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Abstract

This paper shows that the Pfaffians and determinants of some skew centrosymmet-

ric matrices can be computed by a paired two-term recurrence relation, or a general

number sequence of second order. As a result, the complexities of the formulas are of

order n. Furthermore, the formulas have no divisions at all, i.e., they fall into the class

of breakdown-free algorithms.
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1 Introduction

The determinant is one of the basic parameters in matrix theory. The determinant of a
square matrix A = (ai,j) ∈ C

n×n is defined as

det(A) =
∑

σ∈Sn

sgn(σ)
n
∏

i=1

ai,σ(i),

where the symbol Sn denotes the group of permutations of sets with n elements and the
symbol sgn(σ) denotes the signature of σ ∈ Sn.

The Pfaffian of a skew-symmetric matrix A = (ai,j) ∈ C
2k×2k is defined by

Pf(A) =
1

2kk!

∑

σ∈S2k

sgn(σ)
k
∏

i=1

aσ(2i−1),σ(2i), (1)

and is closely related to the determinant. In fact, Cayley’s theorem states that the square
of the Pfaffian of a matrix is equal to the determinant of the matrix, i.e.,

det(A) = Pf(A)2.

Matrix A is called a centrosymmetric matrix if A = JAJ−1, where J is the anti-diagonal
matrix whose anti-diagonal elements are one with all others being zero. If A = −JAJ−1, the
matrix is said to be skew-centrosymmetric. Skew-centrosymmetric matrices arise in many
fields of science including numerical solutions of certain differential equations, digital signal
processing, information theory, statistics, linear systems theory, and some Markov processes
[1, 2, 3, 4, 5, 6].

In general, the complexities of the Pfaffian and the determinant are of the order O(n3).
This paper describes efficient computational formulas for the Pfaffians and determinants
of special matrices for which the complexities of the formulas are of the order O(n). The
formulas have no divisions at all, i.e., the formulas fall into the class of breakdown-free
algorithms.

2 Pfaffians of skew-centrosymmetric matrices

Definition 1. An = (ai,j) and Bn = (bi,j) denote n-by-n matrices with the following ele-
ments:

ai,j =











a, if j = i+ 1;

−a, if i = j + 1;

0, otherwise,

bi,j =

{

(−1)i+1b, if i+ j = n+ 1;

0, otherwise,
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where 1 ≤ i, j ≤ n.

Definition 2. Fn and Gn denote 2-by-2 block matrices of the following form:

Fn =

(

Ak Bk

(−1)kBk Ak

)

, Gn =

(

Ak −Bk

(−1)k+1Bk Ak

)

,

where n = 2k.

For example, if n = 10, it follows from Definition 2 that

F10 =

(

A5 B5

(−1)5B5 A5

)

=

































0 a 0 0 0 0 0 0 0 b

−a 0 a 0 0 0 0 0 −b 0
0 −a 0 a 0 0 0 b 0 0
0 0 −a 0 a 0 −b 0 0 0
0 0 0 −a 0 b 0 0 0 0
0 0 0 0 −b 0 a 0 0 0
0 0 0 b 0 −a 0 a 0 0
0 0 −b 0 0 0 −a 0 a 0
0 b 0 0 0 0 0 −a 0 a

−b 0 0 0 0 0 0 0 −a 0

































.

We now describe algorithms for computing the Pfaffians of Fn and Gn.

Theorem 3. Let {fn} and {gn} be the recursively defined sequences below:

fn = bgn−1 + a2fn−2 for f1 = b,

gn = −bfn−1 + a2gn−2 for g1 = −b.

Then, for n = 2k, we obtain

fk = Pf(Fn) and gk = Pf(Gn),

where f−1 = 0, f0 = 1 and g−1 = 0, g0 = 1.

Proof. The proof is done by induction on k. For k = 1,

F2 =

(

A1 B1

−B1 A1

)

=

(

0 b

−b 0

)

and G2 =

(

A1 −B1

B1 A1

)

=

(

0 −b

b 0

)

.

The definition of the Pfaffian in (1) clearly indicates that Pf(F2) = b and Pf(G2) = −b.
Thus, f1 = b = Pf(F2), g1 = −b = Pf(G2).
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Let us assume that the recurrence relations hold for all t ≤ k. Then we show that they
hold for k = t+ 1.

F2t+2 =

(

At+1 Bt+1

(−1)t+1Bt+1 At+1

)

=



















0 a 0 · · · 0 b

−a 0

0 At −Bt

...
... (−1)t+1Bt At 0
0 a

−b 0 · · · 0 −a 0



















. (2)

From the expansion formula along with 2t+ 2 column of (2), it follows that

Pf(F2t+2) = bPf(G2t) + aPf(M2t) = bgt + aPf(M2t), (3)

where

M2t =



















0 a 0 · · · · · · 0
−a 0 a 0 · · · 0
0 a
... 0 At−1 Bt−1
...

... (−1)t−1Bt−1 At−1

0 0



















. (4)

From the expansion formula along with the first row of (4), it follows that

Pf(M2t) = aPf(F2t−2) = aft−1. (5)

From (3) and (5), we have
ft+1 = bgt + a2ft−1.

The recurrence relation for gt+1 can be obtained similarly.

Corollary 4. fn = (−1)n−1bfn−1 + a2fn−2 with f−1 = 0 and f1 = 1.

Corollary 4 shows that the computational costs of Pf(Fn) and det(Fn)(= Pf(Fn)
2) are

of the order O(n). Furthermore, the recurrences in Corollary 4 have no divisions. Thus, no
breakdown occurs during the computation.

3 Determinant of the skew-centrosymmetric matrix

In this section, we consider the determinant of the matrix Fn with n = 2k. It is well known
from [3] that the determinant of the 2-by-2 block matrix holds

∣

∣

∣

∣

A B

C D

∣

∣

∣

∣

= det(AD − CB)
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if AC = CA. Applying the above formula to Fn in Definition 2, the determinant of matrix
Fn equals that of Tk := A2

k − (−1)kB2
k. Thus, we have

|Fn| = |Tk| = det

















−a2 + b2 0 a2

0 −2a2 + b2 0
. . .

a2 0
. . . . . . a2

. . . . . . −2a2 + b2 0
a2 0 −a2 + b2

















k×k

.

The matrix Tk belongs to the set of k-tridiagonal matrices. Sogabe and El-Mikkawy [8]
considered a fast block diagonalization of k-tridiagonal matrices using permutation matrices.
Exploiting the block diagonalization method, we can rearrange the matrix Tk as below.

(i) We consider the case where k is odd. Let us define the following matrices:

H k−1

2

= (hi,j) =











−2a2 + b2, if i = j;

a2, if i = j + 1 or j = i+ 1;

0, otherwise

and

K k+1

2

= (ki,j) =



















−a2 + b2, if i = j = 1 or i = j = k+1
2
;

−2a2 + b2, if i = j = 2 . . . k−1
2
;

a2, if i = j + 1 or j = i+ 1;

0, otherwise.

Then,

P TTkP =

(

H k−1

2

0

0 K k+1

2

)

,

where the permutation matrix P is determined by using the method in [8]. Obviously,

det(P TTkP ) = det Tk = detFn = det(H k−1

2

) det(K k+1

2

).

(ii) We consider the case where k is even. Let us define

N k

2

= (ni,j) =



















−a2 + b2, if i = j = k
2
;

−2a2 + b2, if i = j = 1 . . . k
2
− 1;

a2, if i = j + 1 or j = i+ 1;

0, otherwise
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and

Q k

2

= (qi,j) =



















−a2 + b2, if i = j = 1;

−2a2 + b2, if i = j = 2 . . . k
2
;

a2, if i = j + 1 or j = i+ 1;

0, otherwise.

Then,

P TTkP =

(

N k

2

0

0 Q k

2

)

.

Obviously,
det(P TTkP ) = det Tk = detFn = det(N k

2

) det(Q k

2

).

It can be seen that det(N k

2

) = det(Q k

2

).

El-Mikkawy [9] obtained two-term recurrence relation for the determinants of tridiagonal
matrices, i.e.,

vi =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

d1 a1 0 . . . 0

b2 d2 a2
. . .

...

0 b3 d3
. . . 0

...
. . . . . . . . . ai−1

0 . . . 0 bi di

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where vi = divi−1 − biai−1vi−2 for v0 = 1 and v−1 = 0. Using this relation and the Laplace
expansion, we obtain the result. If k is even, then

det(N k

2

) = det(Q k

2

) = (−a2 + b2)w k

2
−1 − a4w k

2
−2.

If k is odd, then

det(K k+1

2

) =
(

−a2 + b2
)2

w k−3

2

− 2a4(−a2 + b2)w k−5

2

+ a8w k−7

2

,

det(H k−1

2

) = w k−1

2

,

where

wi =

∣

∣

∣

∣

∣

∣

∣

∣

∣

−2a2 + b2 a2 . . . 0

a2 −2a2 + b2
. . .

...
...

. . . . . . a2

0 . . . a2 −2a2 + b2

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Here wi = (−2a2 + b2)wi−1 − a4wi−2 for w0 = 1 and w−1 = 0 .
Consequently, for n = 2k, we obtain
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(i) If k is odd,

detFn = det Tk

= w k−1

2

(

(

−a2 + b2
)2

w k−3

2

− 2a4(−a2 + b2)w k−5

2

+ a8w k−7

2

)

.

(ii) If k is even, detFn = det Tk =
(

(−a2 + b2)w k

2
−1 − a4w k

2
−2

)2

.

4 Examples

Some examples of the Pfaffian and the determinant of the matrix Fn (n = 2k) are shown
in the following tables. Here Fn, Pn, and Jn are the nth Fibonacci, Pell, and Jacobsthal
numbers, respectively.

a = i, b = 1 a = i, b = 2 a = i
√
2, b = 1

k Pf(F2k) Pf(F2k) Pf(F2k)

1 F2 = 1 P2 = 2 J2 = 1
2 −F3 = −2 −P3 = −5 −J3 = −3
3 −F4 = −3 −P4 = −12 −J4 = −5
4 F5 = 5 P5 = 29 J5 = 11
5 F6 = 8 P6 = 70 J6 = 21
6 −F7 = −13 −P7 = −169 −J7 = −43
7 −F8 = −21 −P8 = −408 −J8 = −85
8 F9 = 34 P9 = 985 J9 = 171
...

...
...

...
≡ 0, 1 (mod 4) Fk+1 Pk+1 Jk+1

≡ 2, 3 (mod 4) −Fk+1 −Pk+1 −Jk+1

Examples of the Pfaffians
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a = i, b = 1 a = i, b = 2 a = i
√
2, b = 1

k det (F2k) det (F2k) det (F2k)

1 F 2
2 P 2

2 J2
2

2 F 2
3 P 2

3 J2
3

3 F 2
4 P 2

4 J2
4

4 F 2
5 P 2

5 J2
5

5 F 2
6 P 2

6 J2
6

6 F 2
7 P 2

7 J2
7

7 F 2
8 P 2

8 J2
8

8 F 2
9 P 2

9 J2
9

...
...

...
...

t F 2
t+1 P 2

t+1 J2
t+1

Examples of the determinants
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