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Abstract

We study the orthogonal polynomials of classical and semi-classical types that can

be defined by ordinary and exponential Riordan arrays. We identify their moment se-

quences, giving their integral representations and Hankel transforms. For a special class

of classical orthogonal polynomials defined by Riordan arrays, we identify a comple-

mentary family of orthogonal polynomials defined by reversion of moment sequences.

Special product sequences arise and their generating functions are calculated.

1 Introduction

Riordan arrays [4, 28, 29, 30, 34] are simple to define (see below), providing a bridge be-
tween elements of algebra, group theory and linear algebra. This combination can shed light
on other areas of mathematics. In this note, we show how Riordan arrays can yield fresh
perspectives on the area of orthogonal polynomials. It is straight-forward to classify those
Riordan arrays that define orthogonal polynomials - essentially, they are the ordinary Rior-
dan arrays whose production matrices are tri-diagonal. Nevertheless, it is interesting to note
that only in a limited number of cases are the associated orthogonal polynomials of classical
type. This note explores this fact. We classify those ordinary Riordan arrays that define
classical polynomials, and we study some integral representations of the moment sequences
associated with semi-classical orthogonal polynomials defined by ordinary Riordan arrays.
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We also begin the investigation of classical orthogonal polynomials defined by exponential
Riordan arrays, and we look at families of such polynomials that are related to the reverse
Bessel polynomials.

The paper is laid out in the following sections.

1. This Introduction

2. Preliminaries on ordinary Riordan arrays and orthogonal polynomials

3. Classical and semi-classical orthogonal polynomials

4. The classical orthogonal polynomials defined by ordinary Riordan arrays

5. The non-classical case

6. Complementary orthogonal polynomials defined by Riordan arrays

7. A note on the INVERT transform

8. A special product sequence

9. Exponential Riordan arrays and classical orthogonal polynomials

10. Bessel and related polynomials

11. Conclusion

12. Declaration

13. Appendix — The Stieltjes transform of a measure.

We recall the following well-known results (the first is known as “Favard’s Theorem”),
which we essentially reproduce from [18], to specify the links between orthogonal polynomials,
three term recurrences, and the recurrence coefficients and the generating function of the
moment sequence of the orthogonal polynomials.

Theorem 1. [18] (Cf. [37, Théorème 9, p. I-4] or [38, Theorem 50.1]). Let (pn(x))n≥0 be
a sequence of monic polynomials, the polynomial pn(x) having degree n = 0, 1, . . . Then the
sequence (pn(x)) is (formally) orthogonal if and only if there exist sequences (αn)n≥0 and
(βn)n≥1 with βn 6= 0 for all n ≥ 1, such that the three-term recurrence

pn+1 = (x− αn)pn(x)− βnpn−1(x), for n ≥ 1,

holds, with initial conditions p0(x) = 1 and p1(x) = x− α0.
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Theorem 2. [18] (Cf. [37, Prop. 1 (7), p. V-5] or [38, Theorem 51.1]). Let (pn(x))n≥0 be a
sequence of monic polynomials, which is orthogonal with respect to some functional L. Let

pn+1 = (x− αn)pn(x)− βnpn−1(x), for n ≥ 1,

be the corresponding three-term recurrence which is guaranteed by Favard’s theorem. Then
the generating function

g(x) =
∞
∑

k=0

µkx
k

for the moments µk = L(xk) satisfies

g(x) =
µ0

1− α0x−
β1x

2

1− α1x−
β2x

2

1− α2x−
β3x

2

1− α3x− · · ·

.

The Hankel transform of a given sequence A = {a0, a1, a2, ...} is the sequence of Hankel
determinants {h0, h1, h2, . . . } where hn = |ai+j|ni,j=0, i.e

A = {an}n∈N0 → h = {hn}n∈N0 : hn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

a0 a1 · · · an
a1 a2 an+1
...

. . .

an an+1 a2n

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (1)

The Hankel transform of a sequence an and its binomial transform are equal.
In the case that an has a generating function g(x) expressible in the form

g(x) =
a0

1− α0x−
β1x

2

1− α1x−
β2x

2

1− α2x−
β3x

2

1− α3x− · · ·

then we have [18]

hn = an+1
0 βn

1 β
n−1
2 · · · β2

n−1βn = an+1
0

n
∏

k=1

βn+1−k
k . (2)

Note that this is independent of αn.
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2 Preliminaries on Riordan arrays and orthogonal poly-

nomials

An ordinary Riordan array M is an invertible lower-triangular matrix defined by two power
series

g(x) = 1 + g1x+ g2x
2 + · · ·

and
f(x) = x+ f2x

2 + f3x
3 + · · · ,

where the (n, k)-th element of the corresponding matrix is given by

mn,k = [xn]g(x)f(x)k,

where [xn] is the operator that extracts the coefficient of xn in the power series upon which
it operates [24]. The variable “x” here is a dummy or synthetic variable, in the sense that
we have mn,k = [tn]g(t)f(t)k using another designation for this variable. Note that we have
chosen g0 = 1 and f1 = 1 here, to simplify the exposition. The power series above are in
ordinary form g(x) =

∑∞
n=0 gnx

n and f(x) =
∑∞

n=0 fnx
n (with f0 = 0) and as such the

associated arrays are called ordinary Riordan arrays.
Along with the two power series g(x) and f(x), we can define two associated power series

A(x) =
x

f̄(x)
,

and

Z(x) =
1

f̄(x)

(

1− 1

g(f̄(x))

)

.

Note that the notation f̄(x) denotes the compositional inverse of the power series f . Thus
we have

f̄(f(x)) = x, and f(f̄(x)) = x.

We shall also use the notation f̄(x) = Rev(f)(x).
The (infinite) matrix whose bivariate generating function is given by

Z(x) +
A(x)y

1− xy

is called the production matrix of M [13, 14, 27]. It is equal to the matrix

M−1M̄

where M̄ is the matrix M with its first row removed. It is an infinite lower Hessenberg
matrix.
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If the Riordan array M has a production matrix P defined by A(x) and Z(x), then we
can show that

M−1 =

(

1− x
Z(x)

A(x)
,

x

A(x)

)

.

If Z(x) = γ + δx, and A(x) = 1 + αx + βx2 (where we assume that δ 6= 0 and β 6= 0),
then P will be tri-diagonal. The matrix P begins

























γ 1 0 0 0 0 0 0
δ α 1 0 0 0 0 0
0 β α 1 0 0 0 0
0 0 β α 1 0 0 0
0 0 0 β α 1 0 0
0 0 0 0 β α 1 0
0 0 0 0 0 β α 1
0 0 0 0 0 0 β α

























.

In this case, we have

M−1 =

(

1− x
γ + δx

1 + αx+ βx2
,

x

1 + αx+ βx2

)

=

(

1 + (α− γ)x+ (β − δ)x2

1 + αx+ βx2
,

x

1 + αx+ βx2

)

,

and R = M−1 will be the coefficient array of a family of orthogonal polynomials Pn(x) [6]
where

Pn(x) =
n
∑

k=0

pn,kx
k,

where the general (n, k)-th term of R is pn,k. In this case, we call M the moment matrix of
the family of orthogonal polynomials Pn(x) [5].

An advantage of using Riordan arrays wherever possible is that the set of Riordan arrays
is a group for matrix multiplication, which in terms of the power series definition of a Riordan
array is translated as

(g(x), f(x)) · (u(x), v(x)) = (g(x)u(f(x)), v(f(x)).

In conformity with this definition of multiplication, we have the rule

(g(x), f(x)) · h(x) = g(x)h(f(x)),

which mirrors the operation of multiplying the vector of elements whose generating function
is h(x) by the Riordan array M . The vector resulting, when regarded as a sequence of
elements, will then have generating function g(x)h(f(x)). The inverse of the arrayM defined
by (g(x), f(x)) is given by

(g(x), f(x))−1 =

(

1

g(f̄(x))
, f̄(x)

)

.

The identity element is (1, x), which is represented by the usual identity matrix.
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3 Classical and semi-classical orthogonal polynomials

The classical orthogonal polynomials of mathematical science are the Jacobi, Laguerre and
Hermite polynomials, defined by the weights wJ(x) = (1 − x)α(1 + x)β on [−1, 1], wL(x) =
xαe−x on [0,∞), and wH(x) = e−x2

on (−∞,∞), respectively. In particular, these orthogonal
polynomials [11, 15, 36] are associated with measures that are absolutely continuous. We
have

w′
J(x)

wJ(x)
=
x(α + β) + α− β

x2 − 1
,

w′
L(x)

wL(x)
=
α− x

x
,

and
w′

H(x)

wH(x)
= −2x.

In general, we shall define a family of orthogonal polynomials Pn(x) to be classical [35] if
the associated measure is absolutely continuous with weight function w(x) satisfying

w′(x)

w(x)
=
U(x)

V (x)
=

u0 + u1x

v0 + v1x+ v2x2
.

The polynomials y = Pn(x) will then satisfy the differential equation

V (x)y′′ + (U(x) + V ′(x))y′ − n(u1 + (n+ 1)v2)y = 0.

If deg(V ) > 2 and/or deg(U) > 1 then we say that the family of polynomials is semi-classical.
Note that all orthogonal polynomials that we shall consider later will be monic (the

coefficient of xn in Pn(x) is 1).

4 The classical orthogonal polynomials defined by or-

dinary Riordan arrays

We have seen that for an ordinary Riordan array to define a family of orthogonal polynomials,
it must be of the form

R =

(

1 + cx+ dx2

1 + ax+ bx2
,

x

1 + ax+ bx2

)

.

This matrix will then be the coefficient array of the family of polynomials. The procedure to
find the weight function associated with this family is as follows. First, we form the moment
matrix M = R−1 given by

(

− (b− d)
√

1− 2ax+ x2(a2 − 4b) + x(a(b+ d)− 2bc)− b− d

2(x2(a2d− ac(b+ d) + b2 + b(c2 − 2d) + d2) + x(c(b+ d)− 2ad) + d)
,

1− ax−
√

1− 2ax+ x2(a2 − 4b)

2bx

)

.
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The first element of this array is the generating function µ(x) of the moments of the
family of orthogonal polynomials Pn(x). These moments begin

1, a− c, a2 − 2ac+ b+ c2 − d, a3 − 3a2c+ a(3b+ 3c2 − 3d)− c(2b+ c2 − 2d), . . .

and their generating function is given by

µ(x) =
1

1− (a− c)x−
(b− d)x2

1− ax−
bx2

1− ax−
bx2

1− · · ·

.

From this we can see that the Hankel transform [18, 21] of this sequence of moments is given
by

hn = (b− d)nb(
n
2).

Our next step is to use the Stieltjes-Perron theorem [5, 17] (see Appendix) to derive the
associated measure. We find that the measure sought is given by w(x)dx where

w(x) =
1

2π

(b− d)
√

4b− (x− a)2

dx2 + x(c(b+ d)− 2ad) + a2d− ac(b+ d) + b2 + b(c2 − 2d) + d2
.

Finally, we form the ratio w′(x)
w(x)

to obtain the expression

−dx
3 − 3adx2 + x(3a2d− b2 − b(c2 + 6d)− d2)− a3d+ a(b2 + b(c2 + 6d) + d2)− 4bc(b+ d)

((x− a)2 − 4b)(dx2 + x(c(b+ d)− 2ad) + a2d− ac(b+ d) + b2 + b(c2 − 2d) + d2)
.

The form of this ratio now tells us that the orthogonal polynomials defined by ordinary
Riordan arrays are at least semi-classical. Inspection of the above ratio allows us to announce
the following results.

Proposition 3. The ordinary Riordan array

(

1 + cx+ dx2

1 + ax+ bx2
,

x

1 + ax+ bx2

)

defines a family of classical orthogonal polynomials in the case that either c = d = 0 or
c = 0, d = −b.

Corollary 4. When c = d = 0, we have

w(x) =
1

2π

√

4b− (x− a)2

b
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on the interval
[a− 2

√
b, a+ 2

√
b],

with
w′(x)

w(x)
=

x− a

(x− a)2 − 4b
.

The moments µn have integral representation

µn =
1

2π

∫ a+2
√
b

a−2
√
b

xn
√

4b− (x− a)2

b
dx.

The moments have generating function

µ(x) =
1− ax−

√

(1− ax)2 − 4bx2

2bx2

given by

µ(x) =
1

1− ax−
bx2

1− ax−
bx2

1− ax−
bx2

1− · · ·

.

By an application of Lagrange inversion [23], we obtain

µn =
1

n+ 1
[xn](1 + ax+ bx2)n+1

=
1

n+ 1

n
∑

k=0

(

n+ 1

j

)(

j

n− j

)

a2j−nbn−j

=
1

n+ 1

n
∑

k=0

(

n+ 1

n− k

)(

n− k

k

)

an−2kbk.

The moments have Hankel transform

hn = b(
n+1
2 ).

The polynomials Pn(x) satisfy the three-term recurrence

Pn(x) = (x− a)Pn−1(x)− bPn−2(x), n > 1,

with P0(x) = 1, P1(x) = x− a.
If y = Pn(x) then y satisfies the differential equation

(x2 − 2ax+ a2 − 4b)y′′ + 3(x− a)y′ − n(n+ 2)y = 0.
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The form of the differential equation satisfied by these polynomials follows from the form
of the weight function [35]. For a proof of the other statements, the reader is referred to [6].

Corollary 5. When c = 0 and d = −b, we have

w(x) =
1

π

1
√

4b− (x− a)2

on the interval
[a− 2

√
b, a+ 2

√
b],

with
w′(x)

w(x)
=

a− x

(x− a)2 − 4b
.

The moments µn have integral representation

µn =
1

π

∫ a+2
√
b

a−2
√
b

xn
1

√

4b− (x− a)2
dx.

The moments have generating function

µ(x) =
1

√

(1− ax)2 − 4bx2

given by

µ(x) =
1

1− ax−
2bx2

1− ax−
bx2

1− ax−
bx2

1− · · ·

.

We have the closed form expression for the moments

µn =
n
∑

i=0

(

n− i

i

)(

n− i− 1/2

n− i

)

(−1)i(a2 − 4b)i(2a)n−2i

=
1

4n

n
∑

k=0

(

2n− 2k

n− k

)(

2k

k

)

(a+ 2
√
b)k(a− 2

√
b)n−k.

The moments have Hankel transform

hn = 2nb(
n+1
2 ).

The polynomials Pn(x) satisfy the three-term recurrence

Pn(x) = (x− a)Pn−1(x)− bPn−2(x), n > 2,
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with P0(x) = 1, P1(x) = x− a, and P2(x) = (x− a)2 − b(b+ 1).
If y = Pn(x) then y satisfies the differential equation

(x2 − 2ax+ a2 − 4b)y′′ + (x− a)y′ − n2y = 0.

We note that in the case c = 0 and d = −b, the generating function

1
√

(1− ax)2 − 4bx2
=

1
√

1− 2ax+ x2(a2 − 4b)

can be compared with the generating function

1

1− 2xt+ t2
=

∞
∑

n=0

Pn(x)t
n

of the Legendre polynomials Pn(x). Then we get [26]

µn = (a2 − 4b)n/2Pn

(

a√
a2 − 4b

)

.

For the next result, we note that

Cn =
1

n+ 1

(

2n

n

)

is the n-th Catalan number A000108. The generating function of the Catalan numbers is
given by

c(x) =
1−

√
1− 4x

2x
.

Proposition 6. The ordinary Riordan array
(

1
1+ax

, x
(1+ax)2

)

(a 6= 0) is the coefficient array

of a family of classical orthogonal polynomials. We have

w(x) =
1

2π

√

x(4a− x)

2ax

on the interval
[0, 4a],

with
w′(x)

w(x)
=

2a

x(x− 4a)
.

The moments have integral representation

µn =
1

2π

∫ 4a

0

xn
√

x(4a− x)

2ax
dx = anCn.
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The moments have generating function

µ(x) =
1−

√
1− 4ax

2ax
,

with

µ(x) =
1

1−
ax

1−
ax

1−
ax

1− · · ·

,

or equivalently,

µ(x) =
1

1− ax−
a2x2

1− 2ax−
a2x2

1− 2ax− · · ·

.

The moments µn have Hankel transform

hn = an(n+1).

The polynomials Pn(x) satisfy the three-term recurrence

Pn(x) = (x− 2a)Pn−1(x)− a2Pn−2 n > 1,

with P0(x) = 1, P1(x) = x− a. If y = Pn(x) then y satisfies the differential equation

x(x− 4a)y′′ + 2(x− a)y′ − n(n+ 1)y = 0.

Example 7. The Riordan array
(

1
1+x2 ,

x
1+x2

)

is the coefficient array of the scaled Chebyshev
polynomials of the second kind Pn(x) = Un(x/2), with their moments being the aerated
Catalan numbers

1, 0, 1, 0, 2, 0, 5, 0, 14, 0, . . .

given by

µn =
1

2π

∫ 2

−2

√
4− x2 dx.

This is closely related to Wigner’s semicircle distribution [39, 40]. Note that if we define

P
(1)
n−1 =

1

2π

∫ 2

−2

Pn(z)− Pn(x)

z − x

√
4− x2 dx

then we find that
P (1)
n (x) = Pn(x) = Un(x/2).
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Here,

Un(x) =

⌊n
2
⌋

∑

k=0

(

n− k

k

)

(−1)k(2x)n−2k

are the Chebyshev polynomials of the second kind [22].

Example 8. The Riordan array
(

1−x2

1+x2 ,
x

1+x2

)

is closely related to the Chebyshev polynomials

of the first kind. This array is the coefficient array of a family of orthogonal polynomials
Pn(x) whose moments are the aerated central binomial numbers (A000984)

1, 0, 2, 0, 6, 0, 20, 0, 70, 0, 252, . . .

given by
1

π

∫ 2

−2

xn
1√

4− x2
dx.

In this case we have
Pn(x) = Un(x/2)− Un−2(x/2).

We also find that P
(1)
n (x), where

P
(1)
n−1 =

1

π

∫ 2

−2

Pn(z)− Pn(x)

z − x

1√
4− x2

dx

also satisfies
P (1)
n (x) = Pn(x) = Un(x/2).

5 The semi-classical case

By the results of the last section, if an ordinary Riordan array is the coefficient array of a
family of polynomials that is not of classical type, then the ratio w̃′

w̃
is of semi-classical type,

for the absolutely continuous part of the measure.
We begin this section by looking at a family of orthogonal polynomials said to be of

“restricted Chebyshev Boubaker type” [3]. These are ordinary Riordan arrays of the form

(

1 + rx2

1 + x2
,

x

1 + x2

)

.

We exclude the case r = −1, which is of classical type. The polynomials Pn(x; r) = Pn(x)
defined by these arrays are given by

Pn(x; r) =

⌊n
2
⌋

∑

k=0

(

n− k

k

)

n− (r + 1)k

n− k
(−1)kxn−2k.

12
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The case r = 3 corresponds to the family of Boubaker polynomials [1, 2, 8, 9, 10, 12, 19, 20,
25, 31, 41]. The moments µn(r) of this family of orthogonal polynomials have generating
function

µ(x; r) =

√
1− 4x2(r − 1) + r + 1

2(r + x2(r − 1)2)
,

which can be expressed as the continued fraction [38]

µ(x; r) =
1

1−
(1− r)x2

1−
x2

1−
x2

1− · · ·

.

We note that the Hankel transform of µn(r), which by the above is an aerated sequence, and
that of its un-aerated version, is given by

hn(r) = (1− r)n.

Further, the un-aerated moments

1, 1− r, r2 − 3r + 2,−r3 + 5r2 − 9r + 5, . . .

are themselves moments for the family of orthogonal polynomials that have coefficient matrix
given by

(

(1 + x)(1 + rx)

(1 + x)2
,

x

(1 + x)2

)

.

We have the following integral representation of the moment sequence µn(r).

µn(r) =
−1

π

∫ 2

2

xn
√
4− x2(r − 1)

2(rx2 + (r − 1)2)
dx+

r + 1

2r

(

−r − 1√
−r

)n

+
r + 1

2r

(

r − 1√
−r

)n

.

This shows that in this case, the measure defining the orthogonal polynomial is no longer
absolutely continuous, but it takes into account the zeros of the denominator term rx2 +
(r − 1)2. Note that we have

w̃′(x)

w̃
=

x(rx2 − r2 − 6r − 1)

(4− x2)(rx2 + (r − 1)2)

in this case.
We now move to a more general example.

Example 9. We consider the Riordan array
(

1− x− x2

1− 3x− 4x2
,

x

1− 3x− 4x2

)

13



which begins




















1 0 0 0 0 0 0
2 1 0 0 0 0 0
9 5 1 0 0 0 0
35 28 8 1 0 0 0
141 139 56 11 1 0 0
563 670 339 93 14 1 0
2253 3129 1911 662 139 17 1





















,

with inverse
(

5 + 7x+
√
1 + 6x+ 25x2

2(1 + x− 11x2
,

√
1 + 6x+ 25x2 − 3x− 1

8x

)

that begins




















1 0 0 0 0 0 0
−2 1 0 0 0 0 0
1 −5 1 0 0 0 0
13 12 −8 1 0 0 0
−62 9 32 −11 1 0 0
97 −217 −43 61 −14 1 0
457 920 −332 −170 99 −17 1





















.

The moment sequence µn thus begins

1,−2, 1, 13,−62, 97, 457, . . . .

The inverse matrix has a production matrix that begins





















−2 1 0 0 0 0 0
−3 −3 1 0 0 0 0
0 −4 −3 1 0 0 0
0 0 −4 −3 1 0 0
0 0 0 −4 −3 1 0
0 0 0 0 −4 −3 1
0 0 0 0 0 −4 −3





















,

and hence the generating function 5+7x+
√
1+6x+25x2

2(1+x−11x2 of the moment sequence has a continued
fraction expression as

1

1 + 2x+
3x2

1 + 3x+
4x2

1 + 3x+
4x2

1 + · · ·

.
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This implies that the moments µn have Hankel transform given by

hn = (−3)n(−4)(
n
2).

We find that the moments have integral representation

µn =
1

π

∫ −3+4i

−3−4i

xn
3i
√
x2 + 6x+ 25

2(x2 + x− 11)
dx+

(

3
√
5

10
+

5

2

)(

3
√
5

2
− 1

2

)n

.

Thus the support for the measure for the corresponding family of orthogonal polynomials
has an absolutely continuous part supported by the imaginary line segment [−3−4i,−3+4i]

and an atomic mass on the real axis at x = 3
√
5

2
− 1

2
. In this case we have

w̃′(x)

w̃(x)
= − x3 + 9x2 + 64x+ 58

(x2 + x− 11)(x2 + 6x+ 25)
.

The corresponding family of orthogonal polynomials Pn(x) satisfy the three-term recurrence

Pn(x) = (x+ 3)Pn−1(x) + 4Pn−2,

with P0(x) = 1, P1(x) = x+ 2.

6 Complementary orthogonal polynomials

In this section, we consider the classical case where c = 0 and d = −b. In this case we have
seen that the moments have generating function given by

µ(x) =
1

√

1− 2ax+ x2(a2 − 4b)
.

We now claim that the generating function

µ̃(x) =
1

x
Rev(xµ(x))

is the generating function of the moments for another family of orthogonal polynomials,
which we will call the complementary orthogonal polynomials to the family of polynomials
defined by the Riordan array

(

1− bx2

1 + ax+ bx2
,

x

1 + ax+ bx2

)

.

By solving the equation
u

√

1− 2au+ u2(a2 − 4b)
= x,

15



and taking the appropriate branch, we find that

µ̃(x) =
1

x
Rev(xµ(x)) =

√
1 + 4bx2 − ax

1− x2(a2 − 4b)
=

1

ax+
√
1 + 4bx2

.

But now
(

1 + ax+ bx2

1− bx2
,

x

1− bx2

)−1

= (µ̃(x), xc(−bx2)),

where

c(x) =
1−

√
1− 4x

2x

is the generating function of the Catalan numbers Cn = 1
n+1

(

2n
n

)

. Thus µ̃(x) is the generating
function of the moments of the family of orthogonal polynomials whose coefficient array is
given by the Riordan array

R =

(

1 + ax+ bx2

1− bx2
,

x

1− bx2

)

.

We regard the Riordan arrays R̃ =
(

1−bx2

1+ax+bx2 ,
x

1+ax+bx2

)

and
(

1+ax+bx2

1−bx2 , x
1−bx2

)

as being

complementary to each other. The production matrix of the inverse matrix (µ̃(x), xc(−bx2))
begins





















−a 1 0 0 0 0 0
−2b 0 1 0 0 0 0
0 −b 0 1 0 0 0
0 0 −b 0 1 0 0
0 0 0 −b 0 1 0
0 0 0 0 −b 0 1
0 0 0 0 0 −b 0





















and hence these complementary orthogonal polynomials Qn(x) are defined by the three-term
recurrence

Qn(x) = xQn−1 + bQn−2(x),

Q0(x) = 1, Q1(x) = x+ a.
In fact, we have

Qn(x) = Pn(x) + aPn−1(x) + bPn−2(x)

where

Pn(x) = (−b)n/2U
(

n,
x

2
√
−b

)

.

This follows from the the factorisation of Riordan arrays given by

(

1 + ax+ bx2

1− bx2
,

x

1− bx2

)

= (1 + ax+ bx2, x)

(

1

1− bx2
,

x

1− bx2

)

,

16



where the right-most matrix is closely related to the Chebyshev polynomials of the first kind
(in x

2
√
−b
).

In line with our previous results, when a = 0, we have a family of classical orthogonal
polynomials with associated measure

1

π

−1√
−x2 − 4b

.

For instance, the polynomials with coefficient array

(

1 + 2x2

1− 2x2
,

x

1− 2x2

)

have moments that begin

1, 0,−4, 0, 24, 0,−160, 0, 1120, 0,−8064, 0 . . .

given by

µn =
1

π

∫ i2
√
2

−i2
√
2

−xn√
−x2 − 8

dx = (−2)n/2
(

n
n
2

)

1 + (−1)n

2
.

This is essentially A059304. In the semi-classical case of

(

1 + 2x+ 2x2

1− 2x2
,

x

1− 2x2

)

,

we find that the moments µn, which begin

1,−2, 0, 8,−8,−32, 64, 128,−416,−512, 2560, . . . ,

have integral expression

µn =
1

π

∫ 2
√
2i

−2
√
2i

−xni
√
x2 + 8

x2 + 4
dx+ i(2i)n.

The Hankel transform of µn is given by

hn = 2n(−2)(
n+1
2 ).

7 A note on the INVERT transform

For a given sequence with generating function g(x), the sequence with generating function

g(x)

1 + axg(x)

17
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is known as the INVERT(a) transform of the first sequence, with a similar designation for
the generating functions. We recall that in the last section we met the generating function

µ̃(x) =
1

ax+
√
1 + 4bx2

.

We note that

µ̃(x) =

1√
1+4bx2

1 + ax 1√
1+4bx2

.

In other words, µ̃(x) is the INVERT(a) transform of 1√
1+4bx2 . The weight function corre-

sponding to 1√
1+4bx2 is given by

w(x) =
1√

−x2 − 4b2
=⇒ w′(x)

w(x)
=

−x
x2 + 4b

,

so this is a classical case. Corresponding to µ̃(x) we get a weight with absolutely continuous
part equal to

w̃(x) =
(x2 + a2 + 4b)

√
−x2 − 4b2

(x2 − a2 + 4b)2
.

We find that w̃′(x)
w̃(x)

is of classical type only if a = 0.
It is instructive to consider some more basic examples.

Example 10. We consider w(x) = 1
π

1√
x(4−x)

, which is the weight function for the family

of orthogonal polynomials whose moments are the central binomial coefficients
(

2n
n

)

with
generating function 1√

1−4x
. We have

w′(x)

w(x)
=

2− x

x(x− 4)
.

The INVERT(a) transform of this generating function is given by

1

ax+
√
1− 4x

=
ax−

√
1− 4x

a2x2 + 4x− 1
.

Then the absolutely continuous part of the corresponding weight function is given by

wa(x) = − 1

π

√

x(4− x)

x2 − 4x− a2
.

We have
w′

a(x)

wa(x)
=

(2− x)(x2 − 4x+ a2)

x(x− 4)(x2 − 4x− a2)
,
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which will be of classical form only if a = 0. For instance, when a = 1 we obtain moments
(A081696)

1, 1, 3, 9, 29, 97, 333 . . .

given by

1

π

∫ 4

0

xn

(

−
√

x(4− x)

x2 − 4x− 1

)

dx+
1√
5
(2−

√
5)n.

Similarly, for a = −1, we obtain moments that begin

1, 3, 11, 43, 173, 707, 3917, . . .

given by

1

π

∫ 4

0

xn

(

−
√

x(4− x)

x2 − 4x− 1

)

dx+
1√
5
(2 +

√
5)n.

Here, the zeros of the denominator x2− 4x− 1 are given by 2−
√
5 and 2+

√
5. We note

that these occur outside the interval of integration [0, 4].

Example 11. In this example, we consider the generating function c(x) = 1−
√
1−4x
2x

of the
Catalan numbers. The associated weight function is

w(x) =
1

2π

√

x(4− x)

x
,

with
w′(x)

w(x)
=

2

x(x− 4)
.

The coefficient array of the corresponding classical orthogonal polynomials is the Riordan
array

R =

(

1

1 + x
,

x

(1 + x)2

)

= (c(x), c(x)− 1)−1 = (c(x), xc(x)2)−1.

We now consider the INVERT(a) transform of c(x). This is

c(x)

1 + axc(x)
=

1−
√
1− 4x

x(2 + a− a
√
1− 4x)

=
1 + 2ax−

√
1− 4x

2x(1 + a+ a2x)
.

The corresponding weight function is then given by

wa(x) =

√

x(4− x)

2(x(a+ 1) + a2)
.

We note that the zero of the denominator is x = −a2

a+1
. In this case, we see that w′

a(x)
wa(x)

is of
classical form for a = −2,−1, 0, being equal to

2

x(4− x)
,
x− 2

x(x− 4)
,

2

x(x− 4)
,
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respectively. For these values of a, the roots of (1 + a)x + a2 = 0 are, respectively, 4, −∞,
and 0. All other values lie outside the interval of integration [0, 4], and hence contribute an
atomic part. The case a = 0 is just the Catalan numbers. The case a = −1 is the once
shifted Catalan numbers Cn+1,

1, 2, 5, 14, 42, 132, 429, 1430, 4862, . . . .

Thus

Cn+1 =
1

2π

∫ 4

0

xn
√

x(4− x) dx.

The coefficient array of the corresponding orthogonal polynomials is the Riordan array

(

1

(1 + x)2
,

x

(1 + x)2

)

.

The case a = −2 is the sequence
(

2n+1
n+1

)

with generating function

c(x)

1− 2xc(x)
=

1−
√
1− 4x

2x
√
1− 4x

.

We then have
(

2n+ 1

n+ 1

)

=
1

π

∫ 4

0

xn
√

x(4− x)

2(4− x)
dx.

The coefficient array of the corresponding orthogonal polynomials is the Riordan array

(

1− x

(1 + x)2
,

x

(1 + x)2

)

.

For other values of a, we have an absolutely continuous part and an atomic measure part.

µn(a) =
1

π

∫ n

0

xn
√

x(4− x)

2((1 + a)x+ a2)
+

(a+ 1)2 − 1

(a+ 1)2

(

− a2

a+ 1

)n

.

For instance, when a = 3, the moment sequence µn(3) has generating function

µ3(x) =
1−

√
1− 4x

x(3
√
1− 4x− 1)

,

and we have

µn(3) =
1

π

∫ 4

0

xn
x(4− x)

2(4x+ 9)
dx+

15

16
(−9

4
)n.

This sequence A049027 begins

1, 4, 17, 74, 326, 1446, 6441, 28770, 128750, 576944, . . . .
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The corresponding Riordan array is

(

1− 2x

(1 + x)2
,

x

(1 + x)2

)

.

In general, we have a one-parameter family of orthogonal polynomials whose coefficient
arrays are given by

(

1− (r − 1)x

(1 + x)2
,

x

(1 + x)2

)

.

The moment sequence µn(r) then has generating function

µr(x) =
1

1− (r + 1)x−
x2

1− 2x−
x2

1− 2x− · · ·

.

More generally, in the context of Favard’s theorem, we can assume that

µ(x) =
1

1− α0x−
β1x

2

1− α1x−
β2x

2

1− · · ·

.

In this case, the INVERT(a) transform has generating function

µa(x) =
1

1− (a+ α0)x−
β1x

2

1− α1x−
β2x

2

1− · · ·

.

It is then clear that both sequences will have the same Hankel transforms.

8 A special product sequence

In this section, we investigate the sequence generated by

G(x) =
1

x
Rev

(

x

µ̃(x)

)

,

where

µ̃(x) =
1

ax+
√
1 + 4bx2

.
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Thus we have

G(x) =
1

x
Rev(x(ax+

√
1 + 4bx2)).

We can use Lagrange Inversion to explore this quantity. Thus we have

[xn]G(x) = [xn+1]Rev(x(ax+
√
1 + 4bx2)) =

1

n+ 1
[xn]

(

1

ax+
√
1 + 4bx2

)n+1

.

Then we have

[xn]G(x) =
1

n+ 1

⌊n
2
⌋

∑

i=0

(

2i− n− 1

n

)(

i− n− 1/2

i

)

4ibian−2i

=
1

n+ 1

(

2n

n

)

[xn]
1

1 + ax+ bx2

= Cn[x
n]

1

1 + ax+ bx2
.

In order to revert the expression x(ax+ a
√
1 + 4bx2), we must solve the equation

u(au+
√
1 + 4bu2) = x.

Simplifying leads to the quadratic equation in u2

(a2 − 4b)u4 − (1 + 2ax)u2 + x = 0

whose solution is given by

±

√

1 + 2ax±
√
1 + 4ax+ 16bx2

2(a2 − 4b)
.

Thus for instance, we find that the generating function of the product CnFn+1 of the Catalan
numbers Cn (A000108) and the non-negative Fibonacci numbers Fn+1 (A000045) is given by
(a = b = −1)

1

x

√

1− 2x−
√
1− 4x− 16x2

10
.

This is the sequence A098614 in the On-Line Encyclopedia of Integer Sequences [32, 33].
This sequence, contributed by Paul D. Hanna, begins

1, 1, 4, 15, 70, 336, 1716, 9009, 48620, . . . .

In similar fashion the sequence with generating function

1

x

√

1− 2x−
√
1− 4x− 32x2

18
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is given by the product of the Catalan numbers Cn and the Jacobsthal numbers Jn+1 =
2n+1

3
+ (−1)n

3
(A001045). This sequence (A200375) begins

1, 1, 6, 25, 154, 882, 5676, 36465, 244530, 1657942, . . .

It should be noted that the On-Line Encyclopedia of Integer Sequences is a rich repository
of sequences including Riordan arrays, coefficient arrays of orthogonal polynomials, and
significant moment sequences.

9 Exponential Riordan arrays and classical orthogonal

polynomials

An exponential Riordan array R is an invertible lower-triangular matrix defined by two power
series

g(x) = 1 + g1
x

1!
+ g2

x2

2!
+ · · ·

and

f(x) =
x

1!
+ f2

x2

2!
+ f3

x3

3!
+ · · · ,

where the (n, k)-th element of the corresponding matrix is given by

rn,k =
n!

k!
[xn]g(x)f(x)k,

where [xn] is the operator that extracts the coefficient of xn in the power series upon which
it operates [24]. Note that we have chosen g0 = 1 and f1 = 1 here, to simplify the exposition.
We denote the exponential array defined by the pair g, f by [g, f ]. Note that all orthogonal
polynomials in this section will be monic (the coefficient of xn in Pn(x) is 1).

In order for a Riordan array R to be the coefficient array of a family of orthogonal
polynomials, we require that the production matrix PM = M−1M of the inverse matrix
M = R−1 be tri-diagonal. If M = [u, v] then this production matrix is generated by two
power series, the A series and the Z series. We have

A(x) = v′(v̄(x)), Z(x) =
u′(v̄(x))

u(v̄(x))
.

The matrix PM then has its bivariate generating function given by

exy(Z(x) + yA(x)).

The most general bivariate generating function of the production matrix of an exponential
Riordan array M for that matrix to have a tri-diagonal production matrix is given by

exy(α + βx+ y(1 + γx+ δx2)),
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where we have
Z(x) = α + βx, A(x) = 1 + γx+ δx2.

This leads to a production matrix that begins





















α 1 0 0 0 0 0
β α + γ 1 0 0 0 0
0 2(β + δ) α + 2γ 1 0 0 0
0 0 3β + 6δ α + 3γ 1 0 0
0 0 0 4β + 12δ α + 4γ 1 0
0 0 0 0 5β + 20δ α + 5γ 1
0 0 0 0 0 6β + 30δ α + 6γ





















.

In this case where the production matrix of M = R−1 is tri-diagonal, we call M the moment
matrix of the family of orthogonal polynomials whose coefficient array is given by the Riordan
array R.

We then have that R = M−1, the coefficient array of the associated orthogonal polyno-
mials, will be defined by

R =

[

e
∫ x
0

Z(t)
A(t)

dt,

∫ x

0

dt

A(t)

]

=

[

e
∫ x
0

α+βt

1+γt+δt2
dt
,

∫ x

0

dt

1 + γt+ δt2

]

=







e
βγ/δ−2α

4δ−γ2

(

2 tan−1

(

γ+2δx√
4δ−γ2

)

−2 sin−1
(

γ

2
√
δ

)

)

(1 + γx+ δx2)β/(2δ)
,

1

4δ − γ2

(

2 tan−1

(

γ + 2δx
√

4δ − γ2

)

− 2 sin−1

(

γ

2
√
δ

)

)






.

This is the most general form that an exponential Riordan array can have for it to be
the coefficient array of a family Pn(x) of orthogonal polynomials. These polynomials satisfy
the three-term recurrence

Pn(x) = (x− (α + (n− 1)γ))Pn−1(x)− (n− 1)(β + (n− 2)δ)Pn−2(x),

with P0(x) = 1, P1(x) = x− α.

Example 12. We let A(x) = 1 + x+ x2/2, Z(x) = 1 + x. We find that R is given by

R =M−1 =

[

2

2 + 2x+ x2
, 2 tan−1(1 + x)− π

2

]

.

The moment matrix M is then given by

M =
[

(1 + sin(x)) sec(x)2, tan(x) + sin(x)− 1
]

.
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The moments in this case are the shifted Euler or up/down numbers

1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, . . . .

We have

Pn(x) = (x− n)Pn−1(x)−
n(n− 1)

2
Pn−2(x).

The production matrix of the moment matrix begins

















1 1 0 0 0 0
1 2 1 0 0 0
0 3 3 1 0 0
0 0 6 4 1 0
0 0 0 10 5 1
0 0 0 0 15 6

















.

This indicates that the Hankel transform of the moment sequence is given by

hn =
n
∏

k=0

(

k + 2

2

)n−k

.

Example 13. We let A(x) = 1 + 2x+ x2, Z(x) = 1 + x. We find that R is given by

R =M−1 =

[

1

1 + x
,

x

1 + x

]

with moment matrix

M =

[

1

1− x
,

x

1− x

]

.

The moments are thus n! and the polynomials are the scaled Laguerre polynomials

n!
n
∑

k=0

(

n

k

)

(−1)n−k

k!
xk.

Classically, we have

n! =

∫ ∞

0

xne−x dx.

Then w(x) = e−x and w′(x)
w(x)

= −1. The polynomials satisfy the recurrence

Pn(x) = (x− (2n− 1))Pn−1(x)− (n− 1)2Pn−1(x).
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The production matrix in this case begins

















1 1 0 0 0 0
1 3 1 0 0 0
0 4 5 1 0 0
0 0 9 7 1 0
0 0 0 16 9 1
0 0 0 0 25 11

















.

This indicates that the Hankel transform of the moment sequence is given by

hn =
n
∏

k=1

k2(n−k+1) =
n
∏

k=0

k!2.

Example 14. Let Z(x) = 1 + 2x and A(x) = 1 + x + x2. The exponential Riordan array
whose production matrix is defined by A(x) and Z(x) is given by

M =

[

3

2
(

cos
(√

3x+ π
3

)

+ 1
) ,

√
3

2
tan

(√
3x

2
+
π

6

)

− 1

2

]

.

The (n, k)-th element of this array counts k forests of planer increasing unary-binary trees
with n nodes. The production matrix of this array begins

















1 1 0 0 0 0
2 2 1 0 0 0
0 6 3 1 0 0
0 0 12 4 1 0
0 0 0 20 5 1
0 0 0 0 30 6

















.

The inverse array R =M−1 is given by
[

1

1 + x+ x2
,
2√
3
tan−1

(

1 + 2x√
3

− π

3
√
3

)]

.

This is the coefficient array of the family of orthogonal polynomials

Pn(x) = (x− n)Pn−1(x)− n(n− 1)Pn−2(x),

with P0(x) = 1, P1(x) = x− 1.

In general, we have

hn =
n
∏

k=1

(k(β + (k − 1)δ))n−k+1.
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Proposition 15. The exponential Riordan array
[

1
(1+x)r

, x
1+x

]

is the coefficient array of a

family of classical orthogonal polynomials. We have

w(x) = e−x xr−1

(r − 1)!

on the interval
[0,∞).

The moments have integral representation

µn =

∫ ∞

0

xne−x xr−1

(r − 1)!
dx = n!

(

n+ r − 1

n

)

=
n−1
∏

k=0

r + k.

The moments have generating function given by

µ(x) =
1

1− rx−
rx2

1− (r + 2)x−
2(r + 1)x2

1− (r + 4)x−
3(r + 2)x2

1− (r + 6)x− · · ·

.

The Hankel transform of the moments is given by

hn = rn
n
∏

k=1

k(k(r + k))n−k.

The polynomials Pn(x) satisfy the three-term recurrence

Pn(x) = (x− (r + 2(n− 1)))Pn−1(x)− (n− 1)(r + n− 2)Pn−2(x), n > 1,

with P0(x) = 1, P1(x) = x− r.
If y = Pn(x), then y satisfies the differential equation

xy′′ + (r − x)y′ + ny = 0.

Proof. The main conclusion follows from the fact that

w′(x)

w(x)
=
r − 1− x

x
,

where

w(x) = e−x xr−1

(r − 1)!
.
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We note that for M =
[

1
(1+x)r

, x
1+x

]

, we have

M−1 =

[

1

(1− x)r
,

x

1− x

]

.

We find that
A(x) = (1 + x)2, Z(x) = r(1 + x).

The corresponding production matrix PM−1 is generated by

exy(r(1 + x) + y(1 + x)2).

This matrix is therefore tri-diagonal and begins





















r 1 0 0 0 0 0
r r + 2 1 0 0 0 0
0 2r + 2 r + 4 1 0 0 0
0 0 3(r + 2) r + 6 1 0 0
0 0 0 4(r + 3) r + 8 1 0
0 0 0 0 5(r + 4) r + 10 1
0 0 0 0 0 6(r + 5) r + 12





















.

The continued fraction, the Hankel transform and three-term recurrence now follow.

Proposition 16. The exponential Riordan array
[

1
(1+x)r+1 ,

x
1+x

]

is the coefficient array of a

family of classical orthogonal polynomials. We have

w(x) = e−xx
r

r!

on the interval
[0,∞).

The moments have integral representation

µn =

∫ ∞

0

xne−xx
r

r!
dx = n!

(

n+ r

r

)

=
n
∏

k=1

r + k.

The moments have generating function given by

µ(x) =
1

1− (r + 1)x−
(r + 1)x2

1− (r + 3)x−
2(r + 2)x2

1− (r + 5)x−
3(r + 3)x2

1− (r + 7)x− · · ·

.
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The Hankel transform of the moments is given by

hn =
n
∏

k=0

(k(r + k))n−k+1.

The polynomials Pn(x) satisfy the three-term recurrence

Pn(x) = (x− (r + 2n− 1))Pn−1(x)− (n− 1)(r + n− 1)Pn−2(x), n > 1,

with P0(x) = 1, P1(x) = x− (r + 1).
If y = Pn(x), then y satisfies the differential equation

xy′′ + (r + 1− x)y′ + ny = 0.

Proof. The main conclusion follows from the fact that

w′(x)

w(x)
=
r − x

x
,

where

w(x) = e−xx
r

r!
.

For M =
[

1
(1+x)r+1 ,

x
1+x

]

we have M−1 =
[

1
(1−x)r+1 ,

x
1−x

]

. We find that PM−1 is generated by

exy((r + 1)(1 + x) + y(1 + x)2).

This matrix is therefore tri-diagonal and begins




















r + 1 1 0 0 0 0 0
r + 1 r + 3 1 0 0 0 0
0 2r + 4 r + 5 1 0 0 0
0 0 3(r + 3) r + 7 1 0 0
0 0 0 4(r + 4) r + 9 1 0
0 0 0 0 5(r + 5) r + 11 1
0 0 0 0 0 6(r + 6) r + 13





















.

The continued fraction, the Hankel transform and three-term recurrence now follow.

Proposition 17. The exponential Riordan array
[

e−
rx2

2 , x
]

is the coefficient array of a

family of classical orthogonal polynomials. We have

w(x) = e−
x2

2r

on the interval
(−∞,∞).
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The moments have integral representation

µn =

∫ ∞

−∞
xne−

x2

2r dx.

These begin
1, 0, r, 0, 3r2, 0, 15r3, 0, 105r4, 0, 945r5, 0, . . . .

The moments have generating function given by

µ(x) =
1

1−
rx2

1−
2rx2

1−
3rx2

1− · · ·

.

The Hankel transform of the moments is given by

hn = r(
n+1
2 )

n
∏

k=1

kn−k+1.

The polynomials Pn(x) satisfy the three-term recurrence

Pn(x) = xPn−1(x)− r(n− 1)Pn−2(x), n > 1,

with P0(x) = 1, P1(x) = x.
If y = Pn(x), then y satisfies the differential equation

ry′′ − xy′ + ny = 0.

Proof. The main conclusion follows from the fact that

w′(x)

w(x)
=

−x
r
,

where

w(x) = e−
x2

r .

The inverse coefficient matrix [u, v] =
[

e
rx2

2 , x
]

, and hence the production matrix is generated

by exy(rx+ y). This matrix begins




























0 1 0 0 0 0 0 0 0
r 0 1 0 0 0 0 0 0
0 2r 0 1 0 0 0 0 0
0 0 3r 0 1 0 0 0 0
0 0 0 4r 0 1 0 0 0
0 0 0 0 5r 0 1 0 0
0 0 0 0 0 6r 0 1 0
0 0 0 0 0 0 7r 0 1
0 0 0 0 0 0 0 8r 0





























.
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The continued fraction, the Hankel transform and three-term recurrence now follow.

The case r = 1 is related to the Hermite polynomials. The Riordan array
[

e−
t2

2 , t
]

is the

coefficient array of the (probabilist) Hermite polynomials He(n, x) given by

Hen(x) =
n
∑

k=0

n!

(−2)
n−k
2 k!

(

n−k
2

)

!

1 + (−1)n−k

2
xk.

The Physicists’ Hermite polynomials are given by

Hn(x) = n!

⌊n
2
⌋

∑

k=0

(−1)k(2x)n−2k

k!(n− 2k)!
.

The coefficient array of the Physicists’ Hermite polynomials is the exponential Riordan array

[

e−t2 , 2t
]

.

We have
Hen(x) = 2−

n
2Hn(

√
2x).

We have
Hen(x) = xHen−1(x)− (n− 1)Hen−2(x),

and
Hn(x) = 2xHn−1(x)− 2(n− 1)Hn−1(x).

10 Bessel and related polynomials

In this section we briefly look at two families of polynomials related to the Bessel polynomials
[16]. We start with the exponential Riordan array

R =

[

1√
1 + 2x

,
x

1 + 2x

]

.

This array begins





















1 0 0 0 0 0 0
−1 1 0 0 0 0 0
3 −6 1 0 0 0 0

−15 45 −15 1 0 0 0
105 −420 210 −28 1 0 0
−945 4725 −3150 630 −45 1 0
10395 −62370 51975 −13860 1485 −66 1





















.
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The production matrix of the inverse M = R−1 =
[

1√
1−2x

, x
1−2x

]

of this array is tri-diagonal,

beginning




















1 1 0 0 0 0 0
2 5 1 0 0 0 0
0 12 9 1 0 0 0
0 0 30 13 1 0 0
0 0 0 56 17 1 0
0 0 0 0 90 21 1
0 0 0 0 0 132 25





















.

It follows that the exponential Riordan array
[

1√
1+2x

, x
1+2x

]

is the coefficient array of the

family of orthogonal polynomials Pn(x) defined by the three-term recurrence

Pn(x) = (x− (4n− 3))Pn−1(x)− 2(n− 1)(2n− 3)Pn−2(x),

with P0(x) = 1, P1(x) = x− 1.
The moments µn of these orthogonal polynomials are the double factorials of the odd

numbers (2n− 1)!! with exponential generating function 1√
1−2x

that begin (A001147)

1, 1, 3, 15, 105, 945, 10395, 135135, 2027025, 34459425, . . . .

We have

(2n− 1)!! =
n!

2π

∫ 2

0

xn
√

x(2− x)
dx =

1√
2π

∫ ∞

0

xn
e−

x
2

√
x
dx.

The Hankel transform of the moments µn is then given by

hn =
n
∏

k=0

(2(k + 1)(2k + 1))n−k.

We have
w′(x)

w(x)
= −1 + x

x
,

where

w(x) =
1√
2π

e−
x
2

√
x
.

The inverse matrix M =
[

1√
1−2x

, x
1−2x

]

is the coefficient array of the related polynomial

family P ∗(n, x) = (−1)nPn(−x) that satisfies the three-term recurrence

P ∗
n(x) = (x+ (4n− 3))P ∗

n−1(x)− 2(n− 1)(2n− 3)P ∗
n−2(x),

with P ∗
0 (x) = 1, P ∗

1 (x) = x+ 1.
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We note further that the exponential Riordan array

M̃ =

[

d

dx

1√
1− 2x

,
x

1− 2x

]

=

[

1

(1− 2x)3/2
,

x

1− 2x

]

has
Z(x) = 3 + 6x, A(x) = (1 + 2x)2.

Its production matrix thus begins




















3 1 0 0 0 0 0
6 7 1 0 0 0 0
0 20 11 1 0 0 0
0 0 42 15 1 0 0
0 0 0 72 19 1 0
0 0 0 0 110 23 1
0 0 0 0 0 156 27





















.

The array M̃ is thus the inverse of the coefficient array of the polynomials that satisfy the
recurrence relation

Pn(x) = (x− (4n− 1))Pn−1(x)− (n− 1)(4n− 2)Pn−2(x),

with P0(x) = 1, P1(x) = x− 3. We have

µ̃n =
1√
2π

∫ ∞

0

xnx
e−

x
2

√
x
dx.

Thus

w̃(x) =
1√
2π

√
xe−

x
2 ,

and
w̃′(x)

w̃(x)
=

1− x

2x
.

The Hankel transform of the moments µ̃n, which begin

1, 3, 15, 105, 945, 10395, 135135, 2027025, 34459425, . . . ,

is given by

hn =
n
∏

k=0

(2(k + 1)(2k + 3))n−k.

The exponential Riordan array
[

e
x2

2 , x
]

is the coefficient array of the family of orthogonal

polynomials Pn(x) that satisfy the recurrence

Pn(x) = xPn−1(x)− (n− 1)Pn−2(x),
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with P0(x) = 1, P1(x) = x. The moments of these polynomials are the aerated double
factorials

1, 0, 1, 0, 3, 0, 15, 0, 105, 0, 945, . . .

with exponential generating function ex
2/2. The Hankel transform of these moments is given

by

hn =
∏

k=0

(k + 1)n−k =
n
∏

k=0

k!

This follows since for the moment matrix
[

ex
2/2, x

]

we have A(x) = 1 and Z(x) = x.

We now consider a family of Bessel polynomials. The exponential Riordan array B =
[

1√
1−2x

, 1−
√
1− 2x

]

is the coefficient array of the reverse Bessel polynomials θn(x) [16] with

general term

θn(x) =
n
∑

k=0

(2n− k)!

2n−kk!(n− k)!
xk.

These polynomials are orthogonal on the circle, satisfying the recurrence

θn(x) = (2n− 1)θn−1(x) + x2θn−2(x).

We calculate RB. We get

RB =

[

1√
1 + 2x

,
x

1 + 2x

]

·
[

1√
1− 2x

, 1−
√
1− 2x

]

=

[

1√
1 + 2x

1
√

1− 2 x
1+2x

, 1−
√

1− 2
x

1 + 2x

]

=

[

1, 1− 1√
1 + 2x

]

.

This last array has general term

Tn,k =
(n− 1)!

(k − 1)!

2n
∑

j=0

(

2n

j

)(

2n− k − j − 1

n− k − j

)

(−1)j

2n−k−j
.

We have

B = R−1 ·
[

1, 1− 1√
1 + 2x

]

.

Now R−1 is the coefficient array of the polynomials (−1)nPn(−x). Thus the last two expres-
sions allow us to express the Bessel polynomials θn(x) in terms of the polynomials Pn(x).

We note further that if Tn,k is the general term of the coefficient array
[

e−
x2

2 , x
]

, then

T2n−k,k is the general term of the coefficient array
[

1√
1+2x

,
√
1 + 2x− 1

]

. More generally, if
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Tn,k is the general term of the coefficient array
[

e−
rx2

2 , x
]

, then T2n−k,k is the general term

of the coefficient array
[

1√
1+2xr

,
√
1 + 2xr − 1

]

.

The matrix

R =

[

1√
1 + 2x

,
x

1 + 2x

]

is a member of a one-parameter family of coefficient arrays of orthogonal polynomials. The
general element of this family is

[

1

(1 + rx)1/r
,

x

1 + rx

]

=

[

1

(1− rx)1/r
,

x

1− rx

]−1

.

The family of orthogonal polynomials Pn(x; r) defined by this matrix satisfies the three-term
recurrence

Pn(x; r) = (x− (2(n− 1)r + 1))Pn−1(x; r)− (n− 1)r((n− 2)r + 1)Pn−2(x; r),

with P0(x; r) = 1 and P1(x; r) = x−1. The moments of this family of orthogonal polynomials
have exponential generating function 1

(1−rx)1/r
. They begin

1, 1, r + 1, (r + 1)(2r + 1), (r + 1)(2r + 1)(3r + 1), . . . ,

or

µn(r) =
n−1
∏

k=0

kr + 1.

The Hankel transform of µn is then

hn = r(
n+1
2 )

n
∏

k=0

k!(kr + 1)n−k.

The corresponding family of generalized Bessel polynomials will then have coefficient
array given by

[

1

(1− rx)1/r
, 1− (1− rx)1/r

]

=

[

1− x,
1− (1− x)r

r

]−1

.

11 Conclusion

While Riordan arrays can only define a limited number of families of orthogonal polynomials,
they offer fresh perspectives on these families and their study can lead to interesting results.
For instance, solutions to the restricted Toda chain equations are provided by the Jacobi
parameters of exponential Riordan arrays that are the moment arrays of families of param-
terised orthogonal polynomials [7]. Thus links exist between orthogonal polynomials defined
by appropriate Riordan arrays and integrable systems. Further research is warranted, partic-
ularly in the realm of exponential Riordan arrays and q-Riordan arrays, and their interaction
with appropriate families of orthogonal polynomials.
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12 Appendix — The Stieltjes transform of a measure

The Stieltjes transform of a measure µ on R is a function Gµ defined on C \ R by

Gµ(z) =

∫

R

1

z − t
µ(t).

If f is a bounded continuous function on R, we have
∫

R

f(x)µ(x) = − lim
y→0+

∫

R

f(x)ℑGµ(x+ iy)dx.

If µ has compact support, then Gµ is holomorphic at infinity and for large z,

Gµ(z) =
∞
∑

n=0

an
zn+1

,

where an =
∫

R
tnµ(t) are the moments of the measure. If µ(t) = dψ(t) = ψ′(t)dt then

(Stieltjes-Perron)

ψ(t)− ψ(t0) = − 1

π
lim
y→0+

∫ t

t0

ℑGµ(x+ iy)dx.

If now g(x) is the generating function of a sequence an, with g(x) =
∑∞

n=0 anx
n, then we can

define

G(z) =
1

z
g

(

1

z

)

=
∞
∑

n=0

an
zn+1

.

By this means, under the right circumstances we can retrieve the density function for the
measure that defines the elements an as moments.

Example 18. We let g(z) = 1−
√
1−4z
2z

be the generating function of the Catalan numbers.
Then

G(z) =
1

z
g

(

1

z

)

=
1

2

(

1−
√

x− 4

x

)

.

Then

ℑGµ(x+ iy) = −
√
2
√

√

x2 + y2
√

x2 − 8x+ y2 + 16− x2 + 4x− y2

4
√

x2 + y2
,

and so we obtain

ψ′(x) = − 1

π
lim
y→0+







−
√
2
√

√

x2 + y2
√

x2 − 8x+ y2 + 16− x2 + 4x− y2

4
√

x2 + y2







=
1

2π

√

x(4− x)

x
.
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[36] G. Szegö, Orthogonal Polynomials, 4th edition, Amer. Math. Soc., 1975.
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