitrary fixed subset of the primes.
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