Journal of Integer Sequences, Vol. 21 (2018), Article 18.4.5

On the Periodicity Problem for Residual r-Fubini Sequences

Amir Abbas Asgari
National Organization for Development of Exceptional Talents (NODET)
Tehran
Iran
asgari@helli.ir
Majid Jahangiri
School of Mathematics
Department of Science
Shahid Rajaee Teacher Training University
P. O. Box 16785-163
Tehran
Iran
jahangiri@ipm.ir

Abstract

For any positive integer r, the r-Fubini number with parameter n, denoted by $F_{n, r}$, is equal to the number of ways that the elements of a set with $n+r$ elements can be weakly ordered such that the r least elements are in distinct orders. In this article we focus on the sequence of residues of the r-Fubini numbers modulo an arbitrary positive integer s and show that this sequence is periodic and then, exhibit how to calculate its period length.

1 Introduction

The Fubini numbers (also known as the ordered Bell numbers) form an integer sequence in which the nth term counts the number of weak orderings of a set with n elements. Weak
ordering means that the elements can be ordered, allowing ties. Cayley [2] studied the Fubini numbers as the number of a certain kind of trees with $n+1$ terminal nodes. The Fubini numbers can also be defined as the sum of the Stirling numbers of the second kind, $\left\{\begin{array}{l}n \\ k\end{array}\right\}$, which counts the number of partitions of an n-element set into k non-empty subsets. The sequence of residues of the Fubini numbers modulo a positive integer s was studied by Poonen [6]. He showed that this sequence is periodic and calculated the period length for each positive integer s.

The r-Stirling numbers of the second kind are defined as an extension to the Stirling numbers of the second kind, in which the first r elements contained in distinct subsets. Similarly the r-Fubini numbers, which are denoted by $F_{n, r}$, are defined as the number of ways which the elements of a set with $n+r$ elements can be weakly ordered such that the first r elements are in distinct places. Consider the sequence of remainders of $F_{n, r}$ modulo an arbitrary number $s \in \mathbb{N}$ in which r is fixed, which is denoted by $A_{r, s}$. One can study the periodicity problem for this sequence. Mező [4] investigated this problem for $s=10$. In this article $\omega\left(A_{r, s}\right)$, the period of $A_{r, s}$, is computed for any positive integer s. Based on the fundamental theorem of arithmetic, $\omega\left(A_{r, p}\right)$ is calculated for powers of odd primes p^{m}. The cases $s=2^{m}$ are studied separately. Therefore if $s=2^{m} p_{1}^{m_{1}} p_{1}^{m_{1}} \cdots p_{k}^{m_{k}}$ is the prime factorization, then the $\omega\left(A_{r, s}\right)$ is equal to the least common multiple of $\omega\left(A_{r, p_{i} m_{i}}\right) \mathrm{s}$ and $\omega\left(A_{r, 2^{m}}\right)$, for $i=1,2, \ldots, k$.

Section 2 contains the basic definitions and relations. The length of the periods in the case of odd prime powers are computed in the Section 3. The similar results about the 2 powers are stated in the Section 4. The last section contains the final theorem which presents the conclusion of the article.

2 Basic concepts

Let $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ be the Stirling number of the second kind with the parameters n and k and let $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{r}$ be the r-Stirling number of the second kind with parameters n and k. It is clear that $n \geq k \geq r$. Fubini numbers are computed as follows [4]:

$$
F_{n}=\sum_{k=0}^{n} k!\left\{\begin{array}{l}
n \\
k
\end{array}\right\} .
$$

In a similar way we can evaluate the r-Fubini number $F_{n, r}$ by

$$
F_{n, r}=\sum_{k=0}^{n}(k+r)!\left\{\begin{array}{l}
n+r \\
k+r
\end{array}\right\}_{r} .
$$

There are simple relations and formulae about $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{r}$ which are listed below. One can find a proof of them in $[1,4,5]$ and [3, Thm. 4.5.1, p. 158].

$$
\begin{align*}
& \left\{\begin{array}{c}
n \\
m
\end{array}\right\}_{r}=\left\{\begin{array}{c}
n \\
m
\end{array}\right\}_{r-1}-(r-1)\left\{\begin{array}{c}
n-1 \\
m
\end{array}\right\}_{r-1}, 1 \leq r \leq n \tag{1}\\
& \left\{\begin{array}{c}
n \\
m
\end{array}\right\}_{1}=\left\{\begin{array}{c}
n \\
m
\end{array}\right\} \tag{2}\\
& \left\{\begin{array}{c}
n+r \\
r
\end{array}\right\}_{r}=r^{n} \tag{3}\\
& \left\{\begin{array}{c}
n+r \\
r+1
\end{array}\right\}_{r}=(r+1)^{n}-r^{n} \tag{4}\\
& \left\{\begin{array}{c}
n \\
m
\end{array}\right\}=\frac{1}{m!} \sum_{j=1}^{m}(-1)^{m-j}\binom{m}{j} j^{n} \tag{5}\\
& \left\{\begin{array}{c}
n \\
m
\end{array}\right\}_{r}=\frac{1}{m!} \sum_{j=r}^{m}(-1)^{m-j}\binom{m}{j} j^{n-(r-1)}\left(\frac{(j-1)!}{(j-r)!}\right) \tag{6}
\end{align*}
$$

By $\varphi(n)$ we indicate the number of positive integer numbers less than n and co-prime to it. It is known as Euler's totient function. The value of $\varphi(n)$ can be computed via the following relation [3, Example 4.7.3, p. 167]:

$$
\varphi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)
$$

3 The r-Fubini residues modulo prime powers

Let p be a prime number greater than 2 and m be a positive integer. If $\left(F_{n, r}\right)$ denotes the sequence of r-Fubini numbers for a fixed positive integer r, we indicate by $A_{r, q}=\left(F_{n, r}(\bmod q)\right)$, for $n \in \mathbb{N}$, the sequence of residues of the r-Fubini numbers modulo the positive integer q. In this section we try to compute the period length of the sequence $A_{r, q}$ when $q=p^{m}$. This length is denoted by $\omega\left(A_{r, q}\right)$.

Proposition 1. Let p be an odd prime and let $q=p^{m}, m \in \mathbb{N}$. If $q \leq r$, then $\omega\left(A_{r, q}\right)=1$.
Proof. The proof is very simple. Since $p \leq r$, we can deduce that $p \mid(k+r)$!, for $k \geq 0$, and by the relation $F_{n, r}=\sum_{k=0}^{n}(k+r)!\left\{\begin{array}{l}n+r \\ k+r\end{array}\right\}_{r}$, we have $p \mid F_{n, r}$. Therefore $\omega\left(A_{r, p}\right)=1$.

As pointed out in the above proposition, it is sufficient to investigate the period length in the cases of $q>r$.

Lemma 2. Let p be an odd prime and $r, m \in \mathbb{N}$ with $p \geq r+1$. Then

$$
p^{m}-r \geq m .
$$

Proof. For $m=1$ the result is obvious. Suppose the inequality holds for any $m \geq 2$. Since $p(p+m)>2(p+m)>2 p+m$, we have

$$
\begin{equation*}
p^{2}+p m-p \geq p+m \tag{7}
\end{equation*}
$$

Since $p-1 \geq r$, the induction hypothesis can be reformulated to $p^{m} \geq p-1+m$. Multiplication by p results $p^{m+1} \geq p^{2}+p m-p$. By (7) we have $p^{m+1} \geq p+(m+1)-1$.

Theorem 3. Let p be an odd prime and $q=p^{m}$. After the $(m-1)$ th term the sequence $A_{r, q}$ has a period with length $\omega\left(A_{r, q}\right)=\varphi(q)$. In other words, $F_{n+\varphi(q), r} \equiv F_{n, r}(\bmod q)$, for $n \geq m-1$.

Proof. If $n \geq q-r-1$ we can write

$$
\begin{aligned}
& F_{n+\varphi(q), r}-F_{n, r}=\sum_{k=0}^{n+\varphi(q)}(k+r)!\left\{\begin{array}{c}
n+\varphi(q)+r \\
k+r
\end{array}\right\}_{r}-\sum_{k=0}^{n}(k+r)!\left\{\begin{array}{l}
n+r \\
k+r
\end{array}\right\}_{r} \\
& \equiv \sum_{k=0}^{q-r-1}(k+r)!\left(\left\{\begin{array}{c}
n+\varphi(q)+r \\
k+r
\end{array}\right\}_{r}-\left\{\begin{array}{l}
n+r \\
k+r
\end{array}\right\}_{r}\right) \\
& \equiv \sum_{k=0}^{q-r-1} \sum_{j=r}^{k+r}(-1)^{k+r-j}\binom{k+r}{j} j^{n+1}\left(\frac{(j-1)!}{(j-r)!}\right)\left(j^{\varphi(q)}-1\right) \quad(\bmod q) \text {. }
\end{aligned}
$$

If $j=c p, c \in \mathbb{N}$, then $j^{n+1}=(c p)^{q-r+h}$, for some $h \geq 0$, so from Lemma 2 it follows that $j^{n+1} \equiv 0(\bmod q)$. If $\operatorname{gcd}(j, q)=1$, by Euler's theorem $j^{\varphi(q)}-1 \equiv 0(\bmod q)$, so the right hand side of the above congruence relation vanished and we have

$$
\begin{equation*}
F_{n+\varphi(q), r} \equiv F_{n, r} \quad(\bmod q), \text { for } n \geq q-r-1 \tag{8}
\end{equation*}
$$

If $m-1 \leq n<q-r-1$ then

$$
\begin{aligned}
F_{n+\varphi(q), r}-F_{n, r} & \equiv \sum_{k=0}^{q-r-1}(k+r)!\left(\left\{\begin{array}{c}
n+\varphi(q)+r \\
k+r
\end{array}\right\}_{r}-\left\{\begin{array}{l}
n+r \\
k+r
\end{array}\right\}_{r}\right) \\
& -\sum_{k=n+\varphi(q)+1}^{q-r-1}(k+r)!\left\{\begin{array}{c}
n+\varphi(q)+r \\
k+r
\end{array}\right\}_{r}+\sum_{k=n+1}^{q-r-1}(k+r)!\left\{\begin{array}{l}
n+r \\
k+r
\end{array}\right\}_{r} \\
& \equiv \sum_{k=0}^{q-r-1} \sum_{j=r}^{k+r}(-1)^{k+r-j}\binom{k+r}{j} j^{n+1}\left(\frac{(j-1)!}{(j-r)!}\right)\left(j^{\varphi(q)}-1\right) \\
& -\sum_{k=n+\varphi(q)+1}^{q-r-1}(k+r)!\left\{\begin{array}{c}
n+\varphi(q)+r \\
k+r
\end{array}\right\}_{r}+\sum_{k=n+1}^{q-r-1}(k+r)!\left\{\begin{array}{l}
n+r \\
k+r
\end{array}\right\}_{r}(\bmod q) .
\end{aligned}
$$

Since $n \geq m-1$, in the indices where $j=c p, c \in \mathbb{N}$, we have $j^{n+1}=(c p)^{m+h}$, for some $h \geq 0$, and it is deduced that $j^{n+1} \equiv 0(\bmod q)$. When $\operatorname{gcd}(j, q)=1$, again $j^{\varphi(q)}-1 \equiv 0(\bmod q)$ by Euler's theorem. In the sums $\sum_{k=n+1}^{q-r-1}(k+r)!\left\{\begin{array}{c}n+r \\ k+r\end{array}\right\}_{r}$ and $\sum_{k=n+\varphi(q)+1}^{q-r-1}(k+r)!\left\{\begin{array}{c}n+\varphi(q)+r \\ k+r\end{array}\right\}_{r}$ the upper parameter of the r-Stirling number is less than the lower one, and therefore these two sums are equal to zero. So

$$
F_{n+\varphi(q), r}-F_{n, r} \equiv \sum_{k=0}^{q-r-1} \sum_{j=r}^{k+r}(-1)^{k+r-j}\binom{k+r}{j} j^{n+1}\left(\frac{(j-1)!}{(j-r)!}\right)\left(j^{\varphi(q)}-1\right) \equiv 0(\bmod q),
$$

and therefore

$$
\begin{equation*}
F_{n+\varphi(q), r} \equiv F_{n, r} \quad(\bmod q) \text { for } m-1 \leq n<q-r-1 \tag{9}
\end{equation*}
$$

Combining results (8) and (9) gives $F_{n+\varphi(q), r} \equiv F_{n, r}(\bmod q)$, for $n \geq m-1$.

4 The r-Fubini residues modulo powers of 2

As in many other computations in number theory, the case of $p=2$ has its own difficulties that require special attention. In the case of powers of 2 , initially we calculate the residues of 2-Fubini numbers and then use the results in the case of the r-Fubini numbers. We classify the sequence of remainders of 2-Fubini numbers modulo $2^{m}, m \geq 7$, in Theorem 6 and then, work on remainders of the r-Fubini numbers modulo $2^{m}, m \geq 7$ in Theorem 9. The special cases will be proved in Theorems 4, 7 and 8. The trivial cases in which $2^{m} \leq r$ with period length 1 are omitted.

Theorem 4. If $3 \leq m \leq 6$, then after the $(m-1)$ th term the sequence $A_{2,2^{m}}$ has a period with length $\omega\left(A_{2,2^{m}}\right)=2$.

Proof. By using the formula $F_{n, 2}=\sum_{k=0}^{n}(k+2)!\left\{\begin{array}{c}n+2 \\ k+2\end{array}\right\}_{2}$ we prove that $F_{n+2,2}-F_{n, 2} \equiv$ $0(\bmod 64)$. Then $F_{n+2,2}-F_{n, 2} \equiv 0\left(\bmod 2^{m}\right)$ for $3 \leq m \leq 5$.

$$
\begin{aligned}
F_{n+2,2}-F_{n, 2}= & \sum_{k=0}^{n+2}(k+2)!\left\{\begin{array}{l}
n+4 \\
k+2
\end{array}\right\}_{2}-\sum_{k=0}^{n}(k+2)!\left\{\begin{array}{l}
n+2 \\
k+2
\end{array}\right\}_{2} \\
& \equiv \sum_{k=0}^{5}(k+2)!\left(\left\{\begin{array}{l}
n+4 \\
k+2
\end{array}\right\}_{2}-\left\{\begin{array}{l}
n+2 \\
k+2
\end{array}\right\}_{2}\right) \\
& \equiv \sum_{k=0}^{5} \sum_{j=2}^{k+2}(-1)^{k+2-j}\binom{k+2}{j} j^{n+1}\left(j^{2}-1\right)(j-1) \quad(\bmod 64) .
\end{aligned}
$$

In the case $m=6$ then $n \geq 5$, so if j is even, then $j^{n+1}=(2 c)^{6+h}$, for some $h \geq 0$ and therefore $64 \mid j^{n+1}$. For odd j we have $\operatorname{gcd}(j, 64)=1$, so by Euler's theorem we have
$j^{32} \equiv 1(\bmod 64)$, and therefore $j^{n+1+32} \equiv j^{n+1}(\bmod 64)$. This implies that

$$
\begin{aligned}
F_{n+2,2}-F_{n, 2} & \equiv \sum_{k=0}^{5} \sum_{l=1}^{\lfloor(k+1) / 2\rfloor}(-1)^{k+2-(2 l+1)}\binom{k+2}{2 l+1}(2 l+1)^{n+1}\left((2 l+1)^{2}-1\right) \times 2 l \\
& \equiv 16 \sum_{k=0}^{5}(-1)^{k+1} \sum_{l=1}^{\lfloor(k+1) / 2\rfloor}\binom{k+2}{2 l+1}(2 l+1)^{n+1}\left(\frac{l(l+1)}{2}\right) l \quad(\bmod 64) .
\end{aligned}
$$

Enumerating the last summation for $2 \leq n \leq 33$ shows that it is divisible by 64 and because of periodicity of remainders of j^{n+1} modulo 64 , the result follows.

Analogous to Lemma 2, it can be easily deduced by induction, showing that for each positive integer $m>1$ we have

$$
\begin{equation*}
2^{m}-2 \geq m \tag{10}
\end{equation*}
$$

This can be shown by using the relation $2^{m+1} \geq 2 m+4>m+3$, for $m>1$. The following lemma provides a simple but essential relation used in the next theorem. Its proof is provided in Appendix A.

Lemma 5. For $m \geq 7$ and $5 \leq i \leq 2^{m-6}$ we have $2^{m-6}-i \mid 2^{i-5}\left({ }^{2^{m-6}-1}\right)$.
Theorem 6. If $m \geq 7$, after the $(m-1)$ th term, the sequence $A_{2,2^{m}}$ has a period with length $\omega\left(A_{2,2^{m}}\right)=2^{m-6}$.

Proof. In the case of $n \geq 2^{m}-3$, from (10) we can deduce that $n \geq 2^{m}-3 \geq m-1$. So we have

$$
\begin{aligned}
F_{n+2^{m-6}, 2}-F_{n, 2} & \equiv \sum_{k=0}^{n+2^{m-6}}(k+2)!\left\{\begin{array}{c}
n+2^{m-6}+2 \\
k+2
\end{array}\right\}_{2}-\sum_{k=0}^{n}(k+2)!\left\{\begin{array}{l}
n+2 \\
k+2
\end{array}\right\}_{2} \\
& \equiv \sum_{k=0}^{2^{m}-3}(k+2)!\left(\left\{\begin{array}{c}
n+2^{m-6}+2 \\
k+2
\end{array}\right\}_{2}-\left\{\begin{array}{l}
n+2 \\
k+2
\end{array}\right\}_{2}\right) \\
& \equiv \sum_{k=0}^{2^{m}-3} \sum_{j=2}^{k+2}(-1)^{k+2-j}\binom{k+2}{j} j^{n+1}\left(j^{2^{m-6}}-1\right)(j-1)\left(\bmod 2^{m}\right) .
\end{aligned}
$$

When j is even, then $j^{n+1}=(2 c)^{2^{m}-2+h}$, for some $h \geq 0$. So by (10), $2^{m} \mid j^{n+1}$. For odd j we have

$$
\begin{aligned}
F_{n+2^{m-6}, 2}-F_{n, 2} & \equiv \sum_{k=0}^{2^{m}-3} \sum_{l=1}^{\lfloor(k+1) / 2\rfloor}(-1)^{k+2-(2 l+1)}\binom{k+2}{2 l+1}(2 l+1)^{n+1}\left((2 l+1)^{2^{m-6}}-1\right) \times 2 l \\
& \equiv 2^{m-4} \sum_{k=0}^{2^{m}-3}(-1)^{k+1} \sum_{l=1}^{\lfloor(k+1) / 2\rfloor}\binom{k+2}{2 l+1}(2 l+1)^{n+1}\left(\frac{(2 l+1)^{2^{m-6}}-1}{2^{m-5}}\right) l \\
& \equiv 2^{m-4} \sum_{k=0}^{2^{m}-3}(-1)^{k+1} \sum_{l=1}^{\lfloor(k+1) / 2\rfloor}\binom{k+2}{2 l+1}(2 l+1)^{n+1} \sum_{i=1}^{2^{m-6}} l^{i} 2^{i-1}\left(\frac{\left(2^{m-6}-1\right)!}{i!\left(2^{m-6}-i\right)!}\right) \\
& \times l \quad\left(\bmod 2^{m}\right) .
\end{aligned}
$$

The last expression contains $m-4$ factors of 2 , so it is sufficient to prove that the last summation is divisible by 16. This summation is denoted by \mathcal{S}. Simplify the summation $\sum_{i=1}^{2^{m-6}} l^{i} 2^{i-1} \frac{\left(2^{m-6}-1\right)!}{i!\left(2^{m-6}-i\right)!}$ and using Lemma 5 gives

$$
\begin{aligned}
& \sum_{i=1}^{2^{m-6}} l^{i} 2^{i-1}\left(\frac{\left(2^{m-6}-1\right)!}{i!\left(2^{m-6}-i\right)!}\right) \equiv \sum_{i=1}^{4} l^{i} 2^{i-1}\left(\frac{\left(2^{m-6}-1\right)!}{i!\left(2^{m-6}-i\right)!}\right) \equiv l+l^{2}\left(2^{m-6}-1\right) \\
& +\frac{l^{3} \times 2\left(2^{m-6}-1\right)\left(2^{m-6}-2\right)}{3}+\frac{l^{4}\left(2^{m-6}-1\right)\left(2^{m-6}-2\right)\left(2^{m-6}-3\right)}{3} \quad(\bmod 16)
\end{aligned}
$$

Assume $m \geq 10$ (the case $7 \leq m \leq 9$ is studied at the end of the proof). So $16 \mid 2^{m-6}$. Let $3 a=2\left(2^{m-6}-1\right)\left(2^{m-6}-2\right)$ and $3 b=\left(2^{m-6}-1\right)\left(2^{m-6}-2\right)\left(2^{m-6}-3\right)$. Then $3 a \equiv 4(\bmod$ $16)$ and $3 b \equiv-6(\bmod 16)$. Therefore $a \equiv-4(\bmod 16)$ and $b \equiv-2(\bmod 16)$. So the proof continues as follows:

$$
\begin{aligned}
\mathcal{S} & \equiv \sum_{k=0}^{2^{m}-3}(-1)^{k+1}\left(\sum_{l=1}^{\lfloor(k+1) / 2\rfloor}\binom{k+2}{2 l+1}(2 l+1)^{n+1}\left(l-l^{2}-4 l^{3}-2 l^{4}\right) l\right) \quad(\bmod 16) \\
\mathcal{S} & \equiv \sum_{k=0}^{2^{m}-3}(-1)^{k+1} \sum_{l=1}^{\lfloor(k+1) / 2\rfloor}\binom{k+2}{2 l+1}(2 l+1)^{n+1}\left(\frac{l(l+1)}{2}\right)\left(-2 l^{2}-2 l+1\right) l \quad(\bmod 8)
\end{aligned}
$$

Let $P(l)$ and $A(k, r, n)$ be the remainder of $\frac{1}{2}(2 l+1)^{n+1}(l(l+1))\left(-2 l^{2}-2 l+1\right) l$ and $\sum_{l=-\infty}^{\infty}\binom{k+2}{2 l+r} P(l)$ divided by 8 , respectively. By Pascal's identity, we have $\binom{k+2}{2 l+r}=\binom{k+1}{2 l+r}+$ $\binom{k+1}{2 l+r-1}$ and therefore

$$
\sum_{l=-\infty}^{\infty}\binom{k+2}{2 l+r} P(l)=\sum_{l=-\infty}^{\infty}\binom{k+1}{2 l+r} P(l)+\sum_{l=-\infty}^{\infty}\binom{k+1}{2 l+r-1} P(l)
$$

so

$$
\begin{equation*}
A(k, r, n)=A(k-1, r, n)+A(k-1, r-1, n) \tag{11}
\end{equation*}
$$

We can write

$$
A(k, r+32, n) \equiv \sum_{l=-\infty}^{\infty}\binom{k+2}{2 l+r+32} P(l) \quad(\bmod 8)
$$

The sequence $(P(l))_{l=-\infty}^{\infty}$ has period 16 , so $P(l+16)=P(l)$. Set $l^{\prime}=l+16$, then

$$
\begin{equation*}
A(k, r+32, n) \equiv \sum_{l^{\prime}=-\infty}^{\infty}\binom{k+2}{2 l^{\prime}+r} P\left(l^{\prime}\right) \equiv A(k, r, n) \quad(\bmod 8) \tag{12}
\end{equation*}
$$

Since $\operatorname{gcd}(2 l+1,16)=1$, Euler's theorem implies $(2 l+1)^{8} \equiv 1(\bmod 16)$ and therefore $(2 l+1)^{n+1+8} \equiv(2 l+1)^{n+1}(\bmod 16)$. The quantity $A(6, r, n)$ vanishes for $1 \leq r \leq 32$ and $9 \leq n \leq 24$, by enumeration, then by (11) and (12), we deduce that

$$
\begin{equation*}
A(k, r, n)=0, \text { for } k \geq 6 \tag{13}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
A(k, 1, n) & \equiv \sum_{l=-\infty}^{\infty}\binom{k+2}{2 l+1}(2 l+1)^{n+1}\left(\frac{l(l+1)}{2}\right)\left(-2 l^{2}-2 l+1\right) l \\
& \equiv \sum_{l=1}^{\lfloor(k+1) / 2\rfloor}\binom{k+2}{2 l+1}(2 l+1)^{n+1}\left(\frac{l(l+1)}{2}\right)\left(-2 l^{2}-2 l+1\right) l \equiv 0 \quad(\bmod 8),
\end{aligned}
$$

for $k \geq 6$. If $1 \leq k \leq 5,9 \leq n \leq 24$ and $1 \leq r \leq 32$ we have $\sum_{k=1}^{5}(-1)^{k+1} A(k, r, n) \equiv$ $0(\bmod 8)$. The period length of $A(k, r, n)$ with respect to r and n implies that

$$
\sum_{k=1}^{5}(-1)^{k+1} A(k, 1, n) \equiv 0(\bmod 8), \text { for } n \geq 9
$$

Combining this with (13) we have

$$
\mathcal{S} \equiv \sum_{k=1}^{2^{m}-3}(-1)^{k+1} A(k, 1, n) \equiv 0 \quad(\bmod 8), \text { for } n \geq 0
$$

So the result follows in the case of $n \geq 2^{m}-3$. If $m-1 \leq n<2^{m}-3$ we can write

$$
\begin{aligned}
F_{n+2^{m-6}, 2}-F_{n, 2} & =\sum_{k=0}^{n+2^{m-6}}(k+2)!\left\{\begin{array}{c}
n+2^{m-6}+2 \\
k+2
\end{array}\right\}_{2}-\sum_{k=0}^{n}(k+2)!\left\{\begin{array}{l}
n+2 \\
k+2
\end{array}\right\}_{2} \\
& =\sum_{k=0}^{2^{m}-3}(k+2)!\left(\left\{\begin{array}{c}
n+2^{m-6}+2 \\
k+2
\end{array}\right\}_{2}-\left\{\begin{array}{l}
n+2 \\
k+2
\end{array}\right\}_{2}\right) \\
& -\sum_{k=n+2^{m-6}+1}^{2^{m}-3}(k+2)!\left(\begin{array}{c}
n+2^{m-6}+2 \\
k+2
\end{array}\right\}_{2}+\sum_{k=n+1}^{2^{m}-3}(k+2)!\left\{\begin{array}{c}
n+2 \\
k+2
\end{array}\right\}_{2} \\
& \equiv \sum_{k=0}^{2^{m}-3} \sum_{j=1}^{k+2}(-1)^{k+2-j}\binom{k+2}{j} j^{n+1}\left(j^{2^{m-6}}-1\right)(j-1) \quad\left(\bmod 2^{m}\right) .
\end{aligned}
$$

When j is even, then $j^{n+1}=(2 c)^{m+h}$, for some $h \geq 0$, so $2^{m} \mid j^{n+1}$. Since $m \geq 10$, for odd j we have

$$
\begin{aligned}
& \sum_{k=0}^{2^{m}-3} \sum_{j=1}^{k+2}(-1)^{k+2-j}\binom{k+2}{j} j^{n+1}\left(j^{2^{m-6}}-1\right)(j-1) \\
& \equiv 2^{m-4} \sum_{k=0}^{2^{m}-3}(-1)^{k+1} \sum_{l=1}^{\lfloor(k+1) / 2\rfloor}\binom{k+2}{2 l+1}(2 l+1)^{n+1}\left(l-l^{2}-4 l^{3}-2 l^{4}\right) l \quad\left(\bmod 2^{m}\right) .
\end{aligned}
$$

The last summation is exactly the \mathcal{S} and the proof will be similar as above. Combine with the previous case we have the following congruence relation

$$
\begin{equation*}
F_{n+2^{m-6}, 2} \equiv F_{n, 2} \quad\left(\bmod 2^{m}\right), \text { for } m \geq 10 \tag{14}
\end{equation*}
$$

In the case where $7 \leq m \leq 9$, the remainder value of the sum

$$
\sum_{k=0}^{2^{m}-3}(-1)^{k+1} \sum_{l=1}^{\lfloor(k+1) / 2\rfloor}\binom{k+2}{2 l+1}(2 l+1)^{n+1}\left(\sum_{i=1}^{4} l^{i} 2^{i-1} \frac{\left(2^{m-6}-1\right)!}{i!\left(2^{m-6}-i\right)!}\right) l
$$

modulo 16 is computed for $m-1 \leq n \leq m+14$. Divisibility of all these values by 16 implies that the recent sum is divisible by 16, and therefore

$$
\begin{equation*}
F_{n+2^{m-6}, 2} \equiv F_{n, 2} \quad\left(\bmod 2^{m}\right), \text { for } 7 \leq m \leq 9 . \tag{15}
\end{equation*}
$$

Summing up the congruence relations (14) and (15) gives

$$
\omega\left(A_{2,2^{m}}\right)=2^{m-6}, \text { for } m \geq 7
$$

Theorem 7. For $m=1$ and $m=2$, the sequence $A_{r, 2^{m}}$ is periodic from the first term and the period length is $\omega\left(A_{r, 2^{m}}\right)=1$.

Proof. The proof of this theorem is divided into three cases. For $r=2$ we have

$$
\begin{aligned}
F_{n+1,2}-F_{n, 2} & =\sum_{k=0}^{n+1}(k+2)!\left\{\begin{array}{c}
n+3 \\
k+2
\end{array}\right\}_{2}-\sum_{k=0}^{n}(k+2)!\left\{\begin{array}{l}
n+2 \\
k+2
\end{array}\right\}_{2} \\
& \equiv 2\left(\left\{\begin{array}{c}
n+3 \\
2
\end{array}\right\}_{2}-\left\{\begin{array}{c}
n+2 \\
2
\end{array}\right\}_{2}\right)+6\left(\left\{\begin{array}{c}
n+3 \\
3
\end{array}\right\}_{2}-\left\{\begin{array}{c}
n+2 \\
3
\end{array}\right\}_{2}\right)(\bmod 4) \\
& =2\left(2^{n+1}-2^{n}\right)+6\left(3^{n+1}-2^{n+1}-\left(3^{n}-2^{n}\right)\right) \\
& =2^{n+1}+6\left(2 \times 3^{n}-2^{n}\right)=4\left(2^{n-1}+3^{n+1}-3 \times 2^{n-1}\right) \\
& =4\left(3^{n+1}-2^{n}\right) \equiv 0(\bmod 4) .
\end{aligned}
$$

So we can deduce that $\omega\left(A_{2,4}\right)=1$ and obviously $\omega\left(A_{2,2}\right)=1$.
For $r=3$ we can write

$$
\begin{aligned}
F_{n+1,3}-F_{n, 3} & =\sum_{k=0}^{n+1}(k+3)!\left\{\begin{array}{l}
n+4 \\
k+3
\end{array}\right\}_{3}-\sum_{k=0}^{n}(k+3)!\left\{\begin{array}{l}
n+3 \\
k+3
\end{array}\right\}_{3} \\
& \equiv 6\left(\left\{\begin{array}{c}
n+4 \\
3
\end{array}\right\}_{3}-\left\{\begin{array}{c}
n+3 \\
3
\end{array}\right\}_{3}\right)(\bmod 4) \\
& =6\left(3^{n+1}-3^{n}\right)=6 \times 2 \times 3^{n}=4 \times 3^{n+1} \equiv 0(\bmod 4)
\end{aligned}
$$

Therefore we have $\omega\left(A_{3,4}\right)=1$ and $\omega\left(A_{3,2}\right)=1$.
Finally if $r \geq 4$, let $r=4+h$, for some $h \geq 0$, then

$$
F_{n+1, r}-F_{n, r}=\sum_{k=0}^{n+1}(k+r)!\left\{\begin{array}{c}
n+1+r \\
k+r
\end{array}\right\}_{r}-\sum_{k=0}^{n}(k+r)!\left\{\begin{array}{c}
n+r \\
k+r
\end{array}\right\}_{r} .
$$

Since $4 \mid(k+r)$!, for all $k \geq 0$, we can write $F_{n+1, r}-F_{n, r} \equiv 0(\bmod 4)$. Therefore $\omega\left(A_{r, 4}\right)=1$ and $\omega\left(A_{r, 2}\right)=1$.

Theorem 8. If $3 \leq m \leq 6$, after the $(m-1)$ th term, the sequence $A_{r, 2^{m}}$ has a period with length $\omega\left(A_{r, 2^{m}}\right)=2$.

Proof. The proof of this theorem is similar to the proof of Theorem 4. It is enough to prove the theorem for $m=6$; then the result follows for $m=3,4$ and 5 . Since $n \geq m-1$, then
for $m=6$ we have $n \geq 5$. For $3 \leq r \leq 7$ we have

$$
\begin{aligned}
F_{n+2, r}-F_{n, r} & =\sum_{k=0}^{n+2}(k+r)!\left\{\begin{array}{c}
n+2+r \\
k+r
\end{array}\right\}_{r}-\sum_{k=0}^{n}(k+r)!\left\{\begin{array}{c}
n+r \\
k+r
\end{array}\right\}_{r} \\
& \equiv \sum_{k=0}^{7-r} \sum_{j=r}^{k+r}(-1)^{k+r-j}\binom{k+r}{j} j^{n+1}\left(j^{2}-1\right)\left(\frac{(j-1)!}{(j-r)!}\right) \\
& \equiv \sum_{k=0}^{7-r} \sum_{j=r}^{k+r}(-1)^{k+r-j}\binom{k+r}{j} j^{n+1}\left(j^{2}-1\right)(j-1)\left(\frac{(j-2)!}{(j-r)!}\right) \quad(\bmod 64) .
\end{aligned}
$$

When j is even, then $j^{n+1}=(2 c)^{6+h}$, for some $h \geq 0$, and so $64 \mid j^{n+1}$. For odd j we have $\operatorname{gcd}(j, 64)=1$ and Euler's theorem gives $j^{32} \equiv 1(\bmod 64)$. Therefore $j^{n+1+32} \equiv j^{n+1}(\bmod$ 64), and we can write

$$
\begin{aligned}
& \sum_{k=0}^{7-r} \sum_{j=r}^{k+r}(-1)^{k+r-j}\binom{k+r}{j} j^{n+1}\left(j^{2}-1\right)(j-1) \frac{(j-2)!}{(j-r)!} \\
& \equiv \sum_{k=0}^{7-r} \sum_{l=\lfloor r / 2\rfloor}^{\lfloor(k+r-1) / 2\rfloor}(-1)^{k+r-(2 l+1)}\binom{k+r}{2 l+1}(2 l+1)^{n+1}\left((2 l+1)^{2}-1\right) \times 2 l\left(\frac{(2 l-1)!}{(2 l+1-r)!}\right) \\
& \equiv 16 \sum_{k=0}^{7-r}(-1)^{k+r-1} \sum_{l=\lfloor r / 2\rfloor}^{\lfloor(k+r-1) / 2\rfloor}\binom{k+r}{2 l+1}(2 l+1)^{n+1}\left(\frac{l(l+1)}{2}\right) l\left(\frac{(2 l-1)!}{(2 l+1-r)!}\right) \quad(\bmod 64) .
\end{aligned}
$$

By computation we see that the recent summation is divisible by 4 , for $2 \leq n \leq 33$. So the proof for $3 \leq r \leq 7$ is completed.

If $r \geq 8$, since $64 \mid 8$!, then $64 \mid(k+r)$!, and

$$
F_{n+2, r}-F_{n, r}=\sum_{k=0}^{n+2}(k+r)!\left\{\begin{array}{c}
n+2+r \\
k+r
\end{array}\right\}_{r}-\sum_{k=0}^{n}(k+r)!\left\{\begin{array}{c}
n+r \\
k+r
\end{array}\right\}_{r} \equiv 0(\bmod 64)
$$

so $\omega\left(A_{r, 2^{6}}\right)=2$, for $r \geq 8$, and the proof is completed.
Theorem 9. If $m \geq 7$, after the $(m-1)$ th term, the sequence $A_{r, 2^{m}}$ has a period with length $\omega\left(A_{r, 2^{m}}\right)=2^{m-6}$.

Proof. The proof of this theorem is similar to the proof of Theorem 6. In the case of
$n \geq 2^{m}-r-1$ and $r \geq 8$ we have

$$
\begin{aligned}
F_{n+2^{m-6}, r}-F_{n, r} & =\sum_{k=0}^{n+2^{m-6}}(k+r)!\left\{\begin{array}{c}
n+2^{m-6}+r \\
k+r
\end{array}\right\}_{r}-\sum_{k=0}^{n}(k+r)!\left\{\begin{array}{l}
n+r \\
k+r
\end{array}\right\}_{r} \\
& \equiv \sum_{k=0}^{2^{m}-r-1}(k+r)!\left(\left\{\begin{array}{c}
n+2^{m-6}+r \\
k+r
\end{array}\right\}_{r}-\left\{\begin{array}{c}
n+r \\
k+r
\end{array}\right\}_{r}\right) \\
& \equiv \sum_{k=0}^{2^{m}-r-1} \sum_{j=r}^{k+r}(-1)^{k+r-j}\binom{k+r}{j} j^{n+1}\left(j^{2^{m-6}}-1\right)\left(\frac{(j-1)!}{(j-r)!}\right)\left(\bmod 2^{m}\right) .
\end{aligned}
$$

In the case of $2^{m}>r>2^{m}-m$, since $m \geq 7$ this implies that $r>2^{m}-m \geq 2^{m-1}$, so

$$
2^{m}\left|\left(2^{m-1}\right)!\right|(k+r)!, \text { for each } k \geq 0
$$

Therefore both summations in the above first equation are zero modulo 2^{m} and in this case $\omega\left(A_{r, 2^{m}}\right)=2^{m-6}$. When $r \leq 2^{m}-m$, if j is even then $j^{n+1}=(2 c)^{2^{m}-r+h}$, for some $h \geq 0$. So $2^{m} \mid j^{n+1}$. For odd j we have $\left(j, 2^{m-5}\right)=1$, and $2^{m-5} \mid j^{2^{m-6}}-1$ by Euler's theorem. Since $r \geq 8$ we can write $\frac{(j-1)!}{(j-r)!}=\left(\frac{(j-8)!}{(j-r)!}\right) \prod_{i=1}^{7}(j-i)$. Therefore $32 \left\lvert\, \frac{(j-1)!}{(j-r)!}\right.$ and $2^{m} \left\lvert\,\left(j^{2 m-6}-1\right)\left(\frac{(j-1)!}{(j-r)!}\right)\right.$.

In the case of $m-1 \leq n<2^{m}-r-1$ and $r \geq 8$ we have

$$
\begin{aligned}
F_{n+2^{m-6}, r}-F_{n, r} & =\sum_{k=0}^{n+2^{m-6}}(k+r)!\left\{\begin{array}{c}
n+2^{m-6}+r \\
k+r
\end{array}\right\}_{r}-\sum_{k=0}^{n}(k+r)!\left\{\begin{array}{l}
n+r \\
k+r
\end{array}\right\}_{r} \\
& \equiv \sum_{k=0}^{2^{m}-r-1}(k+r)!\left(\left\{\begin{array}{c}
n+2^{m-6}+r \\
k+r
\end{array}\right\}_{r}-\left\{\begin{array}{l}
n+r \\
k+r
\end{array}\right\}_{r}\right) \\
& -\sum_{k=n+2^{m-6}+1}^{2^{m}-r-1}(k+r)!\left\{\begin{array}{c}
n+2^{m-6}+r \\
k+r
\end{array}\right\}+\sum_{k=n+1}^{2^{m}-r-1}(k+r)!\left\{\begin{array}{l}
n+r \\
k+r
\end{array}\right\}\left(\bmod 2^{m}\right) \\
& =\sum_{k=0}^{2^{m}-r-1}(k+r)!\left(\left\{\begin{array}{c}
n+2^{m-6}+r \\
k+r
\end{array}\right\}_{r}-\left\{\begin{array}{l}
n+r \\
k+r
\end{array}\right\}_{r}\right)+0,
\end{aligned}
$$

and the proof proceeds as in the previous case. In the case of $3 \leq r \leq 7$ one can deduce similarly to the proof of Theorem 6 that

$$
F_{n+2^{m-6}, r}-F_{n, r} \equiv \sum_{k=0}^{2^{m}-r-1} \sum_{j=r}^{k+r}(-1)^{k+r-j}\binom{k+r}{j} j^{n+1}\left(j^{2^{m-6}}-1\right)\left(\frac{(j-1)!}{(j-r)!}\right) \quad\left(\bmod 2^{m}\right)
$$

Exactly the same as Theorem 6, the terms with even j vanish and only the terms with odd
j remain. So we have

$$
\begin{aligned}
F_{n+2^{m-6}, r}-F_{n, r} & \equiv \sum_{k=0}^{2^{m}-r-1} \sum_{l=\lfloor r / 2\rfloor}^{\lfloor(k+r-1) / 2\rfloor}(-1)^{k+r-(2 l+1)}\binom{k+r}{2 l+1}(2 l+1)^{n+1}\left((2 l+1)^{2^{m-6}}-1\right) \\
& \times\left(\frac{((2 l+1)-1)!}{((2 l+1)-r)!}\right) \\
& \equiv 2^{m-5} \sum_{k=0}^{2^{m}-r-1}(-1)^{k+r-1} \sum_{l=\lfloor r / 2\rfloor}^{\lfloor(k+r-1) / 2\rfloor}\binom{k+r}{2 l+1}(2 l+1)^{n+1} \\
& \times\left(\sum_{i=1}^{2^{m-6}} l^{i} 2^{i-1}\left(\frac{\left(2^{m-6}-1\right)!}{i!\left(2^{m-6}-i\right)!}\right)\right)\left(\frac{(2 l)!}{(2 l-r+1)!}\right) \quad\left(\bmod 2^{m}\right) .
\end{aligned}
$$

Since $\operatorname{gcd}(2 l+1,16)=1$, Euler's theorem shows that $(2 l+1)^{n+1+8} \equiv(2 l+1)^{n+1}(\bmod 16)$. If $m \geq 10$, we have

$$
\begin{aligned}
F_{n+2^{m-6}, r}-F_{n, r} & \equiv 2^{m-4} \sum_{k=0}^{2^{m}-r-1}(-1)^{k+r-1} \sum_{l=\lfloor r / 2\rfloor}^{\lfloor(k+r-1) / 2\rfloor}\binom{k+r}{2 l+1}(2 l+1)^{n+1}\left(\frac{l(l+1)}{2}\right) \\
& \times\left(-2 l^{2}-2 l+1\right)\left(\frac{(2 l)!}{(2 l-r+1)!}\right)\left(\bmod 2^{m}\right) .
\end{aligned}
$$

Therefore it is sufficient to compute the above summation (without factor 2^{m-4}) for $3 \leq r \leq 7$ and $9 \leq n \leq 16$ to show that it is divisible by 16 .

For $7 \leq m \leq 9$ we evaluate the sum

$$
\sum_{k=0}^{2^{m}-r-1}(-1)^{k+r-1} \sum_{l=\lfloor r / 2\rfloor}^{\lfloor(k+r-1) / 2\rfloor}\binom{k+r}{2 l+1}(2 l+1)^{n+1} \sum_{i=1}^{2^{m-6}} l^{i} 2^{i-1} \frac{\left(2^{m-6}-1\right)!}{i!\left(2^{m-6}-i\right)!}\left(\frac{(2 l)!}{(2 l-r+1)!}\right)
$$

for $m-1 \leq n \leq m+6$ to show that it is divisible by 32 . Then it follows that $\omega\left(A_{r, 2^{m}}\right)=2^{m-6}$, for all $m \geq 7$.

5 The conclusion

We now state the final theorem, which shows how to compute $\omega\left(A_{r, s}\right)$ for any $s \in \mathbb{N}$.
Theorem 10. Let $s \in \mathbb{N}$ and $s>1$ with the prime factorization $s=2^{m} p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{k}^{m_{k}}$ and let $D=\left\{p_{i}^{m_{i}} \mid p_{i}^{m_{i}}>r, 1 \leq i \leq k\right\}$. Define $E=\left\{m_{i}-1 \mid p_{i}^{m_{i}} \in D\right\}, F=\left\{\varphi\left(p_{i}^{m_{i}}\right) \mid p_{i}^{m_{i}} \in D\right\}$ and $a=\max (E \cup\{m-1\})$ and let b be the least common multiple (lcm) of the elements of F. Then

$$
\omega\left(A_{r, s}\right)= \begin{cases}b, & \text { if } 0 \leq m \leq 2 \text { or } 2^{m} \leq r \tag{16}\\ \operatorname{lcm}(2, b), & \text { if } 3 \leq m \leq 6 \text { and } 2^{m}>r \\ \operatorname{lcm}\left(2^{m-6}, b\right), & \text { if } m \geq 7 \text { and } 2^{m}>r,\end{cases}
$$

and periodicity of the sequence $A_{r, s}$ is seen after the a-th term.
Proof. Let l be the right hand side of (16). For each $d \in D \cup\left\{2^{m}\right\}, \omega\left(A_{r, d}\right) \mid l$ and for each $p_{j}^{m_{j}} \notin D$ such that $1 \leq j \leq k$, we have $1=\omega\left(A_{r, p_{j}^{m}}^{m_{j}}\right) \mid l$, so

$$
\begin{aligned}
& F_{n+l, r} \equiv F_{n, r} \quad\left(\bmod 2^{m}\right) \\
& F_{n+l, r} \equiv F_{n, r} \quad\left(\bmod p_{i}^{m_{i}}\right), \text { for } i=1,2, \ldots, k
\end{aligned}
$$

Since $\operatorname{gcd}\left(2^{m}, p_{1}^{m_{1}}, p_{2}^{m_{2}}, \ldots, p_{k}^{m_{k}}\right)=1$, the multiplication of all above congruence relations gives the required result.

6 Acknowledgments

The authors would like to thank the anonymous referee for his/her valuable comments and guides.

A Proof of Lemma 5

After simplifying the lemma's relation we have

$$
\begin{equation*}
\frac{2^{i-5}\binom{2^{m-6}-1}{i}}{2^{m-6}-i}=\frac{2^{i-5}\left(2^{m-6}-1\right)\left(2^{m-6}-2\right) \cdots\left(2^{m-6}-i+1\right)}{i!} \tag{17}
\end{equation*}
$$

It is sufficient to show that the right hand side of (17) is integer. We know that $\binom{2^{m-6}}{i} \in \mathbb{N}$, i.e.,

$$
i!\mid 2^{m-6}\left(2^{m-6}-1\right) \cdots\left(2^{m-6}-i+1\right)
$$

If O_{i} denotes the product of the odd factors of i !, since $\left(O_{i}, 2^{m-6}\right)=1$, then $O_{i} \mid\left(2^{m-6}-\right.$ 1) $\cdots\left(2^{m-6}-i+1\right)$. So in (17) we only need to prove that

$$
\nu_{2}\left(2^{i-5}\left(2^{m-6}-1\right)\left(2^{m-6}-2\right) \cdots\left(2^{m-6}-i+1\right)\right) \geq \nu_{2}(i!)
$$

where by $\nu_{2}(x)$ we mean that $2^{\nu_{2}(x)} \mid x$, but $2^{\nu_{2}(x)+1} \nmid x$. Let $A=\nu_{2}\left(\left(2^{m-6}-1\right)\left(2^{m-6}-\right.\right.$ 2) $\left.\cdots\left(2^{m-6}-i+1\right)\right)$ and $B=\nu_{2}(i!)$. Let e be the unique integer such that $2^{e} \leq i<2^{e+1}$. So

$$
\begin{equation*}
A=\sum_{k=1}^{e}\left\lfloor\frac{i-1}{2^{k}}\right\rfloor, \quad B=\sum_{k=1}^{e}\left\lfloor\frac{i}{2^{k}}\right\rfloor . \tag{18}
\end{equation*}
$$

If we show that

$$
\begin{equation*}
B-A \leq e \tag{19}
\end{equation*}
$$

then the lemma is concluded if it is proved that

$$
\begin{equation*}
i+A \geq B+5 \tag{20}
\end{equation*}
$$

It can easily be shown that $B=\nu_{2}(i!)$ and $A=\nu_{2}((i-1)!)$, so $B-A=\nu_{2}(i)$. Since $2^{e} \leq i<2^{e+1}$, therefore $\nu_{2}(i) \leq e$ and (19) follows. For $e=2$, integer possibilities for inequality (20) are as follows:

i	A	B
5	3	3
6	3	4
7	4	4

For $e \geq 3$ one can deduce by simple induction that

$$
2^{e} \geq e+5
$$

so $i \geq 2^{e} \geq e+5$. Add $B-e$ to these inequalities and use (19) demonstrates (20) for $i \geq 8$.

References

[1] A. Z. Broder, The r-Stirling numbers, Discrete Math. 49 (1984), 241-259.
[2] A. Cayley, On the analytical forms called trees, Amer. J. Math. 4 (1881), 266-268.
[3] C. Chuan-Chong and K. Khee-Meng, Principles and Techniques in Combinatorics, World Scientific, 1992.
[4] I. Mező, Periodicity of the last digits of some combinatorial sequences, J. Integer Sequences $\mathbf{1 7}$ (2014), Article 14.1.1.
[5] I. Mező and J. L. Ramírez, Some identities of the r-Whitney numbers, Aequationes Math. 90 (2016), 393-406.
[6] B. Poonen, Periodicity of a combinatorial sequence, Fibonacci Quart. 26 (1988), 70-76.

2010 Mathematics Subject Classification: Primary 11B50; Secondary 11B75, 05A10, 11B73, 11 Y 55.
Keywords: residue modulo prime power factors, r-Fubini number, r-Stirling number of the second kind, periodic sequence.
(Concerned with sequences A000670, A008277, A143494, A143495, A143496, A232472, A232473, and A232474.)

Received March 18 2017; revised version received April 16 2017; April 1 2018; April 12 2018; April 21 2018. Published in Journal of Integer Sequences, May 82018.

Return to Journal of Integer Sequences home page.

