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Abstract

We obtain factored closed-form expressions for the sums of cubes of Fibonacci and

Lucas numbers.

1 Introduction

The Fibonacci numbers, Fn, and Lucas numbers, Ln, are defined, for n ∈ Z, as usual, through
the recurrence relations Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1 and Ln = Ln−1 + Ln−2, L0 = 2,
L1 = 1, with F

−n = (−1)n−1Fn and L
−n = (−1)nLn.

Clary and Hemenway [2] derived the remarkable formulas

4
n

∑

k=1

F 3
2k =

{

F 2
nL

2
n+1Fn−1Ln+2, if n is even;

L2
nF

2
n+1Ln−1Fn+2, if n is odd,

(1)

and

8
n

∑

k=1

F 3
4k = F 2

2nF
2
2n+2(L4n+2 + 6) . (2)
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In this present paper we will derive the following corresponding Lucas counterparts of (1)
and (2):

4
n

∑

k=1

L3
2k =

{

5FnFn+1(LnLn+1L2n+1 + 16), if n is even;

LnLn+1(5FnFn+1L2n+1 + 16), if n is odd,
(3)

and

8
n

∑

k=1

L3
4k = F2nL2n+2(5L2nF2n+2F4n+2 + 32) . (4)

In fact we will derive the following more general results:

• If r is odd, then

L3r

n
∑

k=1

F 3
2rk =

{

F 2
rnL

2
rn+r(LrnFrn+r + Fr), if n is even;

L2
rnF

2
rn+r(FrnLrn+r + Fr), if n is odd,

(5)

and

L3r

n
∑

k=1

L3
2rk =

{

5FrnFrn+r(LrnLrn+rL2rn+r + 4(L2r + 1)), if n is even;

LrnLrn+r(5FrnFrn+rL2rn+r + 4(L2r + 1)), if n is odd.
(6)

• If r is even, then

F3r

n
∑

k=1

F 3
2rk = F 2

rnF
2
rn+r(LrnLrn+r + Lr) (7)

and

F3r

n
∑

k=1

L3
2rk = FrnLrn+r(5LrnFrn+rF2rn+r + 4(L2r + 1)) . (8)

As variations on identities (5) and (7) we will prove

• If r is odd, then

L3r

n
∑

k=1

F 3
2rk =

{

FrnLrn+r(LrnFrn+rF2rn+r − 2F 2
r ), if n is even;

LrnFrn+r(FrnLrn+rF2rn+r − 2F 2
r ), if n is odd.

• If r is even, then

5F3r

n
∑

k=1

F 3
2rk = FrnFrn+r(LrnLrn+rL2rn+r − 2L2

r) .
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2 Required identities and preliminary results

2.1 Telescoping summation identity

The following telescoping summation identity is a special case of more general identities
proved by Adegoke [1].

Lemma 1. If f(k) is a real sequence and m, q and n are positive integers, then

n
∑

k=1

[f(mk +mq)− f(mk)] =

q
∑

k=1

f(mk +mn)−

q
∑

k=1

f(mk) .

2.2 First-power Fibonacci summation identities

Lemma 2. If r and n are integers, then

(i) If r is even, then

Fr

n
∑

k=1

F2rk = FrnFrn+r .

(ii) If r is odd, then

Lr

n
∑

k=1

F2rk =

{

FrnLrn+r, if n is even;

LrnFrn+r, if n is odd.

Proof. Setting v = 2r and u = 2rk in the identity

Lu+v − (−1)vLu−v = 5FuFv (9)

gives
L2rk+2r − L2rk−2r = 5F2rF2rk . (10)

Taking f(k) = Lk−2r, q = 2 and m = 2r in Lemma 1 and employing identity (10) we have

5F2r

n
∑

k=1

F2rk =
2

∑

k=1

L2rk+2rn−2r −

2
∑

k=1

L2rk−2r

= L2rn+2r + L2rn − L2r − 2 .

(11)

If r is even, then on account of the identity

Lu+v + (−1)vLu−v = LuLv, (12)

we have
L2rn+2r + L2rn = LrL2rn+r, L2r + 2 = L2

r ,

3



and since
F2u = FuLu , (13)

identity (11) now becomes

5Fr

n
∑

k=1

F2rk = L2rn+r − Lr

= 5FrnFrn+r , by (9) ,

(14)

that is,

Fr

n
∑

k=1

F2rk = FrnFrn+r, r even ,

and the first part of Lemma 2 is proved.
If r is odd, then on account of the identities (9) and (12), we have

L2rn+2r + L2rn = 5FrF2rn+r, L2r + 2 = 5F 2
r ,

and identity (11) reduces to

Lr

n
∑

k=1

F2rk = F2rn+r − Fr

=

{

FrnLrn+r, if n is even;

LrnFrn+r, if n is odd,

and the second part of Lemma 2 is proved. In the last stage of the above derivation we made
use of the identities

Fu+v − (−1)vFu−v = FvLu (15)

and
Fu+v + (−1)vFu−v = LvFu . (16)

2.3 First-power Lucas summation identities

Lemma 3. If r and n are integers, then

(i) If r is even, then

Fr

n
∑

k=1

L2rk = FrnLrn+r .
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(ii) If r is odd, then

Lr

n
∑

k=1

L2rk =

{

5FrnFrn+r, if n is even;

LrnLrn+r, if n is odd.

Proof. Setting v = 2r and u = 2rk in the identity (15) gives

F2rk+2r − F2rk−2r = F2rL2rk . (17)

Taking f(k) = Fk−2r, q = 2 and m = 2r in Lemma 1 and employing identity (17) we have

F2r

n
∑

k=1

L2rk =
2

∑

k=1

F2rk+2rn−2r −

2
∑

k=1

F2rk−2r

= F2rn+2r + F2rn − F2r .

(18)

If r is even, then choosing v = r and u = 2rn+ r in identity (16) gives

F2rn+2r + F2rn = LrF2rn+r (19)

and, on account of identity (13), the identity (18) reduces to

Fr

n
∑

k=1

L2rk = F2rn+r − Fr

= Frn+r+rn − Frn+r−rn

= FrnLrn+r , by identity (15),

and the first part of Lemma 3 is proved.
If r is odd, then choosing v = r and u = 2rn+ r in identity (15) gives

F2rn+2r + F2rn = FrL2rn+r (20)

and, again on account of identity (13), the identity (18) now reduces to

Lr

n
∑

k=1

L2rk = L2rn+r − Lr

= Lrn+r+rn − Lrn+r−rn

=

{

5FrnFrn+r, if n is even;

LrnLrn+r, if n is odd,

where in the last step we used the identities (9) and (12).
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2.4 Other identities

Lemma 4. If r and n are integers, then

F3rnF3rn+3r

FrnFrn+r

= LrnLrn+rL2rn+r + L2r + (−1)r−1.

Proof. Using the identity Clary [2, Eq. (36)], or Dresel [3, Eq. (3.3)], namely,

F3u = 5F 3
u + 3(−1)uFu , (21)

we have

F3rnF3rn+3r

FrnFrn+r

= (5F 2
rn + 3(−1)rn)(5F 2

rn+r + 3(−1)rn+r)

= (L2
rn − (−1)rn)(L2

rn+r − (−1)rn+r)

= L2
rnL

2
rn+r − (−1)rn+rL2

rn − (−1)rnL2
rn+r + (−1)r ,

(22)

where we have also made use of the identity

5F 2
u − L2

u = (−1)u−14 . (23)

Now,

L2
rnL

2
rn+r = LrnLrn+r(LrnLrn+r)

= LrnLrn+r(L2rn+r + (−1)rnLr) by (12)

= LrnLrn+rL2rn+r + (−1)rnLrnLrn+rLr .

Therefore

F3rnF3rn+3r

FrnFrn+r

= LrnLrn+rL2rn+r + (−1)rnLrn+r(LrnLr − Lrn+r)− (−1)rn+rL2
rn + (−1)r .

But

(−1)rnLrn+r(LrnLr − Lrn+r)

= (−1)rnLrn+r(Lrn+r + (−1)rLrn−r − Lrn+r), by (12)

= (−1)rn+rLrn+rLrn−r

= (−1)rn+r(L2rn + (−1)rn−rL2r), again by (12)

= (−1)rn+rL2rn + L2r .

Thus

F3rnF3rn+3r

FrnFrn+r

= LrnLrn+rL2rn+r + (−1)rn+rL2rn + L2r − (−1)rn+rL2
rn + (−1)r

= LrnLrn+rL2rn+r + (−1)rn+r(L2rn − L2
rn) + L2r + (−1)r .

Finally, using the identity
L2u = L2

u + (−1)u−12 , (24)

obtained by setting v = u in identity (12), we have the statement of the Lemma.
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Lemma 5. If r and n are integers, then

L3rnL3rn+3r

LrnLrn+r

= 5FrnFrn+rL2rn+r + L2r + (−1)r−1.

Proof. Using the following identity, of Dresel [3, Eq. (1.6)]

L3u = L3
u − 3(−1)uLu , (25)

we have

L3rnL3rn+3r

LrnLrn+r

= (L2
rn − 3(−1)rn)(L2

rn+r − 3(−1)rn+r)

= (5F 2
rn + (−1)rn)(5F 2

rn+r + (−1)rn+r), by (23)

= 25F 2
rnF

2
rn+r + (−1)rn+r5F 2

rn + (−1)rn5F 2
rn+r + (−1)r ,

and the rest of the calculation then proceeds as in the proof of Lemma 4, the basic required
identities now being (9), (16) and the identity

L2u = 5F 2
u + (−1)u2, (26)

obtained by setting v = u in identity (9).

Lemma 6. If r and n are integers, then

L3rnF3rn+3r

LrnFrn+r

= 5FrnLrn+rF2rn+r + L2r + (−1)r.

Lemma 7. If r and n are integers, then

F3rnL3rn+3r

FrnLrn+r

= 5LrnFrn+rF2rn+r + L2r + (−1)r.

Different but equivalent versions of Lemmas 4–7 are given below:

Lemma 8. If r and n are integers, then

F3rnF3rn+3r

FrnFrn+r

= L2
2rn+r + (−1)nrL2

rn+r + (−1)(n−1)rL2
rn + L2

r + (−1)r−17 .

Proof. The proof is similar to that of Lemma 4, but here we use

L2
rnL

2
rn+r = (L2rn+r + (−1)rnLr)

2

= L2
2rn+r + L2

r + 2(−1)rn(LrL2rn+r)

= L2
2rn+r + L2

r + 2(−1)rn(L2rn+2r + (−1)rL2rn)

= L2
2rn+r + L2

r + 2(−1)rn(L2
rn+r + (−1)rn+r−12 + (−1)r(L2

rn + (−1)rn−12)),

and substitute in (22).
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Lemma 9. If r and n are integers, then

L3rnL3rn+3r

LrnLrn+r

= L2
2rn+r + (−1)nr−1L2

rn+r − (−1)(n−1)rL2
rn + L2

r + (−1)r .

Lemma 10. If r and n are integers, then

L3rnF3rn+3r

LrnFrn+r

= 5F 2
2rn+r + (−1)nr−15F 2

rn+r + (−1)(n−1)r5F 2
rn + 5F 2

r + (−1)r3 .

Lemma 11. If r and n are integers, then

F3rnL3rn+3r

FrnLrn+r

= 5F 2
2rn+r + (−1)nr5F 2

rn+r − (−1)(n−1)r5F 2
rn + 5F 2

r + (−1)r3 .

3 Main results

3.1 Sums of cubes of Fibonacci numbers

Theorem 12. If r and n are integers such that r is odd, then

L3r

n
∑

k=1

F 3
2rk =

{

FrnLrn+r(LrnFrn+rF2rn+r − 2F 2
r ), if n is even;

LrnFrn+r(FrnLrn+rF2rn+r − 2F 2
r ), if n is odd.

Proof. Setting u = 2rk in identity (21) and summing, we have

5
n

∑

k=1

F 3
2rk =

n
∑

k=1

F6rk − 3
n

∑

k=1

F2rk ,

so that,

5L3r

n
∑

k=1

F 3
2rk = L3r

n
∑

k=1

F6rk − 3
L3r

Lr

Lr

n
∑

k=1

F2rk

= L3r

n
∑

k=1

F6rk − 3(L2
r + 3)Lr

n
∑

k=1

F2rk .

(27)

• If n is even, then, by Lemma 2, identity (27) can be written as

5L3r

n
∑

k=1

F 3
2rk = F3rnL3rn+3r − 3(L2

r + 3)FrnLrn+r ,

so that

5L3r

∑n

k=1 F
3
2rk

FrnLrn+r

=
F3rnL3rn+3r

FrnLrn+r

− 3(L2
r + 3)

= 5LrnFrn+rF2rn+r + L2r − 1− 3L2
r − 9, by Lemma 7

= 5LrnFrn+rF2rn+r − 10F 2
r , by (23) and (24) .
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• If n is odd, then, by Lemma 2, we have

5L3r

n
∑

k=1

F 3
2rk = L3rnF3rn+3r − 3(L2

r + 3)LrnFrn+r ,

so that

5L3r

∑n

k=1 F
3
2rk

LrnFrn+r

=
L3rnF3rn+3r

LrnFrn+r

− 3(L2
r + 3)

= 5FrnLrn+rF2rn+r + L2r − 1− 3L2
r − 9, by Lemma 7

= 5FrnLrn+rF2rn+r − 10F 2
r , by (23) and (24) .

Theorem 13. If r and n are integers such that r is even, then

5F3r

n
∑

k=1

F 3
2rk = FrnFrn+r(LrnLrn+rL2rn+r − 2L2

r) .

Proof.

5F3r

n
∑

k=1

F 3
2rk = F3r

n
∑

k=1

F6rk − 3
F3r

Fr

Fr

n
∑

k=1

F2rk

= F3rnF3rn+3r − 3(5F 2
r + 3)FrnFrn+r,

by Lemma 2 and identity (21) ,

so that

5F3r

∑n

k=1 F
3
2rk

FrnFrn+r

=
F3rnF3rn+3r

FrnFrn+r

− 3(5F 2
r + 3)

= LrnLrn+rL2rn+r + L2r − 1− 15F 2
r − 9

(by Lemma 4 and identity (21)) ,

= LrnLrn+rL2rn+r − 2L2
r, by (23), (24) and (26) .

Theorem 14. If r and n are integers such that r is odd, then

L3r

n
∑

k=1

F 3
2rk =

{

F 2
rnL

2
rn+r(LrnFrn+r + Fr), if n is even;

L2
rnF

2
rn+r(FrnLrn+r + Fr), if n is odd.

9



Proof. • If n is even, then from Lemma 2 and identity (27) we have

5L3r

∑n

k=1 F
3
2rk

FrnLrn+r

=
F3rnL3rn+3r

FrnLrn+r

− 3(L2
r + 3)

= 5F 2
2rn+r + 5F 2

rn+r + 5F 2
rn + 5F 2

r − 3− 3L2
r − 9, by Lemma 11

= 5F 2
2rn+r + 5F 2

rn+r + 5F 2
rn − 10F 2

r by identity (23) ,

so that

L3r

∑n

k=1 F
3
2rk

FrnLrn+r

= F 2
2rn+r + F 2

rn+r + F 2
rn − 2F 2

r

= (F 2
2rn+r − F 2

r ) + (F 2
rn+r + F 2

rn)− F 2
r .

Using the following identity, derived by Howard [4],

F 2
u + (−1)u+v−1F 2

v = Fu−vFu+v , (28)

we have

L3r

∑n

k=1 F
3
2rk

FrnLrn+r

= F2rnF2rn+2r + FrF2rn+r − F 2
r

= F2rnF2rn+2r + Fr(F2rn+r − Fr)

= F2rnF2rn+2r + FrFrnLrn+r, by identity (15)

= FrnLrn+rLrnFrn+r + FrFrnLrn+r

= FrnLrn+r(LrnFrn+r + Fr) .

• If n is odd, then from Lemma 2 and identity (27) we have

5L3r

∑n

k=1 F
3
2rk

LrnFrn+r

=
L3rnF3rn+3r

LrnFrn+r

− 3(L2
r + 3)

= 5F 2
2rn+r + 5F 2

rn+r + 5F 2
rn + 5F 2

r − 3− 3L2
r − 9, by Lemma 10

= 5F 2
2rn+r + 5F 2

rn+r + 5F 2
rn − 10F 2

r by identity (23) ,

so that

L3r

∑n

k=1 F
3
2rk

LrnFrn+r

= F 2
2rn+r + F 2

rn+r + F 2
rn − 2F 2

r

= (F 2
2rn+r − F 2

r ) + (F 2
rn+r + F 2

rn)− F 2
r .

Using identity (28), we have

L3r

∑n

k=1 F
3
2rk

LrnFrn+r

= F2rnF2rn+2r + FrF2rn+r − F 2
r

= F2rnF2rn+2r + Fr(F2rn+r − Fr)

= F2rnF2rn+2r + FrLrnFrn+r, by identity (16)

= FrnLrn+rLrnFrn+r + FrLrnFrn+r

= LrnFrn+r(FrnLrn+r + Fr) .
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Theorem 15. If r and n are integers such that r is even, then

F3r

n
∑

k=1

F 3
2rk = F 2

rnF
2
rn+r(LrnLrn+r + Lr) . (29)

Proof.

5F3r

n
∑

k=1

F 3
2rk = F3r

n
∑

k=1

F6rk − 3
F3r

Fr

Fr

n
∑

k=1

F2rk

= F3rnF3rn+3r − 3(5F 2
r + 3)FrnFrn+r ,

so that

5F3r

∑n

k=1 F
3
2rk

FrnFrn+r

=
F3rnF3rn+3r

FrnFrn+r

− 3(5F 2
r + 3)

= L2
2rn+r + L2

rn+r + L2
rn + L2

r − 7− 15F 2
r − 9, by Lemma 8

= L2
2rn+r + L2

rn+r − 2L2
r + 5F 2

rn, by (23)

= (L2
2rn+r − L2

r) + (L2
rn+r − L2

r) + 5F 2
rn .

Using the identity (derived by Howard [4])

L2
u + (−1)u+v−1L2

v = 5Fu−vFu+v , (30)

we see that
L2
2rn+r − L2

r = 5F2rnF2rn+2r = 5FrnFrn+rLrnLrn+r (31)

and
L2
rn+r − L2

r = 5FrnFrn+2r . (32)

Thus,

F3r

∑n

k=1 F
3
2rk

FrnFrn+r

= FrnFrn+rLrnLrn+r + FrnFrn+2r + F 2
rn

= FrnFrn+rLrnLrn+r + Frn(Frn + Frn+2r)

= FrnFrn+rLrnLrn+r + FrnFrn+rLr, by identity (16)

= FrnFrn+r(LrnLrn+r + Lr) .

11



3.2 Sums of cubes of Lucas numbers

Theorem 16. If r and n are integers such that r is odd, then

L3r

n
∑

k=1

L3
2rk =

{

5FrnFrn+r(LrnLrn+rL2rn+r + 4(L2r + 1)), if n is even;

LrnLrn+r(5FrnFrn+rL2rn+r + 4(L2r + 1)), if n is odd.

Proof. Using identity (25) with u = 2rk, we have

n
∑

k=1

L3
2rk =

n
∑

k=1

L6rk + 3
n

∑

k=1

L2rk ,

so that

L3r

n
∑

k=1

L3
2rk = L3r

n
∑

k=1

L6rk + 3
L3r

Lr

Lr

n
∑

k=1

L2rk

= L3r

n
∑

k=1

L6rk + 3(L2
r + 3)Lr

n
∑

k=1

L2rk, by (25) .

• If n is even, then by Lemma 3 we have

L3r

n
∑

k=1

L3
2rk = 5F3rnF3rn+3r + 3(L2

r + 3)5FrnFrn+r , (33)

so that

L3r

∑n

k=1 L
3
2rk

5FrnFrn+r

=
F3rnF3rn+3r

FrnFrn+r

+ 3(L2
r + 3)

= LrnLrn+rL2rn+r + L2r + 1 + 3L2
r + 9, by Lemma 4

= LrnLrn+rL2rn+r + 4(L2r + 1), by (24) .

• If n is odd, then by Lemma 3 we have

L3r

n
∑

k=1

L3
2rk = L3rnL3rn+3r + 3(L2

r + 3)LrnLrn+r , (34)

so that

L3r

∑n

k=1 L
3
2rk

LrnLrn+r

=
L3rnL3rn+3r

LrnLrn+r

+ 3(L2
r + 3)

= 5FrnFrn+rL2rn+r + L2r + 1 + 3L2
r + 9, by Lemma 5

= 5FrnFrn+rL2rn+r + 4(L2r + 1), by (24) .
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Theorem 17. If r and n are integers such that r is even, then

F3r

n
∑

k=1

L3
2rk = FrnLrn+r(5LrnFrn+rF2rn+r + 4(L2r + 1)) .

Proof.

F3r

n
∑

k=1

L3
2rk = F3r

n
∑

k=1

L6rk + 3
F3r

Fr

Fr

n
∑

k=1

L2rk

= F3r

n
∑

k=1

L6rk + 3(5F 2
r + 3)Fr

n
∑

k=1

L2rk, by identity (21)

= F3rnL3rn+3r + 3(5F 2
r + 3)FrnLrn+r, by Lemma 3 .

Thus,

F3r

∑n

k=1 L
3
2rk

FrnLrn+r

=
F3rnL3rn+3r

FrnLrn+r

+ 3(5F 2
r + 3)

= 5LrnFrn+rF2rn+r + L2r + 1 + 15F 2
r + 9, by Lemma 7

= 5LrnFrn+rF2rn+r + 4(L2r + 1), by (24) and (26) .
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