Journal of Integer Sequences, Vol. 21 (2018), Article 18.6.8

Factored Closed-form Expressions for the Sums of Cubes of Fibonacci and Lucas Numbers

Kunle Adegoke
Department of Physics and Engineering Physics
Obafemi Awolowo University
220005 Ile-Ife
Nigeria
adegoke00@gmail.com

Abstract

We obtain factored closed-form expressions for the sums of cubes of Fibonacci and Lucas numbers.

1 Introduction

The Fibonacci numbers, F_{n}, and Lucas numbers, L_{n}, are defined, for $n \in \mathbb{Z}$, as usual, through the recurrence relations $F_{n}=F_{n-1}+F_{n-2}, F_{0}=0, F_{1}=1$ and $L_{n}=L_{n-1}+L_{n-2}, L_{0}=2$, $L_{1}=1$, with $F_{-n}=(-1)^{n-1} F_{n}$ and $L_{-n}=(-1)^{n} L_{n}$.

Clary and Hemenway [2] derived the remarkable formulas

$$
4 \sum_{k=1}^{n} F_{2 k}^{3}= \begin{cases}F_{n}^{2} L_{n+1}^{2} F_{n-1} L_{n+2}, & \text { if } n \text { is even } \tag{1}\\ L_{n}^{2} F_{n+1}^{2} L_{n-1} F_{n+2}, & \text { if } n \text { is odd }\end{cases}
$$

and

$$
\begin{equation*}
8 \sum_{k=1}^{n} F_{4 k}^{3}=F_{2 n}^{2} F_{2 n+2}^{2}\left(L_{4 n+2}+6\right) . \tag{2}
\end{equation*}
$$

In this present paper we will derive the following corresponding Lucas counterparts of (1) and (2):

$$
4 \sum_{k=1}^{n} L_{2 k}^{3}= \begin{cases}5 F_{n} F_{n+1}\left(L_{n} L_{n+1} L_{2 n+1}+16\right), & \text { if } n \text { is even } \tag{3}\\ L_{n} L_{n+1}\left(5 F_{n} F_{n+1} L_{2 n+1}+16\right), & \text { if } n \text { is odd }\end{cases}
$$

and

$$
\begin{equation*}
8 \sum_{k=1}^{n} L_{4 k}^{3}=F_{2 n} L_{2 n+2}\left(5 L_{2 n} F_{2 n+2} F_{4 n+2}+32\right) . \tag{4}
\end{equation*}
$$

In fact we will derive the following more general results:

- If r is odd, then

$$
L_{3 r} \sum_{k=1}^{n} F_{2 r k}^{3}= \begin{cases}F_{r n}^{2} L_{r n+r}^{2}\left(L_{r n} F_{r n+r}+F_{r}\right), & \text { if } n \text { is even; } \tag{5}\\ L_{r n}^{2} F_{r n+r}^{2}\left(F_{r n} L_{r n+r}+F_{r}\right), & \text { if } n \text { is odd }\end{cases}
$$

and

$$
L_{3 r} \sum_{k=1}^{n} L_{2 r k}^{3}= \begin{cases}5 F_{r n} F_{r n+r}\left(L_{r n} L_{r n+r} L_{2 r n+r}+4\left(L_{2 r}+1\right)\right), & \text { if } n \text { is even; } \tag{6}\\ L_{r n} L_{r n+r}\left(5 F_{r n} F_{r n+r} L_{2 r n+r}+4\left(L_{2 r}+1\right)\right), & \text { if } n \text { is odd }\end{cases}
$$

- If r is even, then

$$
\begin{equation*}
F_{3 r} \sum_{k=1}^{n} F_{2 r k}^{3}=F_{r n}^{2} F_{r n+r}^{2}\left(L_{r n} L_{r n+r}+L_{r}\right) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{3 r} \sum_{k=1}^{n} L_{2 r k}^{3}=F_{r n} L_{r n+r}\left(5 L_{r n} F_{r n+r} F_{2 r n+r}+4\left(L_{2 r}+1\right)\right) . \tag{8}
\end{equation*}
$$

As variations on identities (5) and (7) we will prove

- If r is odd, then

$$
L_{3 r} \sum_{k=1}^{n} F_{2 r k}^{3}= \begin{cases}F_{r n} L_{r n+r}\left(L_{r n} F_{r n+r} F_{2 r n+r}-2 F_{r}^{2}\right), & \text { if } n \text { is even } \\ L_{r n} F_{r n+r}\left(F_{r n} L_{r n+r} F_{2 r n+r}-2 F_{r}^{2}\right), & \text { if } n \text { is odd }\end{cases}
$$

- If r is even, then

$$
5 F_{3 r} \sum_{k=1}^{n} F_{2 r k}^{3}=F_{r n} F_{r n+r}\left(L_{r n} L_{r n+r} L_{2 r n+r}-2 L_{r}^{2}\right)
$$

2 Required identities and preliminary results

2.1 Telescoping summation identity

The following telescoping summation identity is a special case of more general identities proved by Adegoke [1].

Lemma 1. If $f(k)$ is a real sequence and m, q and n are positive integers, then

$$
\sum_{k=1}^{n}[f(m k+m q)-f(m k)]=\sum_{k=1}^{q} f(m k+m n)-\sum_{k=1}^{q} f(m k) .
$$

2.2 First-power Fibonacci summation identities

Lemma 2. If r and n are integers, then
(i) If r is even, then

$$
F_{r} \sum_{k=1}^{n} F_{2 r k}=F_{r n} F_{r n+r} .
$$

(ii) If r is odd, then

$$
L_{r} \sum_{k=1}^{n} F_{2 r k}= \begin{cases}F_{r n} L_{r n+r}, & \text { if } n \text { is even } ; \\ L_{r n} F_{r n+r}, & \text { if } n \text { is odd } .\end{cases}
$$

Proof. Setting $v=2 r$ and $u=2 r k$ in the identity

$$
\begin{equation*}
L_{u+v}-(-1)^{v} L_{u-v}=5 F_{u} F_{v} \tag{9}
\end{equation*}
$$

gives

$$
\begin{equation*}
L_{2 r k+2 r}-L_{2 r k-2 r}=5 F_{2 r} F_{2 r k} \tag{10}
\end{equation*}
$$

Taking $f(k)=L_{k-2 r}, q=2$ and $m=2 r$ in Lemma 1 and employing identity (10) we have

$$
\begin{align*}
5 F_{2 r} \sum_{k=1}^{n} F_{2 r k} & =\sum_{k=1}^{2} L_{2 r k+2 r n-2 r}-\sum_{k=1}^{2} L_{2 r k-2 r} \tag{11}\\
& =L_{2 r n+2 r}+L_{2 r n}-L_{2 r}-2 .
\end{align*}
$$

If r is even, then on account of the identity

$$
\begin{equation*}
L_{u+v}+(-1)^{v} L_{u-v}=L_{u} L_{v}, \tag{12}
\end{equation*}
$$

we have

$$
L_{2 r n+2 r}+L_{2 r n}=L_{r} L_{2 r n+r}, \quad L_{2 r}+2=L_{r}^{2},
$$

and since

$$
\begin{equation*}
F_{2 u}=F_{u} L_{u}, \tag{13}
\end{equation*}
$$

identity (11) now becomes

$$
\begin{align*}
5 F_{r} \sum_{k=1}^{n} F_{2 r k} & =L_{2 r n+r}-L_{r} \tag{14}\\
& =5 F_{r n} F_{r n+r}, \quad \text { by }(9),
\end{align*}
$$

that is,

$$
F_{r} \sum_{k=1}^{n} F_{2 r k}=F_{r n} F_{r n+r}, \quad r \text { even }
$$

and the first part of Lemma 2 is proved.
If r is odd, then on account of the identities (9) and (12), we have

$$
L_{2 r n+2 r}+L_{2 r n}=5 F_{r} F_{2 r n+r}, \quad L_{2 r}+2=5 F_{r}^{2}
$$

and identity (11) reduces to

$$
\begin{aligned}
L_{r} \sum_{k=1}^{n} F_{2 r k} & =F_{2 r n+r}-F_{r} \\
& = \begin{cases}F_{r n} L_{r n+r}, & \text { if } n \text { is even; } \\
L_{r n} F_{r n+r}, & \text { if } n \text { is odd, }\end{cases}
\end{aligned}
$$

and the second part of Lemma 2 is proved. In the last stage of the above derivation we made use of the identities

$$
\begin{equation*}
F_{u+v}-(-1)^{v} F_{u-v}=F_{v} L_{u} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{u+v}+(-1)^{v} F_{u-v}=L_{v} F_{u} . \tag{16}
\end{equation*}
$$

2.3 First-power Lucas summation identities

Lemma 3. If r and n are integers, then
(i) If r is even, then

$$
F_{r} \sum_{k=1}^{n} L_{2 r k}=F_{r n} L_{r n+r}
$$

(ii) If r is odd, then

$$
L_{r} \sum_{k=1}^{n} L_{2 r k}= \begin{cases}5 F_{r n} F_{r n+r}, & \text { if } n \text { is even } ; \\ L_{r n} L_{r n+r}, & \text { if } n \text { is odd } .\end{cases}
$$

Proof. Setting $v=2 r$ and $u=2 r k$ in the identity (15) gives

$$
\begin{equation*}
F_{2 r k+2 r}-F_{2 r k-2 r}=F_{2 r} L_{2 r k} \tag{17}
\end{equation*}
$$

Taking $f(k)=F_{k-2 r}, q=2$ and $m=2 r$ in Lemma 1 and employing identity (17) we have

$$
\begin{align*}
F_{2 r} \sum_{k=1}^{n} L_{2 r k} & =\sum_{k=1}^{2} F_{2 r k+2 r n-2 r}-\sum_{k=1}^{2} F_{2 r k-2 r} \tag{18}\\
& =F_{2 r n+2 r}+F_{2 r n}-F_{2 r} .
\end{align*}
$$

If r is even, then choosing $v=r$ and $u=2 r n+r$ in identity (16) gives

$$
\begin{equation*}
F_{2 r n+2 r}+F_{2 r n}=L_{r} F_{2 r n+r} \tag{19}
\end{equation*}
$$

and, on account of identity (13), the identity (18) reduces to

$$
\begin{aligned}
F_{r} \sum_{k=1}^{n} L_{2 r k} & =F_{2 r n+r}-F_{r} \\
& =F_{r n+r+r n}-F_{r n+r-r n} \\
& =F_{r n} L_{r n+r}, \quad \text { by identity }(15),
\end{aligned}
$$

and the first part of Lemma 3 is proved.
If r is odd, then choosing $v=r$ and $u=2 r n+r$ in identity (15) gives

$$
\begin{equation*}
F_{2 r n+2 r}+F_{2 r n}=F_{r} L_{2 r n+r} \tag{20}
\end{equation*}
$$

and, again on account of identity (13), the identity (18) now reduces to

$$
\begin{aligned}
L_{r} \sum_{k=1}^{n} L_{2 r k} & =L_{2 r n+r}-L_{r} \\
& =L_{r n+r+r n}-L_{r n+r-r n} \\
& = \begin{cases}5 F_{r n} F_{r n+r}, & \text { if } n \text { is even } \\
L_{r n} L_{r n+r}, & \text { if } n \text { is odd },\end{cases}
\end{aligned}
$$

where in the last step we used the identities (9) and (12).

2.4 Other identities

Lemma 4. If r and n are integers, then

$$
\frac{F_{3 r n} F_{3 r n+3 r}}{F_{r n} F_{r n+r}}=L_{r n} L_{r n+r} L_{2 r n+r}+L_{2 r}+(-1)^{r-1}
$$

Proof. Using the identity Clary [2, Eq. (36)], or Dresel [3, Eq. (3.3)], namely,

$$
\begin{equation*}
F_{3 u}=5 F_{u}^{3}+3(-1)^{u} F_{u}, \tag{21}
\end{equation*}
$$

we have

$$
\begin{align*}
\frac{F_{3 r n} F_{3 r n+3 r}}{F_{r n} F_{r n+r}} & =\left(5 F_{r n}^{2}+3(-1)^{r n}\right)\left(5 F_{r n+r}^{2}+3(-1)^{r n+r}\right) \\
& =\left(L_{r n}^{2}-(-1)^{r n}\right)\left(L_{r n+r}^{2}-(-1)^{r n+r}\right) \tag{22}\\
& =L_{r n}^{2} L_{r n+r}^{2}-(-1)^{r n+r} L_{r n}^{2}-(-1)^{r n} L_{r n+r}^{2}+(-1)^{r}
\end{align*}
$$

where we have also made use of the identity

$$
\begin{equation*}
5 F_{u}^{2}-L_{u}^{2}=(-1)^{u-1} 4 \tag{23}
\end{equation*}
$$

Now,

$$
\begin{aligned}
L_{r n}^{2} L_{r n+r}^{2} & =L_{r n} L_{r n+r}\left(L_{r n} L_{r n+r}\right) \\
& =L_{r n} L_{r n+r}\left(L_{2 r n+r}+(-1)^{r n} L_{r}\right) \quad \text { by (12) } \\
& =L_{r n} L_{r n+r} L_{2 r n+r}+(-1)^{r n} L_{r n} L_{r n+r} L_{r} .
\end{aligned}
$$

Therefore

$$
\frac{F_{3 r n} F_{3 r n+3 r}}{F_{r n} F_{r n+r}}=L_{r n} L_{r n+r} L_{2 r n+r}+(-1)^{r n} L_{r n+r}\left(L_{r n} L_{r}-L_{r n+r}\right)-(-1)^{r n+r} L_{r n}^{2}+(-1)^{r} .
$$

But

$$
\begin{aligned}
& (-1)^{r n} L_{r n+r}\left(L_{r n} L_{r}-L_{r n+r}\right) \\
& =(-1)^{r n} L_{r n+r}\left(L_{r n+r}+(-1)^{r} L_{r n-r}-L_{r n+r}\right), \quad \text { by }(12) \\
& =(-1)^{r n+r} L_{r n+r} L_{r n-r} \\
& =(-1)^{r n+r}\left(L_{2 r n}+(-1)^{r n-r} L_{2 r}\right), \quad \text { again by (12) } \\
& =(-1)^{r n+r} L_{2 r n}+L_{2 r} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\frac{F_{3 r n} F_{3 r n+3 r}}{F_{r n} F_{r n+r}} & =L_{r n} L_{r n+r} L_{2 r n+r}+(-1)^{r n+r} L_{2 r n}+L_{2 r}-(-1)^{r n+r} L_{r n}^{2}+(-1)^{r} \\
& =L_{r n} L_{r n+r} L_{2 r n+r}+(-1)^{r n+r}\left(L_{2 r n}-L_{r n}^{2}\right)+L_{2 r}+(-1)^{r}
\end{aligned}
$$

Finally, using the identity

$$
\begin{equation*}
L_{2 u}=L_{u}^{2}+(-1)^{u-1} 2, \tag{24}
\end{equation*}
$$

obtained by setting $v=u$ in identity (12), we have the statement of the Lemma.

Lemma 5. If r and n are integers, then

$$
\frac{L_{3 r n} L_{3 r n+3 r}}{L_{r n} L_{r n+r}}=5 F_{r n} F_{r n+r} L_{2 r n+r}+L_{2 r}+(-1)^{r-1}
$$

Proof. Using the following identity, of Dresel [3, Eq. (1.6)]

$$
\begin{equation*}
L_{3 u}=L_{u}^{3}-3(-1)^{u} L_{u}, \tag{25}
\end{equation*}
$$

we have

$$
\begin{aligned}
\frac{L_{3 r n} L_{3 r n+3 r}}{L_{r n} L_{r n+r}} & =\left(L_{r n}^{2}-3(-1)^{r n}\right)\left(L_{r n+r}^{2}-3(-1)^{r n+r}\right) \\
& =\left(5 F_{r n}^{2}+(-1)^{r n}\right)\left(5 F_{r n+r}^{2}+(-1)^{r n+r}\right), \quad \text { by }(23) \\
& =25 F_{r n}^{2} F_{r n+r}^{2}+(-1)^{r n+r} 5 F_{r n}^{2}+(-1)^{r n} 5 F_{r n+r}^{2}+(-1)^{r},
\end{aligned}
$$

and the rest of the calculation then proceeds as in the proof of Lemma 4, the basic required identities now being (9), (16) and the identity

$$
\begin{equation*}
L_{2 u}=5 F_{u}^{2}+(-1)^{u} 2, \tag{26}
\end{equation*}
$$

obtained by setting $v=u$ in identity (9).
Lemma 6. If r and n are integers, then

$$
\frac{L_{3 r n} F_{3 r n+3 r}}{L_{r n} F_{r n+r}}=5 F_{r n} L_{r n+r} F_{2 r n+r}+L_{2 r}+(-1)^{r} .
$$

Lemma 7. If r and n are integers, then

$$
\frac{F_{3 r n} L_{3 r n+3 r}}{F_{r n} L_{r n+r}}=5 L_{r n} F_{r n+r} F_{2 r n+r}+L_{2 r}+(-1)^{r} .
$$

Different but equivalent versions of Lemmas 4-7 are given below:
Lemma 8. If r and n are integers, then

$$
\frac{F_{3 r n} F_{3 r n+3 r}}{F_{r n} F_{r n+r}}=L_{2 r n+r}^{2}+(-1)^{n r} L_{r n+r}^{2}+(-1)^{(n-1) r} L_{r n}^{2}+L_{r}^{2}+(-1)^{r-1} 7 .
$$

Proof. The proof is similar to that of Lemma 4, but here we use

$$
\begin{aligned}
L_{r n}^{2} L_{r n+r}^{2} & =\left(L_{2 r n+r}+(-1)^{r n} L_{r}\right)^{2} \\
& =L_{2 r n+r}^{2}+L_{r}^{2}+2(-1)^{r n}\left(L_{r} L_{2 r n+r}\right) \\
& =L_{2 r n+r}^{2}+L_{r}^{2}+2(-1)^{r n}\left(L_{2 r n+2 r}+(-1)^{r} L_{2 r n}\right) \\
& =L_{2 r n+r}^{2}+L_{r}^{2}+2(-1)^{r n}\left(L_{r n+r}^{2}+(-1)^{r n+r-1} 2+(-1)^{r}\left(L_{r n}^{2}+(-1)^{r n-1} 2\right)\right),
\end{aligned}
$$

and substitute in (22).

Lemma 9. If r and n are integers, then

$$
\frac{L_{3 r n} L_{3 r n+3 r}}{L_{r n} L_{r n+r}}=L_{2 r n+r}^{2}+(-1)^{n r-1} L_{r n+r}^{2}-(-1)^{(n-1) r} L_{r n}^{2}+L_{r}^{2}+(-1)^{r}
$$

Lemma 10. If r and n are integers, then

$$
\frac{L_{3 r n} F_{3 r n+3 r}}{L_{r n} F_{r n+r}}=5 F_{2 r n+r}^{2}+(-1)^{n r-1} 5 F_{r n+r}^{2}+(-1)^{(n-1) r} 5 F_{r n}^{2}+5 F_{r}^{2}+(-1)^{r} 3
$$

Lemma 11. If r and n are integers, then

$$
\frac{F_{3 r n} L_{3 r n+3 r}}{F_{r n} L_{r n+r}}=5 F_{2 r n+r}^{2}+(-1)^{n r} 5 F_{r n+r}^{2}-(-1)^{(n-1) r} 5 F_{r n}^{2}+5 F_{r}^{2}+(-1)^{r} 3
$$

3 Main results

3.1 Sums of cubes of Fibonacci numbers

Theorem 12. If r and n are integers such that r is odd, then

$$
L_{3 r} \sum_{k=1}^{n} F_{2 r k}^{3}= \begin{cases}F_{r n} L_{r n+r}\left(L_{r n} F_{r n+r} F_{2 r n+r}-2 F_{r}^{2}\right), & \text { if } n \text { is even } \\ L_{r n} F_{r n+r}\left(F_{r n} L_{r n+r} F_{2 r n+r}-2 F_{r}^{2}\right), & \text { if } n \text { is odd } .\end{cases}
$$

Proof. Setting $u=2 r k$ in identity (21) and summing, we have

$$
5 \sum_{k=1}^{n} F_{2 r k}^{3}=\sum_{k=1}^{n} F_{6 r k}-3 \sum_{k=1}^{n} F_{2 r k},
$$

so that,

$$
\begin{align*}
5 L_{3 r} \sum_{k=1}^{n} F_{2 r k}^{3} & =L_{3 r} \sum_{k=1}^{n} F_{6 r k}-3 \frac{L_{3 r}}{L_{r}} L_{r} \sum_{k=1}^{n} F_{2 r k} \tag{27}\\
& =L_{3 r} \sum_{k=1}^{n} F_{6 r k}-3\left(L_{r}^{2}+3\right) L_{r} \sum_{k=1}^{n} F_{2 r k}
\end{align*}
$$

- If n is even, then, by Lemma 2, identity (27) can be written as

$$
5 L_{3 r} \sum_{k=1}^{n} F_{2 r k}^{3}=F_{3 r n} L_{3 r n+3 r}-3\left(L_{r}^{2}+3\right) F_{r n} L_{r n+r}
$$

so that

$$
\begin{aligned}
\frac{5 L_{3 r} \sum_{k=1}^{n} F_{2 r k}^{3}}{F_{r n} L_{r n+r}} & =\frac{F_{3 r n} L_{3 r n+3 r}}{F_{r n} L_{r n+r}}-3\left(L_{r}^{2}+3\right) \\
& =5 L_{r n} F_{r n+r} F_{2 r n+r}+L_{2 r}-1-3 L_{r}^{2}-9, \quad \text { by Lemma } 7 \\
& =5 L_{r n} F_{r n+r} F_{2 r n+r}-10 F_{r}^{2}, \quad \text { by }(23) \text { and }(24)
\end{aligned}
$$

- If n is odd, then, by Lemma 2, we have

$$
5 L_{3 r} \sum_{k=1}^{n} F_{2 r k}^{3}=L_{3 r n} F_{3 r n+3 r}-3\left(L_{r}^{2}+3\right) L_{r n} F_{r n+r},
$$

so that

$$
\begin{aligned}
\frac{5 L_{3 r} \sum_{k=1}^{n} F_{2 r k}^{3}}{L_{r n} F_{r n+r}} & =\frac{L_{3 r n} F_{3 r n+3 r}}{L_{r n} F_{r n+r}}-3\left(L_{r}^{2}+3\right) \\
& =5 F_{r n} L_{r n+r} F_{2 r n+r}+L_{2 r}-1-3 L_{r}^{2}-9, \quad \text { by Lemma } 7 \\
& =5 F_{r n} L_{r n+r} F_{2 r n+r}-10 F_{r}^{2}, \quad \text { by }(23) \text { and }(24)
\end{aligned}
$$

Theorem 13. If r and n are integers such that r is even, then

$$
5 F_{3 r} \sum_{k=1}^{n} F_{2 r k}^{3}=F_{r n} F_{r n+r}\left(L_{r n} L_{r n+r} L_{2 r n+r}-2 L_{r}^{2}\right) .
$$

Proof.

$$
\begin{aligned}
5 F_{3 r} \sum_{k=1}^{n} F_{2 r k}^{3} & =F_{3 r} \sum_{k=1}^{n} F_{6 r k}-3 \frac{F_{3 r}}{F_{r}} F_{r} \sum_{k=1}^{n} F_{2 r k} \\
& =F_{3 r n} F_{3 r n+3 r}-3\left(5 F_{r}^{2}+3\right) F_{r n} F_{r n+r},
\end{aligned}
$$

by Lemma 2 and identity (21),
so that

$$
\begin{aligned}
\frac{5 F_{3 r} \sum_{k=1}^{n} F_{2 r k}^{3}}{F_{r n} F_{r n+r}} & =\frac{F_{3 r n} F_{3 r n+3 r}}{F_{r n} F_{r n+r}}-3\left(5 F_{r}^{2}+3\right) \\
& =L_{r n} L_{r n+r} L_{2 r n+r}+L_{2 r}-1-15 F_{r}^{2}-9
\end{aligned}
$$

(by Lemma 4 and identity (21)),

$$
=L_{r n} L_{r n+r} L_{2 r n+r}-2 L_{r}^{2}, \quad \text { by (23), (24) and (26). }
$$

Theorem 14. If r and n are integers such that r is odd, then

$$
L_{3 r} \sum_{k=1}^{n} F_{2 r k}^{3}= \begin{cases}F_{r n}^{2} L_{r n+r}^{2}\left(L_{r n} F_{r n+r}+F_{r}\right), & \text { if } n \text { is even } ; \\ L_{r n}^{2} F_{r n+r}^{2}\left(F_{r n} L_{r n+r}+F_{r}\right), & \text { if } n \text { is odd } .\end{cases}
$$

Proof. - If n is even, then from Lemma 2 and identity (27) we have

$$
\begin{aligned}
\frac{5 L_{3 r} \sum_{k=1}^{n} F_{2 r k}^{3}}{F_{r n} L_{r n+r}} & =\frac{F_{3 r n} L_{3 r n+3 r}}{F_{r n} L_{r n+r}}-3\left(L_{r}^{2}+3\right) \\
& =5 F_{2 r n+r}^{2}+5 F_{r n+r}^{2}+5 F_{r n}^{2}+5 F_{r}^{2}-3-3 L_{r}^{2}-9, \text { by Lemma } 11 \\
& =5 F_{2 r n+r}^{2}+5 F_{r n+r}^{2}+5 F_{r n}^{2}-10 F_{r}^{2} \quad \text { by identity }(23)
\end{aligned}
$$

so that

$$
\begin{aligned}
\frac{L_{3 r} \sum_{k=1}^{n} F_{2 r k}^{3}}{F_{r n} L_{r n+r}} & =F_{2 r n+r}^{2}+F_{r n+r}^{2}+F_{r n}^{2}-2 F_{r}^{2} \\
& =\left(F_{2 r n+r}^{2}-F_{r}^{2}\right)+\left(F_{r n+r}^{2}+F_{r n}^{2}\right)-F_{r}^{2}
\end{aligned}
$$

Using the following identity, derived by Howard [4],

$$
\begin{equation*}
F_{u}^{2}+(-1)^{u+v-1} F_{v}^{2}=F_{u-v} F_{u+v} \tag{28}
\end{equation*}
$$

we have

$$
\begin{aligned}
\frac{L_{3 r} \sum_{k=1}^{n} F_{2 r k}^{3}}{F_{r n} L_{r n+r}} & =F_{2 r n} F_{2 r n+2 r}+F_{r} F_{2 r n+r}-F_{r}^{2} \\
& =F_{2 r n} F_{2 r n+2 r}+F_{r}\left(F_{2 r n+r}-F_{r}\right) \\
& =F_{2 r n} F_{2 r n+2 r}+F_{r} F_{r n} L_{r n+r}, \text { by identity }(15) \\
& =F_{r n} L_{r n+r} L_{r n} F_{r n+r}+F_{r} F_{r n} L_{r n+r} \\
& =F_{r n} L_{r n+r}\left(L_{r n} F_{r n+r}+F_{r}\right) .
\end{aligned}
$$

- If n is odd, then from Lemma 2 and identity (27) we have

$$
\begin{aligned}
\frac{5 L_{3 r} \sum_{k=1}^{n} F_{2 r k}^{3}}{L_{r n} F_{r n+r}} & =\frac{L_{3 r n} F_{3 r n+3 r}}{L_{r n} F_{r n+r}}-3\left(L_{r}^{2}+3\right) \\
& =5 F_{2 r n+r}^{2}+5 F_{r n+r}^{2}+5 F_{r n}^{2}+5 F_{r}^{2}-3-3 L_{r}^{2}-9, \text { by Lemma } 10 \\
& =5 F_{2 r n+r}^{2}+5 F_{r n+r}^{2}+5 F_{r n}^{2}-10 F_{r}^{2} \quad \text { by identity }(23)
\end{aligned}
$$

so that

$$
\begin{aligned}
\frac{L_{3 r} \sum_{k=1}^{n} F_{2 r k}^{3}}{L_{r n} F_{r n+r}} & =F_{2 r n+r}^{2}+F_{r n+r}^{2}+F_{r n}^{2}-2 F_{r}^{2} \\
& =\left(F_{2 r n+r}^{2}-F_{r}^{2}\right)+\left(F_{r n+r}^{2}+F_{r n}^{2}\right)-F_{r}^{2}
\end{aligned}
$$

Using identity (28), we have

$$
\begin{aligned}
\frac{L_{3 r} \sum_{k=1}^{n} F_{2 r k}^{3}}{L_{r n} F_{r n+r}} & =F_{2 r n} F_{2 r n+2 r}+F_{r} F_{2 r n+r}-F_{r}^{2} \\
& =F_{2 r n} F_{2 r n+2 r}+F_{r}\left(F_{2 r n+r}-F_{r}\right) \\
& =F_{2 r n} F_{2 r n+2 r}+F_{r} L_{r n} F_{r n+r}, \text { by identity (16) } \\
& =F_{r n} L_{r n+r} L_{r n} F_{r n+r}+F_{r} L_{r n} F_{r n+r} \\
& =L_{r n} F_{r n+r}\left(F_{r n} L_{r n+r}+F_{r}\right) .
\end{aligned}
$$

Theorem 15. If r and n are integers such that r is even, then

$$
\begin{equation*}
F_{3 r} \sum_{k=1}^{n} F_{2 r k}^{3}=F_{r n}^{2} F_{r n+r}^{2}\left(L_{r n} L_{r n+r}+L_{r}\right) . \tag{29}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
5 F_{3 r} \sum_{k=1}^{n} F_{2 r k}^{3} & =F_{3 r} \sum_{k=1}^{n} F_{6 r k}-3 \frac{F_{3 r}}{F_{r}} F_{r} \sum_{k=1}^{n} F_{2 r k} \\
& =F_{3 r n} F_{3 r n+3 r}-3\left(5 F_{r}^{2}+3\right) F_{r n} F_{r n+r}
\end{aligned}
$$

so that

$$
\begin{aligned}
\frac{5 F_{3 r} \sum_{k=1}^{n} F_{2 r k}^{3}}{F_{r n} F_{r n+r}} & =\frac{F_{3 r n} F_{3 r n+3 r}}{F_{r n} F_{r n+r}}-3\left(5 F_{r}^{2}+3\right) \\
& =L_{2 r n+r}^{2}+L_{r n+r}^{2}+L_{r n}^{2}+L_{r}^{2}-7-15 F_{r}^{2}-9, \quad \text { by Lemma } 8 \\
& =L_{2 r n+r}^{2}+L_{r n+r}^{2}-2 L_{r}^{2}+5 F_{r n}^{2}, \quad \text { by }(23) \\
& =\left(L_{2 r n+r}^{2}-L_{r}^{2}\right)+\left(L_{r n+r}^{2}-L_{r}^{2}\right)+5 F_{r n}^{2}
\end{aligned}
$$

Using the identity (derived by Howard [4])

$$
\begin{equation*}
L_{u}^{2}+(-1)^{u+v-1} L_{v}^{2}=5 F_{u-v} F_{u+v} \tag{30}
\end{equation*}
$$

we see that

$$
\begin{equation*}
L_{2 r n+r}^{2}-L_{r}^{2}=5 F_{2 r n} F_{2 r n+2 r}=5 F_{r n} F_{r n+r} L_{r n} L_{r n+r} \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{r n+r}^{2}-L_{r}^{2}=5 F_{r n} F_{r n+2 r} \tag{32}
\end{equation*}
$$

Thus,

$$
\begin{aligned}
\frac{F_{3 r} \sum_{k=1}^{n} F_{2 r k}^{3}}{F_{r n} F_{r n+r}} & =F_{r n} F_{r n+r} L_{r n} L_{r n+r}+F_{r n} F_{r n+2 r}+F_{r n}^{2} \\
& =F_{r n} F_{r n+r} L_{r n} L_{r n+r}+F_{r n}\left(F_{r n}+F_{r n+2 r}\right) \\
& =F_{r n} F_{r n+r} L_{r n} L_{r n+r}+F_{r n} F_{r n+r} L_{r}, \quad \text { by identity (16) } \\
& =F_{r n} F_{r n+r}\left(L_{r n} L_{r n+r}+L_{r}\right) .
\end{aligned}
$$

3.2 Sums of cubes of Lucas numbers

Theorem 16. If r and n are integers such that r is odd, then

$$
L_{3 r} \sum_{k=1}^{n} L_{2 r k}^{3}= \begin{cases}5 F_{r n} F_{r n+r}\left(L_{r n} L_{r n+r} L_{2 r n+r}+4\left(L_{2 r}+1\right)\right), & \text { if } n \text { is even } ; \\ L_{r n} L_{r n+r}\left(5 F_{r n} F_{r n+r} L_{2 r n+r}+4\left(L_{2 r}+1\right)\right), & \text { if } n \text { is odd } .\end{cases}
$$

Proof. Using identity (25) with $u=2 r k$, we have

$$
\sum_{k=1}^{n} L_{2 r k}^{3}=\sum_{k=1}^{n} L_{6 r k}+3 \sum_{k=1}^{n} L_{2 r k}
$$

so that

$$
\begin{aligned}
L_{3 r} \sum_{k=1}^{n} L_{2 r k}^{3} & =L_{3 r} \sum_{k=1}^{n} L_{6 r k}+3 \frac{L_{3 r}}{L_{r}} L_{r} \sum_{k=1}^{n} L_{2 r k} \\
& =L_{3 r} \sum_{k=1}^{n} L_{6 r k}+3\left(L_{r}^{2}+3\right) L_{r} \sum_{k=1}^{n} L_{2 r k}, \quad \text { by }(25) .
\end{aligned}
$$

- If n is even, then by Lemma 3 we have

$$
\begin{equation*}
L_{3 r} \sum_{k=1}^{n} L_{2 r k}^{3}=5 F_{3 r n} F_{3 r n+3 r}+3\left(L_{r}^{2}+3\right) 5 F_{r n} F_{r n+r} \tag{33}
\end{equation*}
$$

so that

$$
\begin{aligned}
\frac{L_{3 r} \sum_{k=1}^{n} L_{2 r k}^{3}}{5 F_{r n} F_{r n+r}} & =\frac{F_{3 r n} F_{3 r n+3 r}}{F_{r n} F_{r n+r}}+3\left(L_{r}^{2}+3\right) \\
& =L_{r n} L_{r n+r} L_{2 r n+r}+L_{2 r}+1+3 L_{r}^{2}+9, \quad \text { by Lemma } 4 \\
& =L_{r n} L_{r n+r} L_{2 r n+r}+4\left(L_{2 r}+1\right), \quad \text { by }(24)
\end{aligned}
$$

- If n is odd, then by Lemma 3 we have

$$
\begin{equation*}
L_{3 r} \sum_{k=1}^{n} L_{2 r k}^{3}=L_{3 r n} L_{3 r n+3 r}+3\left(L_{r}^{2}+3\right) L_{r n} L_{r n+r} \tag{34}
\end{equation*}
$$

so that

$$
\begin{aligned}
\frac{L_{3 r} \sum_{k=1}^{n} L_{2 r k}^{3}}{L_{r n} L_{r n+r}} & =\frac{L_{3 r n} L_{3 r n+3 r}}{L_{r n} L_{r n+r}}+3\left(L_{r}^{2}+3\right) \\
& =5 F_{r n} F_{r n+r} L_{2 r n+r}+L_{2 r}+1+3 L_{r}^{2}+9, \quad \text { by Lemma } 5 \\
& =5 F_{r n} F_{r n+r} L_{2 r n+r}+4\left(L_{2 r}+1\right), \quad \text { by }(24) .
\end{aligned}
$$

Theorem 17. If r and n are integers such that r is even, then

$$
F_{3 r} \sum_{k=1}^{n} L_{2 r k}^{3}=F_{r n} L_{r n+r}\left(5 L_{r n} F_{r n+r} F_{2 r n+r}+4\left(L_{2 r}+1\right)\right)
$$

Proof.

$$
\begin{aligned}
F_{3 r} \sum_{k=1}^{n} L_{2 r k}^{3} & =F_{3 r} \sum_{k=1}^{n} L_{6 r k}+3 \frac{F_{3 r}}{F_{r}} F_{r} \sum_{k=1}^{n} L_{2 r k} \\
& =F_{3 r} \sum_{k=1}^{n} L_{6 r k}+3\left(5 F_{r}^{2}+3\right) F_{r} \sum_{k=1}^{n} L_{2 r k}, \quad \text { by identity } \\
& =F_{3 r n} L_{3 r n+3 r}+3\left(5 F_{r}^{2}+3\right) F_{r n} L_{r n+r}, \quad \text { by Lemma } 3
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\frac{F_{3 r} \sum_{k=1}^{n} L_{2 r k}^{3}}{F_{r n} L_{r n+r}} & =\frac{F_{3 r n} L_{3 r n+3 r}}{F_{r n} L_{r n+r}}+3\left(5 F_{r}^{2}+3\right) \\
& =5 L_{r n} F_{r n+r} F_{2 r n+r}+L_{2 r}+1+15 F_{r}^{2}+9, \quad \text { by Lemma } 7 \\
& =5 L_{r n} F_{r n+r} F_{2 r n+r}+4\left(L_{2 r}+1\right), \quad \text { by }(24) \text { and }(26)
\end{aligned}
$$

4 Acknowledgment

Thanks are due to the referee for a careful reading and for pointing out a couple of typographical errors.

References

[1] K. Adegoke, Generalizations of the reciprocal Fibonacci-Lucas sums of Brousseau, J. Integer Seq. 21 (2018), Article 18.1.6.
[2] S. Clary and P. D. Hemenway, On sums of cubes of Fibonacci numbers, in G. E. Bergum, A. N. Philippou and A. F. Horadam, eds., Applications of Fibonacci Numbers, Kluwer Academic Publishers, 1993, pp. 123-136.
[3] L. A. G. Dresel, Transformations of Fibonacci-Lucas identities, in G. E. Bergum, A. N. Philippou and A. F. Horadam, eds., Applications of Fibonacci Numbers, Kluwer Academic Publishers, 1993, pp. 169-184.
[4] F. T. Howard, The sum of the squares of two generalized Fibonacci numbers, Fibonacci Quart. 41 (2003), 80-84.
[5] R. S. Melham, Alternating sums of fourth powers of Fibonacci and Lucas numbers, Fibonacci Quart. 38 (2000), 254-259.

2010 Mathematics Subject Classification: Primary 11B39; Secondary 11B37.
Keywords: sum of cubes, Fibonacci number, Lucas number, telescoping summation.
(Concerned with sequences $\underline{\text { A000032 }}$ and $\underline{\text { A000045.) }}$

Received February 11 2018; revised versions received March 8 2018; July 1 2018; July 32018. Published in Journal of Integer Sequences, August 222018.

Return to Journal of Integer Sequences home page.

