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Abstract

For all integers n ≥ 1 we define the generalized Lucasnomial Fuss-Catalan numbers

CU,a,r(n) :=
Ur

U(a−1)n+r

(
an+ r − 1

n

)

U

,

and prove their integrality. Here U is a fundamental Lucas sequence, a ≥ 2 and r ≥ 1
are integers, and

(∗
∗
)

U
denotes a Lucasnomial coefficient. If U = I, where In = n, then

the CI,a,r(n) are the usual generalized Fuss-Catalan numbers. With the assumption
that U is regular, we show that U(a−1)n+k divides

(
an
n

)

U
for all n ≥ 1 but a set of

asymptotic density 0 if k ≥ 1, but only for a small set if k ≤ 0. This small set is finite
when U 6= I and at most of upper asymptotic density 1− log 2 when U = I. We also
determine all triples (U, a, k), where k ≥ 2, for which the exceptional set of density 0
is actually finite, and in fact empty.

1 Introduction

The Catalan numbers Cn, which may be defined algebraically by the formula 1
n+1

(
2n
n

)
, appear

in all kinds of mathematical contexts and have numerous combinatorial interpretations. One
may get seriously acquainted with them by consulting the recent book of Stanley [28]. They
admit several generalizations. Two of them are relevant to this paper. First, the generalized
Fuss-Catalan numbers, defined for all integers n ≥ 1 as

r

(a− 1)n+ r

(
an+ r − 1

n

)

, (1)
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where a ≥ 2 and r ≥ 1 are fixed integers. Fuss-Catalan numbers, which correspond to r = 1,
are shown [28, Exercise A14, pp. 108] to have combinatorial interpretations that extend some
of the interpretations for ordinary Catalan numbers. We note that Fuss-Catalan numbers are
sometimes plainly called generalized Catalan numbers (e.g., [29]). The second generalization
of interest to this paper are the Lucasnomial Catalan numbers

1

Un+1

(
2n

n

)

U

, (2)

where U = (Un) is a fundamental Lucas sequence and
(
2n
n

)

U
is the generalized central bi-

nomial coefficient with respect to U . Both generalizations are known to yield integers only;
see, e.g., [5, 11]. In Section 2, the integrality of more general numbers is proved, namely the
generalized Lucasnomial Fuss-Catalan numbers

CU,a,r(n) :=
Ur

U(a−1)n+r

(
an+ r − 1

n

)

U

, (3)

where U is a regular fundamental Lucas sequence, and a ≥ 2 and r ≥ 1 are given integers.
The numbers

CU,a,1(n) =
1

U(a−1)n+1

(
an

n

)

U

, (4)

where r = 1 are simply referred to as Lucasnomial Fuss-Catalan numbers. Thus, ordinary
Catalan and Fibonomial Catalan numbers which correspond, respectively, to (U, a, r) =
(I, 2, 1) and (U, a, r) = (F, 2, 1) are particular instances of Lucasnomial Fuss-Catalan num-
bers. Throughout the paper, the letter I denotes the identity sequence, i.e., In = n for all
n ≥ 0, while F denotes the Fibonacci sequence defined by Fn+2 = Fn+1 + Fn, for all n ≥ 0,
F0 = 0 and F1 = 1.

In Section 2, the integrality of various Lucasnomial generalizations of classical numbers is
established. Indeed, Theorem 6 unconditionally establishes the integrality of all Lucasnomial
Fuss-Catalan numbers, Theorem 9 proves the integrality of all generalized Lucasnomial Fuss-
Catalan numbers with the restriction that U be regular, Theorem 12 deduces from Theorem
9 the integrality of the generalized Lucasnomial Lobb numbers LU,a

m,s, defined by

LU,a
m,s :=

Uas+1

U(a−1)m+s+1

(
am

(a− 1)m+ s

)

U

, (5)

for a ≥ 1, m > s ≥ 0, and, given the author’s patronym we could hardly fail to show
Theorem 13, which establishes the integrality of all Lucasnomial ballot numbers BU(a, b),
defined by

BU(a, b) :=
Ua−b

Ua+b

(
a+ b

a

)

U

, (6)

for all a > b ≥ 0 integers.
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However, Section 2 apart, the rest of the paper is devoted to a variant of Lucasnomial
Fuss-Catalan numbers, namely the numbers

1

U(a−1)n+k

(
an

n

)

U

, (7)

where k is a fixed integer. The investigation we launched into persues the research work
conducted in two recent papers, one of Pomerance [22] and then one of the author [5].

Given a triple (U, a, k), we consider the set DU,a,k of all positive integers n for which
U(a−1)n+k divides the Lucasnomial

(
an
n

)

U
. When n is in DU,a,k, then the numbers in (7) are

integers. When k = 1, they are Lucasnomial Fuss-Catalan numbers and are integers for all
n ≥ 1. Thus, DU,a,1 = N. The main question the paper addresses is how does replacing 1 by
k affects the sets DU,a,k? How far astray do we get from the Catalan phenomenon?

In his clear and attractive paper [22], Pomerance studied how often the middle binomial
coefficients

(
2n
n

)
are divisible by n + k, when k is a fixed arbitrary integer. The enquiry

brought out two chief phenomena: the singularity of the Catalan numbers and a drastic
difference in behavior between the case k ≥ 1 and the case k ≤ 0. Indeed, if k 6= 1, then
DI,2,k, the complementary set of DI,2,k in the positive integers, is infinite. That is, there are
infinitely many n for which n + k does not divide

(
2n
n

)
. Secondly, if k ≥ 1, then DI,2,k has

asymptotic density one, whereas if k ≤ 0, although DI,2,k is infinite, its upper asymptotic
density, whose value is still unknown — see Section 3 — is small and definitely less than
1/3.

Before describing the content of the second paper [5], we recall some notions.
A fundamental Lucas sequence U = U(P,Q) is a binary linear recurrent sequence defined

by the initial values U0 = 0, U1 = 1 and the recurrence

Un+2 = PUn+1 −QUn, (8)

for all integers n ≥ 0, where P and Q are nonzero integers. The discriminant ∆ of U(P,Q)
is P 2 − 4Q, i.e., it is the discriminant of the characteristic polynomial associated with the
recursion.

In stating our results we often use the notation U(P,Q), with parameters P and Q, to
designate a Lucas sequence later simply referred to as U and with terms Un. Note that all
terms of a sequence U are integers. With its initial conditions U turns out to be a divisibility,
or a divisible sequence, i.e., one that satisfies, for all positive integers m and n, the property

m | n =⇒ Um | Un. (9)

A fundamental Lucas sequence is nondegenerate if Un 6= 0 for all n ≥ 1. Nondegeneracy
occurs whenever the ratio of the zeros of x2 − Px + Q is not a root of unity of order ≥ 2.
Alternatively, the condition U12 6= 0 is necessary and sufficient to ensure the nondegeneracy of
U — see, e.g., [2, Section 2]. We sometimes use the abbreviation ‘NFLS’, or ‘NFL-sequence’,
for a nondegenerate fundamental Lucas sequence.
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A regular Lucas sequence U(P,Q) is a NFLS such that gcd(P,Q) = 1.1 This property is
well-known to confer a stronger form of divisibility to the sequence U , i.e., for all nonnegative
integers m and n

gcd(Um, Un) = |Ugcd(m,n)|. (10)

Conversely, property (10) is easily seen to imply gcd(P,Q) = 1.
A Lucasnomial, or a Lucasnomial coefficient, is a generalized binomial coefficient with

respect to a nondegenerate fundamental Lucas sequence U . That is, for m ≥ n ≥ 1, the
Lucasnomial

(
m
n

)

U
is defined as

(
m

n

)

U

:=
UmUm−1 · · ·Um−n+1

UnUn−1 · · ·U1

,

and as 1, if m ≥ 0 and n = 0, and as 0 otherwise. Thus, for instance,

(
6

3

)

F

=
F6 · F5 · F4

F3 · F2 · F1

=
8 · 5 · 3
2 · 1 · 1 = 60.

The important Lucasnomial identity

(
m

n

)

U

= Un+1

(
m− 1

n

)

U

−QUm−n−1

(
m− 1

n− 1

)

U

, for m ≥ n ≥ 1, (11)

easily follows from the Lucas identity [2, Section 5]

Um = Un+1Um−n −QUnUm−n−1.

The integrality of all Lucasnomials may be seen inductively from (11).
There are two particular Lucas sequences U(P,Q) for which the corresponding Lucasno-

mials have their own name. On the one hand, of course, the ordinary binomial coefficients
(
m
n

)
=

(
m
n

)

I
, for which I = U(2, 1) and In = n for all n ≥ 0. On the other hand, we

have the Fibonomials,
(
m
n

)

F
, derived from the much-studied Fibonacci sequence F which is

equal to U(1,−1). Indeed, Fibonomials appeared earlier than general Lucasnomials in the
mathematical literature.

In the sequel, we usually assume P > 0. Indeed, given P and Q,

U(−P,Q)(n) = (−1)n−1U(P,Q)(n), for all n ≥ 0,

so that Lucasnomials with respect to U(−P,Q) are, up to sign, identical to corresponding
Lucasnomials with respect to U(P,Q). Therefore, the two sets DU(±P,Q),a,k are identical.

Lucasnomial Catalan numbers with respect to a NFLS U , defined in (2), deserve their
appellation as they are integral for all n ≥ 0 [5, 12, 14, 24]. Gould [13, 14] might have
been the first person to coin the term ‘Fibonomial Catalan number’ for U = F and to prove

1The nondegeneracy condition simplifies to U3 6= 0, i.e., to not having P 2 = Q = 1 when gcd(P,Q) = 1.
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their integrality. To date and to our knowledge there is no combinatorial interpretation
of Lucasnomial Catalan numbers for U 6= I, even though combinatorial interpretations of
Lucasnomials themselves exist and have received attention [6, 7, 23, 24].

Because I is a particular NFLS and because the Catalan phenomenon persists when we
consider Lucasnomial Catalan numbers, it was natural to find out whether

1. The sets DU,2,k all missed infinitely many integers as soon as k 6= 1,

2. The cleavage observed between the cases k ≥ 1 and k ≤ 0 for U = I remained true
generally.

The answers [5] were essentially affirmative at least for all regular Lucas sequences if not
for one exception with respect to question 1, namely the sequence U(1, 2). For this sequence,
DU,2,2 turns out to be the whole set of natural numbers. The behavioral dichotomy between
k ≥ 1 and k ≤ 0 is even sharper than for U = I. That is, if ∆ 6= 0, then the sets DU,2,k

are finite when k ≤ 0, but still have asymptotic density 1 when k ≥ 1. (The only two
zero-discriminant regular Lucas sequences are U(±2, 1) and the only one with P > 0 is
U = I = U(2, 1).)

This paper sets about discovering whether, for all regular Lucas sequences U and all
integers k, the divisor sets DU,a,k display the same features for a > 2 as for a = 2. Section
3 is a study of the case k ≤ 0: Theorem 14 shows the finiteness of all DU,a,k when U is not
I, while, in Theorem 15, the sets DI,a,k are once more proven to be of asymptotic density
less than 1/3. That all sets DI,a,k, k ≤ 0, are infinite, is conjectured, but only proven, given
an a ≥ 3, for infinitely many values of k in Theorem 16. The section ends by discussing the
current knowledge about the size of DI,2,0, the set of integers n ≥ 1 that divide the middle
binomial coefficient

(
2n
n

)
. It may seem like a simple case, yet with much food for thought

leftover.
Section 4 establishes a number of lemmas and examines some examples that help to

understand the direction we took and the methods we used, while speeding up the search
carried out in Section 5. Indeed, Section 5 is devoted to the search for triples (U, a, k),
k ≥ 2, called Catalan-like triples, for which DU,a,k is the entire set of all natural numbers.
We found exactly four new Catalan-like triples. Except for those five Catalan-like triples —
i.e., including the triple

(
U(1, 2), 2, 2

)
found in [5] — the sets DU,a,k, k ≥ 2, all miss infinitely

many positive integers. Theorem 30 summarizes the various partial results of Section 5.
The proof that all DU,a,k are of asymptotic density 1 when k ≥ 1 is established in Section

6 and finalized in Theorem 37. One of the findings that comes out of the proof of Theorem
37 is that for each triple (U, a, k), U regular, a ≥ 2 and k ≥ 1, there is a minimal integer
m ≥ 1 such that

m

U(a−1)n+k

(
an

n

)

U

is integral for all n ≥ 1. (12)

We may say that the triple (U, a, k) belongs to the integer m. Thus, amongst all regular U ,
the triples (U, a, 1), a ≥ 2, and the five Catalan-like triples are all the triples that belong to
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1. The triple (F, 3, 2) is seen to belong to 3 as an outcome of the proof of Corollary 18 of
Section 4. This observation raises numerous questions such as

Question 1. What are all triples (U, a, k), U regular, that belong to 3?

Question 2. Are there triples that belong to m for all m ≥ 1? If not, what is the set of m
not represented by any triple?

Question 3. Can one find general criteria that describe the triples that belong to a given m?

One might consider a further more general research problem which we tentatively state
below.

Problem 1. Can one obtain even broader theorems using the generalized Lucasnomial Fuss-
Catalan numbers defined in (3)? Perhaps, the following problem, or a variant of it, would
just do: Given a quadruple (U, a, r, k), a ≥ 2, r ≥ 1, k an integer, one could study the sets
DU,a,r,k of integers n ≥ 1 such that

Ur

U(a−1)n+k

(
an+ r − 1

n

)

U

, (13)

is an integer. What density would these sets obey? Would one find a corresponding cleavage
between the cases k < r and k ≥ r? Could one find all Catalan-like quadruples (U, a, r, k)
for which the numbers in (13) are always integers?

Some explicit Kummer rule was devised [11] for another whole class of generalized bino-
mial coefficients, namely those generalized with respect to multiplicative arithmetic functions
with range in the positive integers. Thus, one may consider a study comparable to ours in
this context. Let us state the problem more precisely.

Problem 2. If (un)n≥1 is a sequence of positive integers such that

umn = umun, if gcd(m,n) = 1, (multiplicative)

um | un, if m | n, (divisible)

then the generalized Fuss-Catalan numbers with respect to u

ur

u(a−1)n+r

(
an+ r − 1

n

)

u

are shown to be integers [11]. Studying, say when r = 1, the sets Du,a,k of integers n ≥ 1 for
which u(a−1)n+k divides

(
an
n

)

u
, would be an interesting project. In particular and for instance,

let un = ϕ(n), where ϕ is the Euler totient function, a sequence both multiplicative and
divisible. Then for k 6= 1, what can be said of the sets Du,2,k of integers n ≥ 1 such that

1

un+k

(
2n

n

)

u

is an integer?
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(Some authors [10, 19] have studied generalized binomial coefficients with respect to the
Euler function ϕ.)

The paper is mostly very elementary, but draws on three main sources for its proofs.
One source is the classification [1, 8] of all k-defective regular Lucas sequences. A prime p is
said to be a primitive prime divisor (p.p.d.) of the nth term of a Lucas sequence U if and
only if p | Un, but p ∤ Um, 1 < m < n. Given k ≥ 2, a regular Lucas sequence U(P,Q) of
discriminant ∆ 6= 0 is said to be k-defective if and only if Uk does not have primitive prime
divisors not dividing ∆. For instance, F is 6-defective as F6 = 8 and F3 = 2. The prime 5
is a p.p.d. of F5 = 5, but F is 5-defective as the discriminant ∆F = 5. The primitive divisor
theorem [8, Theorem 1.4] asserts that for regular nonzero-discriminant Lucas sequences U ,
Un has a primitive prime divisor not dividing ∆, for all n > 30. So there are no k-defective
regular Lucas sequences U , U 6= I, for k > 30. Moreover, tables of all k-defective regular U
were made [8] for all values of k, 1 < k < 31. Some errors remained and were later corrected
[1]. The tables [1, 8] list Lucas sequences U in terms of P and ∆. For convenience, and so
the readers can better follow some of the arguments in Section 5, we added a table, Table
A, in an appendix in Section 7. Table A gathers together the various tables [8, Tables 1
and 3, pp. 78–79], [1, p. 312], but indexes Lucas sequences with the parameters P and Q
instead. We note here that our arguments use primitive divisors so that primes dividing ∆
may occasionally help to conclude a particular argument case.

Note that in Section 5, Proposition 29, we could not show the sets DI,a,k, for k ≥ 2,
missed infinitely many integers using the primitive divisor theorem or the tables of k-defective
regular Lucas sequences, and we had to come up with specific arguments.

Another extensive source of proofs throughout the paper are the Kummer rules for de-
termining the p-adic valuation of binomial coefficients or Lucasnomials when p is a prime.
Kummer’s rule [18] gives the p-adic valuation of the binomial coefficient

(
m+n
n

)
as the num-

ber of carries in the addition of m and n performed in base p. Kummer-like theorems were
obtained [17] for generalized binomial coefficients with respect to regular sequences of posi-
tive integers, i.e., sequences satisfying property (10), and an explicit theorem for Fibonomial
coefficients [17, Theorem 2]. An explicit theorem for Lucasnomials with respect to a generic
NFLS U(P,Q) is given in [3, Theorem 4.2] and repeated below in Proposition 4.

As for the two preceding papers [5, 22], a key point is that n ∈ DU,a,k if and only if for
each prime p, the p-adic valuation of

(
an
n

)

U
is at least that of U(a−1)n+k.

The p-adic valuation of the terms Un (or U(a−1)n+k) of a Lucas sequence has been known
to obey certain rules since at least the time of Lucas [20, Section XIII], but is being reproved
every now and then in various guises (one of the latest appeared in a recent issue of the
Fibonacci Quarterly [26]). The theory of Lucas sequences is the third main source of our
proofs with which we assume some familiarity from the readers. Chapter 4 of the book [31]
can serve as a valuable introduction. Still we recall some basic facts for completeness’ sake.
The rank ρU(p), or ρ, of a prime p in a Lucas sequence U(P,Q) is the smallest positive index
t such that p divides Ut. It is guaranteed to exist when p ∤ Q.

By [3, Eq. (4.4) and Theorem 4.1, Section 4], we next state a proposition that gives the
p-adic valuation of all terms of a NFL-sequence U(P,Q) for all primes p ∤ Q. The content
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of Proposition 3 is what classically constitutes the Lucas laws of appearance and repetition
for primes and prime powers in Lucas sequences.

Proposition 3. Let U(P,Q) be a nondegenerate fundamental Lucas sequence and p ∤ Q be

a prime of rank ρ in U . Then, for all positive integers m and n, we have

ρ divides p− (∆ | p), if p is odd,

p | Un if and only if ρ | n,
νp(Umρ) = νp(m) + νp(Uρ) + δ · [2 | m] := x+ ν + δx,

where ∆ = P 2 − 4Q, (∗ | ∗) is the Legendre symbol, x = νp(m), ν = νp(Uρ),

δ = ν2
(
(P 2 − 3Q)/2

)
· [p = 2] · [2 ∤ PQ],

and δx = δ · [x > 0].

The notation x, ν, δ and δx is used consistently with the utilization of Proposition 3
throughout the paper. In Proposition 3, we used the Iverson symbol [−], defined by:

[P ] =

{

1, if P is a true statement;

0, if not.

Here is the explicit Kummer rule obtained in [2, Section 4].

Proposition 4. (Kummer’s rule for Lucasnomials) Let U(P,Q) be a nondegenerate Lucas

sequence and p ∤ Q be a prime of rank ρ in U . Let m and n be two positive integers. Then

the p-adic valuation of the Lucasnomial
(
m+n
n

)

U
is equal to the number of carries that occur

to the left of the radix point when m/ρ and n/ρ are added in base-p notation, plus νp(Uρ)
if a carry occurs across the radix point, plus δ if a carry occurs from the first to the second

digit to the left of the radix point, where δ was defined in Proposition 3.

This proposition suggests we distinguish carries across or to the left of the radix point
from the other carries. Thus, as in [3, 5], when adding m/ρ+ n/ρ in base p, we call a carry
relevant when it occurs across or to the left of the radix point.

Here is an illustrative example of the use of Proposition 4 with U(1,−5) in order to
determine the 2-adic valuation of

(
20
5

)

U
. We see that U3 = 6 so that ρ(2) = 3 and ν = 1.

Also, P 2 − 3Q = 16 so that δ = 3. Now, using some self-evident base-2 writing, we find that

15

ρ
= 5 = (101)2,

5

ρ
= 1 +

2

3
= (1.10

∞
)2.
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Hence, there is only one relevant carry from first to second digit left of the radix point in
the base-2 sum of 15/ρ and 5/ρ. Thus, by our Kummerian rule, ν2

(
20
5

)

U
= 1 + 0 + δ = 4.

Using Proposition 3 one can directly check that

ν2

(
20

5

)

U

= ν2

(
U20 · U19 · U18 · U17 · U16

U5 · U4 · U3 · U2 · U1

)

= ν2

(
U18

U3

)

.

However, ν2(U18) = ν2(U3·21·ρ) = 1 + ν2(U3) + δ.
We won’t always mention the Propositions 3 and 4 when using them.
The letter p invariably denotes a prime number except in Lemma 33. Although we usually

write the p-adic valuation of an integer m, i.e., the highest exponent e ≥ 0 of p such that pe

divides m, as νp(m), we omit the parentheses when m is a Lucasnomial coefficient
(
ℓ
k

)

U
and

write instead νp
(
ℓ
k

)

U
. We also occasionally use the alternative notation pe||m.

Given a subset S of the natural numbers, we write S(z) for the elements of S not exceeding
z and #S(z) for the cardinality of S(z). We say S has asymptotic density d to mean that the
ratios #S(z)/z tend to d as z tends to infinity. The sentence “almost all positive integers”
means all but a set of asymptotic density 0. The upper asymptotic density of S is the upper
limit of the ratios #S(z)/z as z tends to infinity.

2 Integrality of Lucasnomial Fuss-Catalan numbers and

other Lucasnomial extensions of classical numbers

The forthcoming lemma leads to an unconditional algebraic proof of the integrality of Lu-
casnomial Fuss-Catalan numbers. As for the integrality of generalized Lucasnomial Fuss-
Catalan numbers, we provide an arithmetic proof, alas conditional to the regularity of the
Lucas sequence.

Lemma 5. Let U be a nondegenerate fundamental Lucas sequence and a ≥ 2, r ≥ 1 be

integers. Then the generalized Lucasnomial Fuss-Catalan numbers satisfy, for all n ≥ 1, the
identity

CU,a,r(n) = Ur ·
(
an+ r − 2

n− 1

)

U

−Q
UrU(a−1)n+r−1

Un

·
(
an+ r − 2

n− 2

)

U

. (14)

Proof. Replacing m by an+ r − 1 and n by (a− 1)n+ r − 1 in (11), we obtain

(
an+ r − 1

(a− 1)n+ r − 1

)

U

= U(a−1)n+r

(
an+ r − 2

(a− 1)n+ r − 1

)

U

−QUn−1

(
an+ r − 2

(a− 1)n+ r − 2

)

U

.

That is, using the symmetry of the Lucasnomial triangle,

(
an+ r − 1

n

)

U

= U(a−1)n+r

(
an+ r − 2

n− 1

)

U

−QUn−1

(
an+ r − 2

n

)

U

.
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Multiplying through by Ur/U(a−1)n+r, we find that

CU,a,r(n) = Ur

(
an+ r − 2

n− 1

)

U

−Q
UrUn−1

U(a−1)n+r

(
an+ r − 2

n

)

U

.

But

Un−1

U(a−1)n+r

(
an+ r − 2

n

)

U

=
Un−1

U(a−1)n+r

· Uan+r−2 · · ·U(a−1)n+r−1

Un · · ·U1

=
U(a−1)n+r−1

Un

· Uan+r−2 · · ·U(a−1)n+r+1

Un−2 · · ·U1

=
U(a−1)n+r−1

Un

·
(
an+ r − 2

n− 2

)

U

,

which yields equation (14).

Theorem 6. Let U be a nondegenerate fundamental Lucas sequence and a ≥ 2 be an integer.

Then the Lucasnomial Fuss-Catalan numbers

CU,a,1(n) =
1

U(a−1)n+1

(
an

n

)

U

are integers for all n ≥ 1.

Proof. As Un divides U(a−1)n, setting r = 1 in identity (14) we readily see that CU,a,1(n) is
an integer.

We will use the next small lemma a few times.

Lemma 7. Let U(P,Q) be a fundamental Lucas sequence and p be a prime. If p ∤ gcd(P,Q),
then either p ∤ Q, or p does not divide any term Un, n ≥ 1, i.e., p has no rank.

Proof. Suppose p | Q. Then p ∤ P . Using (8) inductively, one finds Un ≡ P n−1 (mod p) for
all n ≥ 1. Therefore, p ∤ Un.

Here is a straightforward observation about generalized Lucasnomial Fuss-Catalan num-
bers.

Remark 8. Ordinary Catalan numbers CI,2,1(n) =
1

n+1

(
2n
n

)
have the well-known alternative

representations
1

2n+ 1

(
2n+ 1

n

)

and
1

n

(
2n

n− 1

)

,

which carry over to generalized Lucasnomial Fuss-Catalan numbers. That is,

CU,a,r(n) =
Ur

Uan+r

(
an+ r

n

)

U

=
Ur

Un

(
an+ r − 1

n− 1

)

U

. (15)
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Using the last form of CU,a,r(n) in (15), we produce an arithmetic proof of the integrality
of CU,a,r(n). However, it assumes the regularity of U .

Theorem 9. Let U(P,Q) be a regular fundamental Lucas sequence. Let r ≥ 1 and a ≥ 2 be

integers. Then the generalized Lucasnomial Fuss-Catalan numbers

Ur

U(a−1)n+r

(
an+ r − 1

n

)

U

are integral for all n ≥ 1.

Proof. By (15),

CU,a,r(n) =
Ur

Un

(
an+ r − 1

n− 1

)

U

.

We claim that for all primes p the p-adic valuation of Ur

(
an+r−1
n−1

)

U
is at least that of Un. If

p | Q, then, by Lemma 7, p ∤ Un and our claim holds. Now suppose p ∤ Q and p divides Un.
Then, by Proposition 3, n = λρpx for some x ≥ 0 and some λ prime to p, where ρ is the
rank of p, and νp(Un) = x + ν + δx. Let us divide r by ρ and write r = qρ + r1 with 0 ≤ q
and 0 ≤ r1 < ρ. Then

n− 1

ρ
= λpx − 1

ρ
= (λpx − 1) +

ρ− 1

ρ
,

(a− 1)n+ r

ρ
= λ(a− 1)px + q +

r1
ρ
.

If the sum of the fractional parts of (n− 1)/ρ and ((a− 1)n+ r)/ρ is at least 1, then a carry
occurs across the radix point which ensures, independently of the value of q, a minimum of
x carries left of the radix point in the base-p addition of (n − 1)/ρ and ((a − 1)n + r)/ρ.
Indeed, the first x base-p digits of (n− 1)/ρ left of the radix point are all p− 1. Therefore,
by Kummer’s rule for Lucasnomials, νp

(
an+r−1
n−1

)

U
≥ x+ ν + δx = νp(Un).

If the fractional parts add up to less than 1, i.e., if (ρ − 1) + r1 < ρ, then r1 = 0 and
r = qρ. Let pi, i ≥ 0, be the exact p-power dividing q. Then pi+ν+δi ||Ur. If i ≥ x then
px+ν+δx divides Ur and our claim holds. If i < x, then the base-p addition of px − 1 to q
produces x− i carries. Note that, using the Iverson symbol, δx = δi + δx · [i = 0]. Hence,

νp(Ur)+ νp

(
an+ r − 1

n− 1

)

U

≥ (i+ ν+ δi)+ (x− i+ δ · [i = 0] · [x > 0]) = x+ ν+ δx = νp(Un).

Thus, CU,a,r(n) is always an integer.

Remark 10. We could have stated a stronger theorem by dropping the regularity assumption
on U(P,Q) and instead stating that for all primes p ∤ gcd(P,Q), the p-adic valuation of the
numbers CU,a,r(n) is nonnegative, for all n ≥ 1.

We do not resist giving another related theorem with a different simple proof technique
that partially implies Theorem 6 and Theorem 9.
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Theorem 11. Let U(P,Q) be a regular fundamental Lucas sequence. Let r ≥ 1 and m ≥
n ≥ 1 be integers with gcd(m + r, n) = 1. Then the generalized Lucasnomial Fuss-Catalan

numbers

Tm,n,r :=
Ur

Um+r

(
m+ n+ r − 1

n

)

U

are integers.

Proof. We see that Um+rTm,n,r is an integer and that

UnTm,n,r = Ur

(
m+ n+ r − 1

n− 1

)

U

,

is also integral. Since U is regular and gcd(m+r, n) = 1, we find that gcd(Um+r, Un) = 1 and
immediately infer that Tm,n,r is the greatest common divisor of the two integers Um+rTm,n,r

and UnTm,n,r. Hence, Tm,n,r is an integer.

Putting m = (a− 1)n in Tm,n,r, we see that Theorem 9 holds albeit with the restriction
that gcd(r, n) = 1. If r = 1, then we obtain Theorem 6 though only for U regular.

Lobb numbers Lm,s = L2
m,s and generalized Lobb numbers La

m,s are defined by the ex-
pression

La
m,s :=

as+ 1

(a− 1)m+ s+ 1

(
am

(a− 1)m+ s

)

;

see [9, Eq. (11)].
The integrality of generalized Lucasnomial Lobb numbers (5) which are a natural Lucas-

nomial extension of the generalized Lobb numbers is the object of the next theorem.

Theorem 12. If U is a regular Lucas sequence, a ≥ 1, m > s ≥ 0 are integers, then the

generalized Lucasnomial Lobb numbers

LU,a
m,s =

Uas+1

U(a−1)m+s+1

(
am

(a− 1)m+ s

)

U

are integers.

Proof. Putting r = as + 1 and n = m− s in the expression (3) for CU,a,r(n) yields L
U,a
m,s, so

that, by Theorem 9, the numbers LU,a
m,s are integral. Indeed,

CU,a,r(n) =
Uas+1

U(a−1)(m−s)+as+1

·
(
a(m− s) + (as+ 1)− 1

m− s

)

U

=
Uas+1

U(a−1)m+s+1

·
(

am

m− s

)

U

=
Uas+1

U(a−1)m+s+1

·
(

am

(a− 1)m+ s

)

U

= LU,a
m,s.

12



Similarly, the natural Lucasnomial extension of ballot numbers is shown to always yield
integers. Ordinary ballot numbers are defined by B(m,n) = m−n

m+n

(
m+n
n

)
; see (14) in [9].

Theorem 13. If U is a regular Lucas sequence, m > n ≥ 0 are integers, then the Lucasno-

mial ballot numbers

BU(m,n) =
Um−n

Um+n

(
m+ n

n

)

U

are integers.

Proof. If m and n have different parities, then replacing m by (m + n − 1)/2 and s by
(m− n− 1)/2 in LU,2

m,s precisely yields BU(m,n).
However, to obtain a proof for all m > n ≥ 0, we first notice that

BU(m,n) =
Um−n

Um+n

(
m+ n

n

)

U

=
Um−n

Un

(
m+ n− 1

n− 1

)

U

. (16)

So, if BU(m,n) is a nonintegral rational number, there must exist a prime number p with
respect to which BU(m,n) has negative p-adic valuation. In particular, p divides both Um+n

and Un. By Lemma 7, p ∤ Q. Thus,m = µpyρ and n = ηpzρ with p ∤ µη, where ρ is the rank of
p. If y 6= z, then νp(m−n) = νp(m+n) and so νp(Um−n) = νp(Um+n), which would contradict
the negativity of νp(BU(m,n)). Therefore, y = z and νp(Un) = z+ν+δz ≤ νp(Um−n), because
m − n = (µ − η)pzρ. But, by the last expression in (16), this contradicts the negativity of
the p-adic valuation of BU(m,n).

3 The smallness of DU,a,k when k ≤ 0

We provide two main theorems to assess the smallness of DU,a,k when k ≤ 0 and U(P,Q)
is regular. The first theorem treats sequences U with P 2 6= 4Q, while the second treats the
zero-discriminant case.

Our first theorem extends [5, Theorem 5.1], which treated the case a = 2, to all values
of a ≥ 2.

Theorem 14. Suppose U(P,Q) is a regular Lucas sequence with P 2 − 4Q 6= 0. Assume

a ≥ 2 and k ≥ 0 are fixed integers. Then there are at most finitely many integers n ≥ 1 such

that U(a−1)n−k divides
(
an
n

)

U
.

Proof. Since the case a = 2 corresponds to [5, Theorem 5.1], we may assume a ≥ 3. Put

M := max

{
2k

a− 2
,
30 + k

a− 1

}

.

Suppose n > M . Since n is larger than (30 + k)/(a − 1), the primitive divisor theorem [8,
Theorem 1.4, p. 80] ensures that U(a−1)n−k has a primitive prime divisor, say p. That is,

13



ρ = ρU(p) = (a− 1)n− k. Thus, we find that

n

ρ
= 0 +

n

(a− 1)n− k
,

(a− 1)n

ρ
=

(a− 1)n

(a− 1)n− k
= 1 +

k

(a− 1)n− k
.

Observe that n > 2k/(a−2) implies that (a−1)n−k > 0 and that (n+k)/((a−1)n−k) < 1.
Thus, we see that n/((a−1)n−k) and k/((a−1)n−k) are the fractional parts of, respectively,
n/ρ and (a − 1)n/ρ, and they add up to less than 1. Hence, in the base-p addition of n/ρ
and (a− 1)n/ρ, there is no relevant carry as 0+1 < p. By Kummer’s rule for Lucasnomials,
p does not divide

(
an
n

)

U
. Therefore, for all n > M , we find that U(a−1)n−k does not divide

(
an
n

)

U
.

We now look at the case of regular Lucas sequences with null discriminant, which essen-
tially corresponds to Un = In and ordinary binomial coefficients. Theorem 15 below extends
[22, Theorem 3] that covered the case a = 2.

Theorem 15. Suppose U(P,Q) is a regular Lucas sequence with P 2 − 4Q = 0, i.e., Un = n
for all n ≥ 1, or Un = (−1)n−1n for all n ≥ 1. Assume a ≥ 2 and k ≥ 0 are fixed integers.

Then the upper asymptotic density of the set of integers n ≥ 1 such that U(a−1)n−k divides
(
an
n

)

U
is at most 1− log 2.

Proof. It suffices to consider the case U = I. The proof we give is an adaptation of the proof
of [22, Theorem 3]. Moreover, this adapted proof yields the same upper bound of 1 − log 2
for the upper asymptotic density of DI,a,k, k ≤ 0, as the one obtained when a = 2. We

begin by observing that if (a− 1)n− k has a prime factor p >
√

2(a− 1)n and p > ak, then
νp((a− 1)n− k) > νp

(
an
n

)
so that n 6∈ DI,a,−k. Indeed, say (a− 1)n− k = cp. Then

c ≤ (a− 1)n

p
<

(a− 1)n
√

2(a− 1)n
=

√

2(a− 1)n

2
<

p

2
.

Hence, (a − 1)n = cp + k with c < p/2 and k < p/a < p. Dividing c by a − 1, we write
c = q(a−1)+r with 0 ≤ r ≤ a−2. Thus, n = qp+(rp+k)/(a−1). Noting that q ≤ c < p/2
and that

rp+ k

a− 1
+ k =

rp+ ak

a− 1
<

(r + 1)p

a− 1
≤ p,

we find that no carry occurs in the base-p addition of (a−1)n and n. By the rule of Kummer,
p ∤

(
an
n

)
.

We now fix a sufficiently large z > 0 and estimate the number of n in (ak2, z] that have
a prime factor p >

√

2(a− 1)z. The lower bound ak2 for n is sufficient to imply p > ak.

In the interval (ak2, z], there are z/p + O(1) multiples of a prime p >
√

2(a− 1)z. As
p >

√
z ≥ √

n, no integer n may have two such prime factors. Hence, we find that

#DI,a,−k(z) ≥
∑

√
2(a−1)z<p≤z

z

p
+O(π(z)),

14



which using Mertens’ estimate
∑

p≤z
1
p
= log log z +M + o(1), where M is a small constant,

leads to

#DI,a,−k(z) ≥ z
(
log log z −

(
log

1

2
+ log log(2(a− 1)z)

))
+ o(z) ≥ z log 2 + o(z).

This readily implies the upper density of DI,a,−k is bounded above by 1− log 2.

We conjecture that the set DI,a,−k is nevertheless always infinite. Given a ≥ 2, we only
prove the infinitude of DI,a,−k for infinitely many values of k all multiples of a− 1. For this,
we extend an idea found in [30, Theorems 2.2 and 3.2] and also in [22], where the infinitely
many integers n of the form pq+k, where p and q are both primes, p > k and 3p/2 < q < 2p,
are shown to belong to DI,2,−k.

Theorem 16. Let a ≥ 2 and m ≥ 0 be integers with gcd(a−1,m+1) = 1. Put k = m(a−1).
Then the set DI,a,−k is infinite. Furthermore, there is a positive constant ca such that for all

large enough z

#DI,a,−k(z) ≥
caz

log2 z
.

Proof. For a ≥ 2 and k = m(a− 1), we consider integers n of the form pq +m, where p and
q are primes, p > k, and

q = p+ d with
p

a
< d <

p

a− 1
. (17)

Therefore, (a − 1)n − k = (a − 1)pq. Since n = qp + m = p2 + dp + m and (a − 1)n =
(a− 1)p2+(a− 1)dp+ k, we see that the base-p addition of n and (a− 1)n produces at least
one carry. Similarly, n = pq +m and (a − 1)n = (a − 1)pq + k = (a − 2)q2 + dqq + k with
q−p < dq < q. Indeed, (a−1)p = (a−1)(q−d) > (a−1)(q−p/(a−1)) = (a−2)q+(q−p)
and (a− 1)p < (a− 1)q < (a− 2)q+ q. Thus, the base-q addition of n and (a− 1)n produces
at least one carry. Hence, pq divides

(
an
n

)
. From the lemmas of Section 6, one has that a− 1

divides
(
an
n

)
for almost all n. However, here, the integers n we consider have a special form.

So, in addition to p and q satisfying (17), we further impose the condition that p ≡ m+1
(mod (a − 1)2) and q ≡ −1 (mod (a − 1)2). Suppose r is a prime factor of a − 1 and
a− 1 = rαλ, where r and λ are coprime. Then p ≡ m+1 (mod r2α) and q ≡ −1 (mod r2α).
Thus, pq+m ≡ −1 (mod r2α), which says that the r-ary expansion of n terminates with 2α
digits all r − 1. Furthermore, the base-r expansion of (a − 1)n = rα · λ(pq +m) ends with
a nonzero digit followed by α zero digits. Therefore, the base-r addition of n and (a − 1)n
generates a minimum of α carries. By the Kummer rule, rα divides

(
an
n

)
. As it is true of

all prime factors r of a − 1, a − 1 divides
(
an
n

)
. We conclude that for all such integers n,

(a− 1)pq = (a− 1)n− k divides
(
an
n

)
.

Therefore, for all large enough real numbers z ≥ 1, we find that

#DI,a,−k(z) ≥
∑

k<p≤√
z/2

Sp ≥ Sz :=
∑

√
z/3<p≤√

z/2

Sp,
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where the sum

Sp :=
∑

a+1

a
p<q< a

a−1
p

1, is taken over all primes q ≡ −1 (mod (a− 1)2),

and the primes p satisfy p ≡ m+ 1 (mod (a− 1)2).
Using the prime number theorem for primes in arithmetic progressions and the fact that

a/(a− 1) is larger than (a+1)/a, each inner sum Sp in Sz is seen to be at least c1
√
z/ log z,

for some positive constant c1. Indeed, if π(x; a, b) denotes the number of primes p ≤ x with
p ≡ a (mod b), then, as z → ∞,

Sp = π

(
a

a− 1
p; −1, (a− 1)2

)

− π

(
a+ 1

a
p; −1, (a− 1)2

)

=
1

ϕ
(
(a− 1)2

)
p

log p

(
a

a− 1

(
1 + o(1)

)
− a+ 1

a

(
1 + o(1)

)
)

∼ c
p

log p
≥ 2

3
c

√
z

log z

(
1 + o(1)

)
,

where c =
(
ϕ((a − 1)2)a(a − 1)

)−1
, ϕ is the Euler totient function and where, in the last

inequality, we lavishly used p >
√
z/3 and log p ≤ log(

√
z/2).

Thus, as z tends to infinity, Sz is at least equivalent to

2

3
c

√
z

log z

∑

√

z

3
<p≤

√

z

2

1,

where the sum is over primes p ≡ m+1 (mod (a−1)2). Now, using again the prime number
theorem for primes in arithmetic progressions, we see that, as z tends to infinity,

∑

√

z

3
<p≤

√

z

2

1 = π

(√
z

2
; m+ 1, (a− 1)2

)

− π

(√
z

3
; m+ 1, (a− 1)2

)

=
1

ϕ
(
(a− 1)2

)

( √
z

log z

(
1 + o(1)

)
− 2

3

√
z

log z

(
1 + o(1)

)
)

=
1

3ϕ
(
(a− 1)2

)

√
z

log z

(
1 + o(1)

)
.

Hence, we obtain that, as z → ∞, #DI,a,−k(z) is at least asymptotically equivalent to
caz/(log z)

2, where

ca =
2

9a(a− 1)
(
ϕ(a2 − 2a+ 1)

)2 .
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To conclude the section, the bound of 1 − log 2 found in Theorem 15 being less than
1/3 amply demonstrates that the cleavage observed for ordinary binomial coefficients by
Pomerance [22] between the cases k ≤ 0 and k ≥ 1 persists for all a ≥ 2 and, by Theorem
14, for all regular Lucas sequences U . However, a smaller upper asymptotic density for
DI,2,0 was sought after by Sanna [25], who successfully brought it down from 1 − log 2
to 1 − log 2 − 0.05551. Recall that, as a consequence of [22, Theorem 4], the lower and
upper densities of DI,2,k are identical for all k ≤ 0, so we may as well assume k = 0.
Actually, sequence A014847 in the OEIS [27] is an enumeration of the set DI,2,0, and, in
2002, Cloitre observed on numerical evidence that it seemed that the quotient of the nth
term of this sequence over n tended to a limit between 9 and 10. If that were true this
would indicate a density between 1/10 and 1/9. According to the data in [30, Table 5],
#DI,2,0(2

26) = 8,225,813 which yields a quotient #DI,2,0(x)/x of about 0.1226 for x = 226.
The existence of a positive lower asymptotic density for DI,2,0 was conjectured by Pomerance
[22, bottom of page 7]. At the West Coast Number Theory Conference of 2016, Pomerance
asked whether this set has a positive lower density and whether it has a density, and, on that
occasion, Stănică [21, Problem 016:04] conjectured that, for z ≥ 3700, we actually would
have

z

(log log z)3
≤ #DI,2,0(z) ≤

z

(log log z)2
,

implying, in particular, a zero density. Note that these bounds are quite a notch higher than
the cz/ log2 z lower bound mentioned in [22, Section 6] or proven in Theorem 16.

4 Preliminaries to the study of the case k ≥ 1

Once a Lucas sequence U and the integers a ≥ 2 and k ≥ 1 have been fixed, we define, for
every prime p, the set

Ap = Ap(U, a, k) :=

{

n ≥ 1 : νp(U(a−1)n+k) > νp

(
an

n

)

U

}

. (18)

Note that
DU,a,k =

⋃

p

Ap, (19)

where the union is over all primes. We proceed to show that Ap is empty except, possibly,
for the finitely many primes p of rank less than ak.

Lemma 17. Suppose U(P,Q) is a nondegenerate fundamental Lucas sequence, while a ≥ 2
and k ≥ 1 are fixed integers. Assume p ∤ Q is a prime of rank ≥ ak. Then, Ap is empty.

That is, for all n ≥ 1,

νp

(
an

n

)

U

≥ νp
(
U(a−1)n+k

)
.

17
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Proof. Note that

1

U(a−1)n+k

(
an

n

)

U

=

∏k−1
j=1 U(a−1)n+j
∏k−1

i=0 Un−i

(
an

n− k

)

U

.

Thus, if our claim is wrong, then p must divide some factor, say Un−e, 0 ≤ e ≤ k− 1, in the
product

∏k−1
i=0 Un−i. Thus, ρ divides n − e, where ρ is the rank of p in U . But p must also

divide U(a−1)n+k, that is, ρ divides (a − 1)n + k. As n ≡ e (mod ρ), we see that ρ divides
(a−1)e+k. However, 0 < (a−1)e+k < ak and ρ ≥ ak. Hence, we have a contradiction.

We begin by putting to use Lemma 17 to obtain a complete description of a particular set
DU,a,k with a ≥ 3 and k ≥ 2. An example with a = 2 had already been explicitly computed
in [5, Proposition 4.2].

Corollary 18. The set DF,3,2 of integers n ≥ 1 such that F2n+2 does not divide
(
3n
n

)

F
is

precisely the set

{2 · 3x − 1; x ≥ 0}.

Proof. By Lemma 17, DF,3,2 is the union of the Ap over all primes p of rank less than 6.
Only the primes 2, 3 and 5 have rank less than 6 in the Fibonacci sequence. Let p denote
one of the primes 2, 3 or 5, and ρ ≥ 3 denote its rank. For an integer n ≥ 1 to be in Ap, we
need p to divide F2n+2. Thus, 2n+2 is of the form λρpx with x ≥ 0 and λ ≥ 1 two integers,
where we assume λ prime to p. Hence, we find that

2n

ρ
= (λ− 1)px + px − 1 +

ρ− 2

ρ
,

n

ρ
=

⌊
n

ρ

⌋

+

{
n

ρ

}

.

(20)

Because ρ > 2, we see that (ρ − 2)/ρ is the fractional part of 2n/ρ. Moreover, ρ | 2n + 2
implies ρ ∤ n. Thus,

{
n
ρ

}
≥ 1

ρ
.

If
{

n
ρ

}
≥ 2

ρ
, then there is a carry across the radix point and, due to the x consecutive

p − 1 digits in the p-ary expansion of px − 1, this carry over the radix point guarantees at
least x further carries left of that point in the base-p addition of 2n/ρ to n/ρ. Thus, by the
Kummer rule for Lucasnomials, the p-adic valuation of

(
3n
n

)

F
is at least x+ 1 + δx, which is

νp(F2n+2). We conclude that if
{

n
ρ

}
≥ 2

ρ
, then n 6∈ Ap.

Hence,
{

n
ρ

}
= 1

ρ
, i.e., an n ∈ Ap must be of the form qρ+1. In particular, 2n+2 = 2qρ+4

so that ρ | 4, and, as F2 = 1, ρ = 4. But F4 = 3. Therefore, A2 and A5 are empty and we
now assume p = 3. Since n = 4q + 1, equations (20) become

2n

ρ
= 2q +

1

2
,

n

ρ
= q +

1

4
.

(21)
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Since 2n+2 = λ · 4 · 3x = 4(2q+1), we see that 2q+1 = (3j + i)3x, where we set λ = 3j + i
with i = 1 or 2. Therefore,

2q = (3j + i− 1) · 3x + (22 · · · 2)3, (x 2’s)

q =
3j + i− 1

2
· 3x + (11 · · · 1)3, (x 1’s)

(22)

where (dd · · · d)3 with x d’s stands for d(3x−1 + 3x−2 + · · · + 1). If the integer ℓ = (3j + i−
1)/2 6= 0, then we obtain from (22) that the base-3 addition of 2q and q produces at least
ν3(F2n+2) = x + 1 carries. Indeed, as easily seen, and as shown in [3, Lemma 2.2], adding
ℓ ≥ 1 and (p− 1)ℓ in base p, p a prime, yields at least one carry. However, if 3j + i− 1 = 0,
the base-3 addition “ 2q + q ” only produces x carries so that n belongs to A3. But then
2q + 1 = 3x and n = 2 · 3x − 1. This proves the corollary.

Remark 19. The proof of Corollary 18 shows that 3
F2n+2

(
3n
n

)

F
is an integer for all n ≥ 1. We

also note that DF,3,2 has asymptotic density one in the positive integers, but that it misses
infinitely many integers. Do these facts hold in general?

We will provide answers in due course, but we begin with the latter fact, which is that
DF,3,2 is infinite.

The only regular Lucas sequences U(P,Q) with P > 0 for which there exists a k ≥ 2 such
that DU,2,k is finite — it is in fact empty — corresponds to (P,Q) = (1, 2) [5, Theorem 3.5].
We want to find out whether, when a ≥ 3, such examples occur. We say a triple (U, a, k),
with k ≥ 2, is a Catalan-like triple if and only if, for all natural numbers n,

1

U(a−1)n+k

(
an

n

)

U

is an integer.

We proceed with a lemma which states conditions sufficient to guarantee the infinitude
of Ap(U, a, k). It gives a minimal infinite subset of Ap when p satisfies some rank condition.
Actually, the set A3 in Corollary 18 is equal to that minimal subset.

Lemma 20. Let U(P,Q) be a nondegenerate fundamental Lucas sequence and a ≥ 2, k ≥ 2
be integers. Assume there exists a prime p ∤ Q of rank ρ in U , where

ρ = k + ℓ(a− 1),

for some ℓ, 1 ≤ ℓ ≤ k − 1. Then Ap(U, a, k) is infinite and contains all integers n of the

form
ρpx − k

a− 1
, for all x divisible by ϕ(a− 1),

where ϕ denotes the Euler totient function.
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Proof. As ρ ≥ 2+ (a− 1) = a+1 and p ≥ ρ− 1, we have p ≥ a. Hence, p ∤ a− 1. Thus, the
condition ϕ(a− 1) divides x guarantees that px− 1 is divisible by a− 1. Also, because ρ ≡ k
(mod a− 1), for each x ≥ 0 divisible by ϕ(a− 1), there is a unique n = nx ≥ 1 such that

(a− 1)n+ k = ρpx.

Therefore, for these integers n, we find that

(a− 1)n

ρ
= px − 1 +

ρ− k

ρ
,

n

ρ
=

px − 1

a− 1
+

ℓ

ρ
,

(23)

where we see that (ρ− k)/ρ and ℓ/ρ are the fractional parts of, respectively, (a− 1)n/ρ and
n/ρ. The sum of these two fractional parts is less than 1 since ρ−(k−ℓ) < ρ. By the Kummer
rule for Lucasnomials, we see that νp

(
an
n

)

U
≤ x+ δx. (In fact, it is x+ δx since, if x > 0, the

integer (px−1)/(a−1) is prime to p and the base-p addition of (a−1)n/ρ and n/ρ produces
exactly x carries left of the radix point.) But, νp

(
U(a−1)n+k

)
= x+ ν + δx > x+ δx.

We add some power to Lemma 20 by observing that if Uk possesses a primitive prime
divisor p prime to Q, then the equations in (23) remain valid. Thus, if p ∤ a− 1, then, again,
for all integers n of the form k(px − 1)/(a− 1), x a multiple of ϕ(a− 1), U(a−1)n+k does not
divide

(
an
n

)

U
. However, the condition p ∤ a − 1 is no longer necessarily true. We state this

observation as an additional lemma.

Lemma 21. Let U(P,Q) be a nondegenerate fundamental Lucas sequence and a ≥ 2, k ≥ 2
be integers. Assume there exists a prime p ∤ Q(a − 1) of rank k. Then Ap(U, a, k) is an

infinite set.

One can see that the hypotheses of Lemma 20 are the weakest when k = 2. Indeed, for
k = 2, we need a prime of rank a + 1 to assert that Ap is infinite. Some lemmas will help
reach a conclusion whenever there are no primes of rank a + 1. Inspired by the proof of
Corollary 18, we establish a first supplementary lemma for the case k = 2.

Lemma 22. Let U(P,Q) be a nondegenerate fundamental Lucas sequence and a ≥ 2 be an

integer. If p ∤ Q is a prime of rank ρ, with ρ > 2 and ρ ∤ a+ 1, then Ap(U, a, 2) is empty.

Proof. The argument is close to that of Corollary 18 so we abbreviate it. If n ∈ Ap, then
there is an x ≥ 0 and a λ ≥ 1 not divisible by p such that (a− 1)n+ 2 = λρpx. Hence,

(a− 1)n

ρ
= (λ− 1)px + px − 1 +

ρ− 2

ρ
.

In the base-p addition of n/ρ to (a− 1)n/ρ a carry across the radix point generates at least
x carries left of that point. As a consequence νp

(
an
n

)

U
≥ νp

(
U(a−1)n+2

)
and n 6∈ Ap. Since
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n ∈ Ap, either ρ | n or n = qρ+1 for some integer q. As ρ | (a− 1)n+2, if ρ | n, then ρ = 2.
If n = qρ+ 1, then

(a− 1)n+ 2 = (a− 1)qρ+ (a+ 1) = λρpx,

so that ρ | a+ 1.

This, together with Lemma 7, yields the immediate corollary.

Corollary 23. With the hypotheses of Lemma 22 and k = 2, if P = 1 and Ua+1 = ±1, then
DU,a,2 is empty. On the other hand, if |Ua+1| > 1 and ρ(p) = a + 1, then, by Lemma 20,

DU,a,2 is infinite. If a and P are even and Q is odd, then DU,a,2 is infinite by Lemma 21.

Here is a theorem, which under fairly broad hypotheses, tells us that Ap cannot be a
finite nonempty set.

Theorem 24. Let U(P,Q) be a NFL-sequence and a ≥ 2, k ≥ 1 be integers. Let p ∤ Q(a−1)
be a prime of rank at least k. Then Ap is either empty or infinite.

Proof. Denoting as usual the rank of p by ρ, suppose Ap is not empty. Then there is an
integer n0 ≥ 1 in Ap and integers λ ≥ 1, p ∤ λ, x0 ≥ 0 such that

(a− 1)n0 + k = λρpx0 . (24)

In particular, νp
(
U(a−1)n0+k

)
= x0 + ν + δx0

.
As n0 ∈ Ap and (a− 1)n0/ρ = λpx0 − 1 + (ρ− k)/ρ, it must be, by the Kummer rule for

Lucasnomials, that {
n0

ρ

}

+
ρ− k

ρ
< 1.

We are about to show that, with the same integer λ which appears in (24), there are infinitely
many integers n ≥ 1 such that (a−1)n+k = λρpx, for some x ≥ 0, which satisfy

{
n
ρ

}
=

{
n0

ρ

}
.

By the above analysis for n0, this implies all such n are in Ap. Now (a− 1)n + k = λρpx if
and only if

(a− 1)(n− n0) = λρ(px − px0) (25)

As p ∤ a − 1, px ≡ px0 (mod a − 1) occurs for all x satisfying x ≡ x0 (mod h), where h is
the multiplicative order of p (mod a − 1). For each s ≥ 0, put xs = x0 + sh and define ts
by pxs = px0 + ts(a − 1). Note that (ts)s≥0 is an increasing sequence of integers. Putting
pxs−px0 = ts(a−1) into (25) we find that n = ns = n0+tsλρ satisfies (25) with the fractional
part of n/ρ equal to that of n0/ρ.

Theorem 24 will come in handy in the next section, but mostly in the guise of the next
corollary.

Corollary 25. Suppose U(P,Q) is regular, a ≥ 2 and k = 2. Let p ∤ a − 1 be a prime. If

p | Ua+1, then Ap(U, a, 2) is infinite.

Proof. By (10), if p | Ua+1, then p ∤ Ua. Hence, νp(U(a−1)+2) > νp
(
a
1

)

U
and 1 ∈ Ap(U, a, 2).

By Lemma 7, p ∤ Q. So by Theorem 24, Ap is infinite.
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5 Chasing all Catalan-like triples (U, a, k), k ≥ 2,

and a proof that DU,a,k is otherwise infinite

We first study the case k ≥ 3.

Proposition 26. Let a ≥ 3 and k ≥ 3. Then for all nonzero-discriminant regular Lucas

sequences U(P,Q), there are infinitely many integers n ≥ 1 for which U(a−1)n+k does not

divide
(
an
n

)

U
.

Proof. Suppose first k ≥ 4. To have a chance at finding a counterexample to our proposition,
we need, by Lemma 20, to find regular sequences U that are n-defective for at least three
indices n in arithmetic progression, namely at least at k+a−1, k+2(a−1) and k+3(a−1)
knowing that k + a − 1 ≥ 6. Inspecting Table A of Section 7, we discover only two such
instances, namely the sequence U(1, 2) which is n-defective at 6, 12 and 18 and also at
n = 8, 13 and 18. In the case of 6, 12 and 18, the common difference is 6. So a − 1 = 6
and k + a− 1 = 6. This yields k = 0, a contradiction. In the second case, as U(1, 2) is not
23-defective, there is no counter-example if k ≥ 5. So assume k = 4. Solving k + a− 1 = 8
for a − 1 yields a − 1 = 4. However, as the three indices n = 8, 13 and 18 are 5 apart, we
would have needed a− 1 = 5.

So we now assume k = 3. Using Table A, we now search for sequences that are both
(a+2) and (2a+1)-defective. For a = 3, again the sequence U(1, 2) is both 5 and 7-defective.
But U7 has the primitive prime divisor 7, which was discarded from Table A because 7 divides
the discriminant P 2 − 4Q. But that p divides ∆ does not invalidate Lemma 20. Examining
all values of a, 4 ≤ a ≤ 14, we only find one candidate sequence when a = 6, i.e., again
U(1, 2), which is 8 and 13-defective as seen earlier. To show that DU,6,3, with U = U(1, 2),
is infinite, it suffices to prove that the set A3(U, 6, 3), defined in (18), is infinite. Note that
3 ∤ a− 1. Moreover, U6 =

(
6
1

)

U
= 5 is not divisible by U(a−1)·1+3 = U8 = −3. That is, 1 ∈ A3.

By Theorem 24, A3 is infinite.

We now study the case k = 2.

Theorem 27. The four triples
(
U(1, 2), a, 2

)
, for a = 4 and a = 12,

(
U(1, 3), 4, 2

)
and

(
U(1, 5), 6, 2

)
are all four Catalan-like triples. That is,

1

U(a−1)n+k

(
an

n

)

U

,

is integral for all natural numbers n.

Proof. The first few terms of the most frequently defective Lucas sequence U(1, 2) are

0, 1, 1, −1, −3, −1, 5, 7, −3, −17, −11, 23, 45, −1, −91, −89, 93, 271 and 85.
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The first terms up to U7 are
{

0, 1, 1, −2, −5, 1, 16, 13, for U(1, 3);

0, 1, 1, −4, −9, 11, 56, 1, for U(1, 5).

For U(1, 2) and U(1, 3), we see that U5 = ±1. Therefore, by Corollary 23, DU,4,2 is empty.
For U(1, 5), U7 = 1 so DU,6,2 is empty by the same Corollary 23. Similarly, for U(1, 2), we
find that U13 = −1 so DU,12,2 is empty.

Proposition 28. Let U(P,Q) be a nonzero-discriminant regular Lucas sequence, a ≥ 3 be an

integer and k = 2. Then, except for the four exceptions of Theorem 27, there exist infinitely

many integers n ≥ 1 for which U(a−1)n+k does not divide
(
an
n

)

U
.

Proof. We display the terms U2, U3, U4 and U6 of U(P,Q) as polynomials in P and Q:

U2 = P ,U3 = P 2 −Q, U4 = P (P 2 − 2Q), U6 = P (P 2 −Q)(P 2 − 3Q).

We proceed case by case depending on the value of a. By Lemma 20, the only values of a to
consider are those for which there is some U with Ua+1 free of primitive prime divisors.

Case a = 3. If U4 has a primitive prime divisor, then, as a + 1 = 4, we obtain that DU,3,2

is infinite as a consequence of Lemma 20. (Note that the hypothesis p ∤ Q holds by Lemma
7.) If U4 has no p.p.d., then P 2 − 2Q = ±1. So P is odd ≥ 1. If P = 1, then Q = 1, so
that P 2 −Q = U3 = 0, which contradicts the nondegeneracy of U . Hence, P is odd > 1 and
U2 = Uk admits a p.p.d. p ≥ 3. As p ∤ a − 1 = 2, we reach the result sought by applying
Lemma 21.

Case a = 4. Since a+1 = 5 we need only consider the seven sequences listed as 5-defective
in Table A for, by Lemma 20, they are the only ones for which DU,4,2 could be finite. But
of these seven sequences three have a discriminant divisible by 5. Thus, 5 is a primitive
divisor of Ua+1 and we may discard them by Lemma 20. Two others are U(1, 2) and U(1, 3)
for which, as seen in Theorem 27, DU,4,2 is empty. The remaining two are U(12, 55) and
U(12, 377) for which p = 2 has rank 2 with 2 ∤ a − 1 so that Lemma 21 ensures our claim
holds.

Case a = 5. This might be the most intricate case because there are four infinite families
of regular Lucas sequences that are (a + 1)-defective, i.e., 6-defective, according to Table
A. However, for two of these four infinite families 3 | P . Hence, p = 3 has rank k and
p ∤ a − 1 so that, by Lemma 21, DU,5,2 is infinite. The two remaining families are 1.
(P,Q) =

(
P, (P 2 − 1)/3

)
for all P > 3, 3 ∤ P , and 2. (P,Q) =

(
P, (P 2 − (−2)i)/3

)
, where

i ≥ 1, P ≡ ±1 (mod 6), (P, i) 6= (1, 1). In both families, if P has an odd prime divisor p,
then, as p ∤ a − 1, DU,5,2 is infinite by Lemma 21. If not, then for the family 1. P = 2α

for some α ≥ 2. Thus, Q = (P 2 − 1)/3 is odd. Moreover, P 2 − 3Q = 1 and 4α − 3Q = 1
implies that Q ≡ 1 (mod 4). Thus, U3 = P 2 − Q = (2P 2 + 1)/3 is ≥ 11 and ≡ 3 (mod 4).
Hence, there exists a prime p ≥ 3, p ≡ 3 (mod 4) of rank 3. Thus, we obtain an infinite
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sequence of integers (nx)x≥1 defined by 4nx + 2 = 2 · 3 · px. Putting n = nx we see that
4n/3 = 2px − 1 + 1/3. Noting that 2px − 1 = 4q + 1 for some integer q, we find that
n/3 = q + 1/4 + 1/12 = q + 1/3. Therefore, the base-p addition of (a − 1)n/ρ and n/ρ
generates exactly x carries left of the radix point and none across that point. Therefore,
nx ∈ Ap for all x ≥ 1 and DU,5,2 is infinite. Now for the second family 2., if U2 does not have
an odd p.p.d., then P = 1. Thus, as (P, i) 6= (1, 1), we have i ≥ 2 and, putting j = i− 2, we
find that U3 = 1−Q =

(
2+(−2)j+2

)
/3, j ≥ 0, is divisible by 2. We prove that A2 is infinite.

For each λ ≥ 1 odd, ν2(U6λ) = j + 3. Indeed, ν2(U6λ) = ν2(U6). But U6 = (1−Q)(1− 3Q)
and 1−Q =

(
2 + (−2)j+2)/3 has 2-adic valuation 1, whereas 1− 3Q = (−2)j+2.

For each t ≥ 1 define the odd integer λ = (2 · 8t + 5)/7, which may be written in terms
of the base-2 representation of λ− 1 as

λ = (λ− 1) + 1 = (010
t
)2 + 1,

where 010
t
= 010 010 · · · 010 (the string 010 being repeated t times). To each such λ,

corresponds a unique integer n ≥ 1 such that 4n + 2 = 6λ. Since 4n/3 = 2λ − 1 + 1/3 =

(100
t
)2 + 1 + 1/3 and, thus, n/3 = (001

t
)2 + 1/4 + 1/12 = (001

t
)2 + 1/3, we see that the

base-2 addition of (a − 1)n/ρ and n/ρ creates a single carry from position 1 to position 2
left of the radix point. Therefore, ν2

(
5n
n

)

U
= 1 + δ = j + 2, whereas ν2(U6λ) = j + 3. Thus,

A2 is infinite.
The only values of a left for consideration are: 6, 7, 9, 11, 12, 17 and 29. For the other

values, there are no (a+ 1)-defective sequences U .

Case a = 6. The only 7-defective sequences according to Table A, Section 7, are (P,Q) =
(1, 2) and (1, 5). However, 7 is a primitive divisor of U7 = Ua+1 for the first sequence since
7 | ∆. So A7 is infinite by Lemma 20. The second sequence U has parameters (P,Q) = (1, 5)
and (U, 6, 2) was identified as a Catalan-like triple in Theorem 27.

Case a = 7. There are only two 8-defective regular Lucas sequences U(2, 7) and U(1, 2).
For (P,Q) = (2, 7), U2 = 2 and U8 = −40 so that, by Lemma 22, we need only consider
A2 and A5. Since 5 ∤ a − 1, but 5 | Ua+1, A5 is infinite by Corollary 25. (In fact, A2 is
infinite as well. Indeed, for each even x ≥ 2, there is an n ≥ 1 which solves the equation
6n + 2 = 2 · 2x. Since for all such x and n we find that 6n/2 = 2x − 1 is integral, the
base-2 addition of (a − 1)n/ρ and n/ρ does not produce a carry across the radix point
so that ν2

(
7n
n

)

U
≤ x < 1 + x = ν2

(
U6n+2

)
.) For (P,Q) = (1, 2), we show that A3 contains

{1+4 ·3t, t ≥ 0}. Indeed, ρ(3) = 4 and, for n = 1+4 ·3t, we see that 6n/4 = 2 ·3t+1+1+1/2
while n/4 = 3t + 1/4. Their base-3 addition raises no carry at all. So 3 ∤

(
7n
n

)

U
. However, 4

divides 6n+ 2 implies that ν3
(
U6n+2) ≥ 1.

Case a = 9. As usual if Ua+1 has a p.p.d. then DU,a,2 is infinite by Lemma 20. So we look at
Table A for the 10-defective sequences. There are three: (P,Q) = (2, 3), (5, 7) and (5, 18).
For the last two P = 5 so the prime 5 has rank 2 and does not divide a − 1. Hence, by
Lemma 21, A5 is infinite. For U(2, 3), U5 = −11. So 11 | Ua+1, but 11 ∤ a− 1. Hence, A11 is
infinite by Corollary 25.
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Case a = 11. There are six 12-defective sequences corresponding to (P,Q) = (1,−1), (1, 2),
(1, 3), (1, 4), (1, 5) and (2, 15). For (1,−1), (1, 2), (1, 4) and (1, 5), 3 ∤ Q. So, as ρ(3) is either
2, 3 or 4, we see that 3 | U12. As 3 ∤ a − 1, we conclude that A3 is infinite by Corollary 25.
For U(1, 3), U3 = −2 and U6 = 16. Although 2 | a− 1, we claim that A2 contains

{
3 · 24t+1 − 1

5
; t ≥ 0

}

.

Indeed, if n = (3 ·24t+1−1)/5, then 10n+2 = 3 ·24t+2. Thus, ν2(U10n+2) = (4t+2)+1+ δ =
4t+5. But 10n/3 = 24t+2− 1+1/3, while n/3 = (24t+2− 1)/10+1/30 ≡ 3/10+1/30 = 1/3
(mod 1). Therefore, by the Kummer rule for Lucasnomials, ν2

(
11n
n

)

U
≤ (4t+2)+δ = 4t+4 <

ν2(U10n+2). For U(2, 15), U3 = −11. Hence, 11 | U12 and 11 ∤ a− 1, so that A11 is infinite by
Corollary 25.

Case a = 12. The only 13-defective sequence is U(1, 2). We saw in Theorem 27 that
(
U(1, 2), 12, 2

)
is a Catalan-like triple.

Cases a = 17 and a = 29. The sequence U(1, 2) is the only 18-defective and the only
30-defective regular Lucas sequence. As U6 = 5, we see that 5 | U18 and 5 | U30. Since
5 ∤ 17 − 1 and 5 ∤ 29 − 1, we conclude, with the help of Corollary 25, that A5(U, 17, 2) and
A5(U, 29, 2) are both infinite sets.

For the sake of completeness, we now address the case of zero-discriminant regular Lucas
sequences U , i.e., of Un = In or Un = (−1)n−1In. Clearly it suffices to study the case of
U = I.

Proposition 29. The sets D(I, a, k) are infinite for all a ≥ 2 and all k ≥ 2.

Proof. Let a and k be integers exceeding 1. Let g = gcd(a − 1, k). The argument is split
into three complementary cases.

Case 1. Suppose g > 1. Let p be a prime factor of g and put n = px for some x ≥ 0. Then
the p-ary expansion of (a− 1)n ends with x+1 zeros, while n has a single digit 1 at position
x. Thus, there is no carry in the base-p addition of (a − 1)n and n. By Kummer’s rule,
p does not divide

(
an
n

)
. But p divides (a − 1)n + k. So (a − 1)n + k does not divide

(
an
n

)
.

Therefore, for all x ≥ 0, px belongs to D(I, a, k).

Case 2. Assume g = 1 and k ∤ a. Then there is a prime p such that pκ||k, pu||a for some
κ > u. We write a = pua′. Put n = px for some x > κ. Then

(a− 1)n = an− n = a′px+u − px = (a′ − 1)px+u + (p− 1)px+u−1 + · · ·+ (p− 1)px

n = px.

Their base-p addition creates exactly u carries since the carry into position x + u does not
propagate any further to the left. Indeed, p ∤ a′ =⇒ a′ − 1 6≡ p − 1 (mod p). By the rule
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of Kummer, pu||
(
an
n

)
. However, pκ divides (a − 1)n + k. Therefore, all px, x > κ, are in

D(I, a, k).

Case 3. Assume a = kℓ for some ℓ ≥ 1. Thus, g = 1. Let p be a prime factor of k and write
k = pκk′, p ∤ k′. Let h be the multiplicative order of p modulo a− 1. Let t > 0 be an integer
large enough so that px > k, where x = κ + ht. Then k′px − k = k(pht − 1) is a multiple of
a− 1. Define n = nt as (a− 1)n = k′px − k. The p-ary expansion of k′px − k has the form

(k′ − 1)px + dx−1p
x−1 + · · ·+ dκp

κ,

where the di’s are p-ary digits. If dx is the (x+1)-st p-ary digit of k′px−k, i.e., if (k′−1)px ≡
dxp

x (mod px+1), then dx 6= p − 1, because dx = p − 1 would imply that p | k′. Moreover,
(a− 1)n < k′px = kpx−κ ≤ kpx−1 implies that

n <
k

a− 1
px−1 ≤ k

k − 1
px−1 ≤ 2px−1 ≤ px.

The p-ary expansion of n has at most x significant digits. Thus, the base-p addition of n and
(a − 1)n generates at the most x − κ carries since the least significant κ digits of (a − 1)n
are all zero. Thus,

νp

(
an

n

)

≤ x− κ < x = νp
(
(a− 1)n+ k

)
.

Hence, nt ∈ Ap, for all t large enough.

Gathering together Propositions 26, 28 and 29, the theorems of Sections 2 and 3 and [5,
Theorem 3.5], we state a general theorem.

Theorem 30. Suppose U(P,Q) is a regular Lucas sequence and a ≥ 2 and k are integers.

Then there are infinitely many natural numbers n such that

U(a−1)n+k does not divide

(
an

n

)

U

,

unless either k = 1 or, k = 2, P = ±1 and (Q, a) is one of the five ordered pairs (2, 2),
(2, 4), (2, 12), (3, 4) or (5, 6), in which cases

U(a−1)n+k divides

(
an

n

)

U

, for all n ≥ 1.

We derive a couple of corollaries, one for the sequence U(1, 2) which stands out conspic-
uously, as had already been noted in [5, Corollary 3.6 and the subsequent remark], and one
for the Fibonacci sequence.

Corollary 31. For the two Lucas sequences U(±1, 2) = (Un)n≥0, we see that for all n ≥ 1

Un+1Un+2 |
(
2n

n

)

U

, U3n+1U3n+2 |
(
3n

n

)

U

and U11n+1U11n+2 |
(
12n

n

)

U

.

26



The next corollary is an extension of [5, Proposition 3.2]. It would also hold if we
replaced F by I. Indeed, Fibonomial Fuss-Catalan numbers bear the same singular status
as Fuss-Catalan numbers do.

Corollary 32. Let a ≥ 2 and k be integers. Let F denote the Fibonacci sequence. Then

there are infinitely many n ≥ 1 for which the numbers

1

F(a−1)n+k

(
an

n

)

F

are not integers, unless k = 1 when they are integers for all a ≥ 2 and n ≥ 1.

6 The density of DU,a,k when k ≥ 1

Our objective is to show that DU,a,k has asymptotic density 1 in the set of positive integers
whenever k ≥ 1. Here is an indicative roadmap of the route we intend to follow. As in [5,
Section 4], where we proved the case a = 2, we proceed by showing that the complementary
set of DU,a,k in the positive integers, DU,a,k, has asymptotic density 0. By Lemma 17, there
are only at most finitely many primes p for which Ap is not empty. Thus, by (19), we only
need to prove that Ap is of density zero for each prime p. We will establish an estimate for
the number of words of length ℓ over an alphabet of p letters which miss a given block of
b consecutive identical letters, as ℓ tends to infinity. This result is then converted into an
upper bound for the number of integers n ≤ z for which the base-p addition of n/ρ and
(a− 1)n/ρ generates less than a given number of carries. This upper bound turns out to be
o(z), as z tends to infinity. Integers n in Ap may be viewed as generating few carries in the
addition of n/ρ and (a − 1)n/ρ, at least fewer than the p-adic valuation of U(a−1)n+k. We
split Ap into the union of all Ax

p , where Ax
p is the subset of Ap of integers n for which x is

the exact exponent of p in the equation (a − 1)n + k = λρpx, p ∤ λ. For x smaller than a
bound u, integers in Ap are easily seen to generate less than ap carries in the base-p addition
of n/ρ and (a− 1)n/ρ, where ap is a fixed bound that depends on p and u. So there are no
more than o(z) such integers as z tends to infinity. For x > u, we will see that the form of
(a − 1)n/ρ generally induces a minimum of x − u carries right of position x and left of the
radix point. Thus, no matter how large x we only need a bounded fixed number of carries
left of position x to guarantee n is not Ap. This gives the desired conclusion.

It is well-known [16, Theorem 143, p. 120] that almost all natural numbers, when ex-
pressed in any scale, contain every possible sequence of digits. But we need to quantify
somewhat this ‘almost all’ statement. The editor-in-chief mentioned the work of Guibas and
Odlyzko ([15] and their further papers) whose general results may well imply our lemma.

Lemma 33. Let p ≥ 2 and b ≥ 1 be integers. Let xn be the number of strings of p-ary digits

of length n which do not contain a block of b consecutive digits all equal to p− 1. Then, as

n tends to infinity,

xn ∼ c · ønpn,

27



for some ø ∈ (0, 1) and some positive constant c.

Proof. The sequence (xn) forms a linear recurrent sequence with annihilating polynomial

P (X) = Xb − (p− 1)Xb−1 − (p− 1)Xb−2 − · · · − (p− 1). (26)

To see that (xn) is linear recurrent, we only consider the case b = 3 as an example, but the
reasoning may be carried out in all generality. We say that a string is admissible if it does
not contain a block of three consecutive digits equal to p − 1. Define yn as the number of
length-n admissible strings that end with two consecutive p− 1 digits, zn as the number of
length-n admissible strings ending with only one p− 1 digit and tn for those ending with a
digit at most p − 2. Then we readily see that for n ≥ 2, zn = tn−1 and tn = (p − 1)xn−1.
Consequently we see that for n ≥ 3

xn+1 = (p− 1)yn + p(zn + tn)

= (p− 1)(yn + zn + tn) + (tn + tn−1)

= (p− 1)xn + (p− 1)xn−1 + (p− 1)xn−2.

Noting that xi = pi for 0 ≤ i ≤ b − 1 and xb = pb − 1, we see that the polynomial P in
(26) must be the characteristic polynomial of (xn), i.e., its minimal annihilating polynomial.
Indeed suppose to the contrary that there is an 1 ≤ s < b and constants ai, 1 ≤ i ≤ s, such
that xn+s =

∑s
i=1 aixn+s−i for all n ≥ 0. Then

xb =
s∑

i=1

aixb−i = p
s∑

i=1

aixb−i−1 = pxb−1 = pb,

contradicting the fact that xb = pb − 1.
Using for instance [4, Lemma 3], we know the polynomial P in (26) has a unique simple

dominant real zero α > 1. Because P is the characteristic polynomial of (xn), the closed-
form expression of xn must contain a nonzero term in αn. Therefore, xn ∼ cαn, as n tends
to infinity, where c is some positive constant that depends only on p and b. Note that P (x)
is increasing for x > p. Indeed, the derivative P ′ is positive, since for x > p

P ′(x) = bxb−1 − (p− 1)
(
(b− 1)xb−2 + (b− 2)xb−3 + · · ·+ 1

)

> bxb−1 − (p− 1)(b− 1)(xb−2 + xb−3 + · · ·+ 1)

= bxb−1 − (p− 1)(b− 1)
xb−1 − 1

x− 1

> bxb−1 − (b− 1)(xb−1 − 1) = xb−1 + b− 1 > 0.

Since P (p) = 1 > 0, the polynomial P has no zero larger than p. Thus, α < p. Our claim
holds with ø = α/p.
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Lemma 34. Let p be a prime, ρ ≥ 1, a ≥ 2 and ap ≥ 1 be integers. Then the set C<ap of

integers n such that the base-p addition of n/ρ and (a− 1)n/ρ produces less than ap relevant

carries satisfies

#C<ap(z) ≪ z · øD, as z → ∞,

for some positive ø < 1 and D = 1+ ⌊logp z⌋. In particular, #C<ap(z) is o(z), as z tends to

infinity.

Proof. Let z ≥ 1 be a large real number. Thus, if n ≤ z, then the number of p-ary digits
of n/ρ is at most D. Let b ≥ ap + θ, where the integer θ ≥ 1 satisfies pθ > a − 1, but
pθ−1 ≤ a − 1. If n belongs to C<ap , then the p-adic expansion of ⌊n/ρ⌋ cannot contain a
block of b consecutive p− 1 digits. Indeed, otherwise there exist i, l ≥ 0 such that

⌊n/ρ⌋ = lpi+b + (p− 1)(pi+b−1 + pi+b−2 + · · ·+ pi) +m

= lpi+b + (pi+b − pi) +m = (l + 1)pi+b −m′,

withm < pi and 1 ≤ m′ = pi−m ≤ pi. Therefore there are integers c1 ≥ 1 and 0 ≤ c2 ≤ a−2
and an ǫ ∈ [0, 1) such that

(a− 1)n/ρ = c1p
i+b −m′(a− 1) + c2 + ǫ

with m′(a−1) < pi+θ. Hence, 1 ≤ m′(a−1)−c2 < pi+θ so that the base-p digits of (a−1)n/ρ
at all positions i + b − 1, i + b − 2, down to position i + θ, are all positive. Therefore, the
addition of n/ρ and (a − 1)n/ρ would produce at least b − θ ≥ ap carries. Note that there
are ρ values of n for which ⌊n/ρ⌋ is the same positive integer m. Thus, #C<ap(z) is at most
equal to ρ times the number of p-ary strings of length D not containing ap + θ consecutive
p− 1 digits. By Lemma 33, there exist ø < 1 and a positive c such that

#C<ap(z) ≤ ρc(1 + o(1))pDøD ≪ zøD.

Remark 35. The number #C
[x,D]
<ap (z) of integers n ≤ z for which less than ap carries occur

between positions x and D in the base-p addition of n/ρ and (a − 1)n/ρ is seen from the
proof of Lemma 34 to be ≪ øD−x+1z. Indeed, the presence of ap + θ consecutive p− 1 digits
at positions i, i+ 1, . . . , i+ b− 1, with i ≥ x, generates at least ap carries left of position x.

By Lemma 33, #C
[x,D]
<ap (z) ≪ ρ · cøD−x+1pD−x+1 · px ≪ øD−x+1z, where the constant implied

by the Vinogradov symbol “≪” does not depend on x.

Lemma 36. Let U(P,Q) be a regular Lucas sequence and a ≥ 2, k ≥ 1 be integers. Given

a prime p we let Ap denote the set of natural numbers n for which the p-adic valuation of

U(a−1)n+k is larger than that of
(
an
n

)

U
. Then the asymptotic density of Ap is zero.
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Proof. If n belongs to Ap, then there is a unique x ≥ 0 such that (a− 1)n+ k = λρpx, with
p ∤ λ and ρ the rank of p. We define Ax

p as the subset of Ap of integers n which correspond
to that x. Also, for an integral constant c ≥ 0, we use the notation A<c

p and A≥c
p to denote

the union of the Ax
p over, respectively, all x < c, or all x ≥ c.

We divide k by ρ, say k = qρ + r with 0 ≤ r < ρ. Define u as the smallest positive
integer t that satisfies pt > q + 1. Then Ap splits into the two subsets A<u

p and A≥u
p . We

begin with showing that A<u
p has zero density. Define ap as u+ν+ δ. We show the inclusion

A<u
p ⊂ C<ap , where C<ap was defined in Lemma 34. Suppose n ∈ A<u

p . Thus, there is an x,
0 ≤ x < u, such that

νp

(
an

n

)

U

< νp(U(a−1)n+k) ≤ x+ ν + δ < ap, (27)

so that, by the Kummer rule for Lucasnomials, n is in C<ap . But, by Lemma 34, C<ap has
zero density. Hence, A<u

p is a zero-density set as well.
We take note, for later use, that if we had defined ap as u + v + ν + δ, where v ≥ 0 is

some integer, then the same reasoning would have led to #A<u+v
p (z) = o(z).

We now turn our attention to the case when x ≥ u. Since

(a− 1)n

ρ
= (λ− 1)px + px − q − 1 +

ρ− r

ρ
(28)

and px − q − 1 = (px − pu) + (pu − q − 1), we see that px − q − 1 has a string of x − u
consecutive p− 1 digits at the positions x− 1, x− 2, . . . , u. If the u-th digit of n/ρ, du(n/ρ),
is ≥ 1, then a minimum of x − u carries occur in the addition of (a − 1)n/ρ and n/ρ, and
they occur before reaching the position x. Therefore, with the notation of Lemma 34, if n
belongs to Ax

p(z), then there are no ap + θ consecutive p − 1 digits in-between positions x
and D in the base-p expansion of n/ρ, where again ap = u+ ν + δ. Thus, by Remark 35, we
obtain an upper bound for #Ax

p(z), namely

#Ax
p(z) ≪ zøD−x+1,

where 0 < ø < 1 and the constant implied by the symbol ≪ depends only on U , a, k and
p. We now estimate the size of A≥u

p by first considering its subset B := ∪Ax
p over all x’s in

[u,D/2]. Thus, we obtain

#B(z) ≤
⌊D/2⌋
∑

x=u

#Ax
p(z) ≪ z

⌊D/2⌋
∑

x=u

øD−x+1 ≤ z
ø⌈D/2⌉+1

1− ø
,

which is a o(z)-function, as z tends to infinity.
Let us now fix an integer x > D/2. For all n in Ax

p , there is a unique λ satisfying
(a − 1)n + k = λρpx. Thus, we get an upper estimate for #Ax

p(z) by bounding above the
corresponding number of λ’s. Indeed,

λ ≤ (a− 1)n+ k

ρpx
≤ (a− 1)z + k

ρpD/2
≪ z1/2,
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as z tends to infinity. Hence,

∑

D/2<x≤D

#Ax
p(z) = O(D

√
z) = O(z1/2 log z) = o(z).

Therefore, #A≥u
p (z) = o(z).

But what if du(n/ρ) = 0? We will see that the above reasoning remains valid provided
we make some adjustment. The euclidean division of λ − 1 in (28) by a − 1 gives λ − 1 =
Q(a− 1) +R with 0 ≤ R ≤ a− 2. Thus,

(a− 1)n

ρ
= Q(a− 1)px + (R + 1)px − q − 1 +

ρ− r

ρ
,

n

ρ
= Qpx + S,

where S <
(
(a−1)px−q

)
/(a−1) ≤ px. Let v and w be the respective numbers of p-ary digits

of a−1 and R. We have w ≤ v. Assume x ≥ u+v. Again px−q−1 = (px−pu)+(pu−q−1)
so that the base-p expansion of (R + 1)px − q − 1 has the shape

∗ · · · ∗
︸ ︷︷ ︸

w digits

(p− 1)(p− 1) · · · (p− 1)
︸ ︷︷ ︸

x− u times

∗ · · · ∗
︸ ︷︷ ︸

u digits

When one performs the division algorithm most of us learn in elementary school, although
here in base p rather than 10, of (R + 1)px − q − 1 by a− 1, the quotient has, to the left of
the radix point, v or v− 1 digits less than the dividend. That is, ⌊S⌋ must have w+x− v or
w+x− v+1 p-ary digits. Moreover, in that string of digits two nonzero digits are separated
by at most v zero digits so that the quotient has to have at least one nonzero digit in every
string of v+1 digits. Because of the x− u ≥ v consecutive p− 1 digits in (R+1)px − q− 1,
with a moment of thought one sees that the addition of S to (R+1)px−q−1 has to generate
a minimum of x − u − v carries left of the radix point. Thus, we now have a deficit of at
most u+ v+ ν+ δ carries to fill in in the addition of (a− 1)n/ρ and n/ρ left of position x to
ensure that n is not in Ap. Hence, defining ap as u+ v+ ν+ δ, we can argue that #A<u+v

p (z)
and #A≥u+v

p (z) are both o(z), as z tends to infinity, in the same respective ways we argued
that #A<u

p (z) and #A≥u
p (z) were each o(z).

Theorem 37. Let U(P,Q) be a regular Lucas sequence and a ≥ 2, k ≥ 1 be integers. Then

for almost all integers n ≥ 1, we find that

1

U(a−1)n+k

(
an

n

)

U

is an integer.

Proof. The set DU,a,k is the union of the Ap’s over all primes p. However, by Lemma 17, all
but finitely many of them are empty. Since each of the finitely many nonempty ones have
density zero by Lemma 36, we see that DU,a,k itself has zero density.
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Incidentally, the proof of Lemma 36 provides an answer to one of the three questions
posed in Remark 19. We state the answer as a theorem.

Theorem 38. Let U(P,Q) be a regular Lucas sequence and a ≥ 2, k ≥ 1 be integers. Then

there exists an integer m = m(U, a, k), m ≥ 1, such that for all integers n ≥ 1

m

U(a−1)n+k

(
an

n

)

U

is an integer. (29)

Proof. By Lemma 17, for all but finitely many primes p, Ap is empty. But if Ap is empty,
then νp(U(a−1)n+k) ≤ νp

(
an
n

)

U
for all n ≥ 1. Thus, the existence of an m, for which (29)

holds for all n, depends on whether for the remaining finitely many primes p the difference
νp(U(a−1)n+k) − νp

(
an
n

)

U
is bounded above. By the proof of Lemma 36 this is true. Indeed,

with the notation of the lemma, given Ap, we saw (27) that for n ∈ A<u+v
p , the p-adic

valuation of U(a−1)n+k is bounded above by ap = u+ v+ ν + δ. If n ∈ A≥u+v
p , then we found

that at least x − u − v carries occurred in the base-p addition of n/ρ and (a − 1)n/ρ prior
to reaching position x. Thus the difference νp(U(a−1)n+k)− νp

(
an
n

)

U
is at most equal to ap. if

αp ≥ 0 is the least e for which νp(U(a−1)n+k) − νp
(
an
n

)

U
≤ e for all n ≥ 1, then m =

∏
pαp ,

the product being over all primes of rank less than ak, is the least integer to satisfy (29).

7 Appendix: The table of n-defective Lucas sequences

Here is a table of n-defective nonzero-discriminant regular Lucas sequences U(P,Q), with
P > 0, for all n ≥ 2. We did nothing more than concatenate in one table the data contained
in the three tables [8, Tables 1 and 3, pp. 78–79], [1, p. 312], except for parametrizing the
sequences in terms of P and Q rather than P and ∆.

Semi-columns are used to separate different parametric families of n-defective sequences,
while commas are used to specify constraints on the parameters. Parameters i and j are
integers. The case n = 6 has three lines. To alleviate the table we did not repeat at various
lines that whenever a parametrization yields the sequence I = U(2, 1), it should be discarded.
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n (P, Q), P > 0, (P, Q) 6= (2, 1)

2 (1, Q), Q 6= −3; (2i, 2j + 1), i ≥ 1
3 (P, P 2 ± 1); (P, P 2 ± 3i), 3 ∤ P
4

(
P, (P 2 ± 1)/2

)
, P odd; (2i, 2i2 ± 1)

5 (1, −1) (1, 2) (1, 3) (1, 4) (2, 11) (12, 55) (12, 377)
(
P, (P 2 − 1)/3

)
, 3 ∤ P, P ≥ 4;

(
P, (P 2 ± 3)/3

)
, 3 | P ;

6
(
P, (P 2 − (−2)i)/3

)
, P ≡ ±1 (mod 6), i ≥ 1, (P, i) 6= (1, 1);

(
P, (P 2 ± 3 · 2i)/3

)
, P ≡ 3 (mod 6), i ≥ 1

7 (1, 2) (1, 5)
8 (1, 2) (2, 7)
10 (2, 3) (5, 7) (5, 18)
12 (1, −1) (1, 2) (1, 3) (1, 4) (1, 5) (2, 15)
13 (1, 2)
18 (1, 2)
30 (1, 2)

TABLE A.

List of all n-defective regular Lucas sequences U(P,Q), n ≥ 2
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